#pragma once #include #include #include #include #include #include class SipHash; class Collator; namespace DB { namespace ErrorCodes { extern const int CANNOT_GET_SIZE_OF_FIELD; extern const int NOT_IMPLEMENTED; extern const int BAD_COLLATION; } class Arena; class ColumnGathererStream; class Field; class WeakHash32; class ISerialization; using SerializationPtr = std::shared_ptr; /* * Represents a set of equal ranges in previous column to perform sorting in current column. * Used in sorting by tuples. * */ using EqualRanges = std::vector >; /// Declares interface to store columns in memory. class IColumn : public COW { private: friend class COW; /// Creates the same column with the same data. /// This is internal method to use from COW. /// It performs shallow copy with copy-ctor and not useful from outside. /// If you want to copy column for modification, look at 'mutate' method. virtual MutablePtr clone() const = 0; public: /// Name of a Column. It is used in info messages. virtual std::string getName() const { return getFamilyName(); } /// Name of a Column kind, without parameters (example: FixedString, Array). virtual const char * getFamilyName() const = 0; /// Type of data that column contains. It's an underlying type: UInt16 for Date, UInt32 for DateTime, so on. virtual TypeIndex getDataType() const = 0; /** If column isn't constant, returns itself. * If column is constant, transforms constant to full column (if column type allows such transform) and return it. */ virtual Ptr convertToFullColumnIfConst() const { return getPtr(); } /// If column isn't ColumnLowCardinality, return itself. /// If column is ColumnLowCardinality, transforms it to full column. virtual Ptr convertToFullColumnIfLowCardinality() const { return getPtr(); } /// If column isn't ColumnSparse, return itself. /// If column is ColumnSparse, transforms it to full column. virtual Ptr convertToFullColumnIfSparse() const { return getPtr(); } Ptr convertToFullIfNeeded() const { return convertToFullColumnIfSparse()->convertToFullColumnIfConst()->convertToFullColumnIfLowCardinality(); } /// Creates empty column with the same type. virtual MutablePtr cloneEmpty() const { return cloneResized(0); } /// Creates column with the same type and specified size. /// If size is less current size, then data is cut. /// If size is greater, than default values are appended. virtual MutablePtr cloneResized(size_t /*size*/) const { throw Exception("Cannot cloneResized() column " + getName(), ErrorCodes::NOT_IMPLEMENTED); } /// Returns number of values in column. virtual size_t size() const = 0; /// There are no values in columns. bool empty() const { return size() == 0; } /// Returns value of n-th element in universal Field representation. /// Is used in rare cases, since creation of Field instance is expensive usually. virtual Field operator[](size_t n) const = 0; /// Like the previous one, but avoids extra copying if Field is in a container, for example. virtual void get(size_t n, Field & res) const = 0; /// If possible, returns pointer to memory chunk which contains n-th element (if it isn't possible, throws an exception) /// Is used to optimize some computations (in aggregation, for example). virtual StringRef getDataAt(size_t n) const = 0; /// Like getData, but has special behavior for columns that contain variable-length strings. /// Returns zero-ending memory chunk (i.e. its size is 1 byte longer). virtual StringRef getDataAtWithTerminatingZero(size_t n) const { return getDataAt(n); } /// If column stores integers, it returns n-th element transformed to UInt64 using static_cast. /// If column stores floating point numbers, bits of n-th elements are copied to lower bits of UInt64, the remaining bits are zeros. /// Is used to optimize some computations (in aggregation, for example). virtual UInt64 get64(size_t /*n*/) const { throw Exception("Method get64 is not supported for " + getName(), ErrorCodes::NOT_IMPLEMENTED); } /// If column stores native numeric type, it returns n-th element casted to Float64 /// Is used in regression methods to cast each features into uniform type virtual Float64 getFloat64(size_t /*n*/) const { throw Exception("Method getFloat64 is not supported for " + getName(), ErrorCodes::NOT_IMPLEMENTED); } virtual Float32 getFloat32(size_t /*n*/) const { throw Exception("Method getFloat32 is not supported for " + getName(), ErrorCodes::NOT_IMPLEMENTED); } /** If column is numeric, return value of n-th element, casted to UInt64. * For NULL values of Nullable column it is allowed to return arbitrary value. * Otherwise throw an exception. */ virtual UInt64 getUInt(size_t /*n*/) const { throw Exception("Method getUInt is not supported for " + getName(), ErrorCodes::NOT_IMPLEMENTED); } virtual Int64 getInt(size_t /*n*/) const { throw Exception("Method getInt is not supported for " + getName(), ErrorCodes::NOT_IMPLEMENTED); } virtual bool isDefaultAt(size_t n) const { return get64(n) == 0; } virtual bool isNullAt(size_t /*n*/) const { return false; } /** If column is numeric, return value of n-th element, casted to bool. * For NULL values of Nullable column returns false. * Otherwise throw an exception. */ virtual bool getBool(size_t /*n*/) const { throw Exception("Method getBool is not supported for " + getName(), ErrorCodes::NOT_IMPLEMENTED); } /// Removes all elements outside of specified range. /// Is used in LIMIT operation, for example. virtual Ptr cut(size_t start, size_t length) const { MutablePtr res = cloneEmpty(); res->insertRangeFrom(*this, start, length); return res; } /// Appends new value at the end of column (column's size is increased by 1). /// Is used to transform raw strings to Blocks (for example, inside input format parsers) virtual void insert(const Field & x) = 0; /// Appends n-th element from other column with the same type. /// Is used in merge-sort and merges. It could be implemented in inherited classes more optimally than default implementation. virtual void insertFrom(const IColumn & src, size_t n); /// Appends range of elements from other column with the same type. /// Could be used to concatenate columns. virtual void insertRangeFrom(const IColumn & src, size_t start, size_t length) = 0; /// Appends one element from other column with the same type multiple times. virtual void insertManyFrom(const IColumn & src, size_t position, size_t length) { for (size_t i = 0; i < length; ++i) insertFrom(src, position); } /// Appends data located in specified memory chunk if it is possible (throws an exception if it cannot be implemented). /// Is used to optimize some computations (in aggregation, for example). /// Parameter length could be ignored if column values have fixed size. /// All data will be inserted as single element virtual void insertData(const char * pos, size_t length) = 0; /// Appends "default value". /// Is used when there are need to increase column size, but inserting value doesn't make sense. /// For example, ColumnNullable(Nested) absolutely ignores values of nested column if it is marked as NULL. virtual void insertDefault() = 0; /// Appends "default value" multiple times. virtual void insertManyDefaults(size_t length) { for (size_t i = 0; i < length; ++i) insertDefault(); } /** Removes last n elements. * Is used to support exception-safety of several operations. * For example, sometimes insertion should be reverted if we catch an exception during operation processing. * If column has less than n elements or n == 0 - undefined behavior. */ virtual void popBack(size_t n) = 0; /** Serializes n-th element. Serialized element should be placed continuously inside Arena's memory. * Serialized value can be deserialized to reconstruct original object. Is used in aggregation. * The method is similar to getDataAt(), but can work when element's value cannot be mapped to existing continuous memory chunk, * For example, to obtain unambiguous representation of Array of strings, strings data should be interleaved with their sizes. * Parameter begin should be used with Arena::allocContinue. */ virtual StringRef serializeValueIntoArena(size_t n, Arena & arena, char const *& begin) const = 0; /// Deserializes a value that was serialized using IColumn::serializeValueIntoArena method. /// Returns pointer to the position after the read data. virtual const char * deserializeAndInsertFromArena(const char * pos) = 0; /// Skip previously serialized value that was serialized using IColumn::serializeValueIntoArena method. /// Returns a pointer to the position after the deserialized data. virtual const char * skipSerializedInArena(const char *) const = 0; /// Update state of hash function with value of n-th element. /// On subsequent calls of this method for sequence of column values of arbitrary types, /// passed bytes to hash must identify sequence of values unambiguously. virtual void updateHashWithValue(size_t n, SipHash & hash) const = 0; /// Update hash function value. Hash is calculated for each element. /// It's a fast weak hash function. Mainly need to scatter data between threads. /// WeakHash32 must have the same size as column. virtual void updateWeakHash32(WeakHash32 & hash) const = 0; /// Update state of hash with all column. virtual void updateHashFast(SipHash & hash) const = 0; /** Removes elements that don't match the filter. * Is used in WHERE and HAVING operations. * If result_size_hint > 0, then makes advance reserve(result_size_hint) for the result column; * if 0, then don't makes reserve(), * otherwise (i.e. < 0), makes reserve() using size of source column. */ using Filter = PaddedPODArray; virtual Ptr filter(const Filter & filt, ssize_t result_size_hint) const = 0; /// Permutes elements using specified permutation. Is used in sorting. /// limit - if it isn't 0, puts only first limit elements in the result. using Permutation = PaddedPODArray; virtual Ptr permute(const Permutation & perm, size_t limit) const = 0; /// Creates new column with values column[indexes[:limit]]. If limit is 0, all indexes are used. /// Indexes must be one of the ColumnUInt. For default implementation, see selectIndexImpl from ColumnsCommon.h virtual Ptr index(const IColumn & indexes, size_t limit) const = 0; /** Compares (*this)[n] and rhs[m]. Column rhs should have the same type. * Returns negative number, 0, or positive number (*this)[n] is less, equal, greater than rhs[m] respectively. * Is used in sorting. * * If one of element's value is NaN or NULLs, then: * - if nan_direction_hint == -1, NaN and NULLs are considered as least than everything other; * - if nan_direction_hint == 1, NaN and NULLs are considered as greatest than everything other. * For example, if nan_direction_hint == -1 is used by descending sorting, NaNs will be at the end. * * For non Nullable and non floating point types, nan_direction_hint is ignored. */ virtual int compareAt(size_t n, size_t m, const IColumn & rhs, int nan_direction_hint) const = 0; /// Equivalent to compareAt, but collator is used to compare values. virtual int compareAtWithCollation(size_t, size_t, const IColumn &, int, const Collator &) const { throw Exception("Collations could be specified only for String, LowCardinality(String), Nullable(String) or for Array or Tuple, containing it.", ErrorCodes::BAD_COLLATION); } /// Compare the whole column with single value from rhs column. /// If row_indexes is nullptr, it's ignored. Otherwise, it is a set of rows to compare. /// compare_results[i] will be equal to compareAt(row_indexes[i], rhs_row_num, rhs, nan_direction_hint) * direction /// row_indexes (if not ignored) will contain row numbers for which compare result is 0 /// see compareImpl for default implementation. virtual void compareColumn(const IColumn & rhs, size_t rhs_row_num, PaddedPODArray * row_indexes, PaddedPODArray & compare_results, int direction, int nan_direction_hint) const = 0; /// Check if all elements in the column have equal values. Return true if column is empty. virtual bool hasEqualValues() const = 0; /** Returns a permutation that sorts elements of this column, * i.e. perm[i]-th element of source column should be i-th element of sorted column. * reverse - reverse ordering (acsending). * limit - if isn't 0, then only first limit elements of the result column could be sorted. * nan_direction_hint - see above. */ virtual void getPermutation(bool reverse, size_t limit, int nan_direction_hint, Permutation & res) const = 0; /*in updatePermutation we pass the current permutation and the intervals at which it should be sorted * Then for each interval separately (except for the last one, if there is a limit) * We sort it based on data about the current column, and find all the intervals within this * interval that had the same values in this column. we can't tell about these values in what order they * should have been, we form a new array with intervals that need to be sorted * If there is a limit, then for the last interval we do partial sorting and all that is described above, * but in addition we still find all the elements equal to the largest sorted, they will also need to be sorted. */ virtual void updatePermutation(bool reverse, size_t limit, int nan_direction_hint, Permutation & res, EqualRanges & equal_ranges) const = 0; /** Equivalent to getPermutation and updatePermutation but collator is used to compare values. * Supported for String, LowCardinality(String), Nullable(String) and for Array and Tuple, containing them. */ virtual void getPermutationWithCollation(const Collator &, bool, size_t, int, Permutation &) const { throw Exception("Collations could be specified only for String, LowCardinality(String), Nullable(String) or for Array or Tuple, containing them.", ErrorCodes::BAD_COLLATION); } virtual void updatePermutationWithCollation(const Collator &, bool, size_t, int, Permutation &, EqualRanges&) const { throw Exception("Collations could be specified only for String, LowCardinality(String), Nullable(String) or for Array or Tuple, containing them.", ErrorCodes::BAD_COLLATION); } /** Copies each element according offsets parameter. * (i-th element should be copied offsets[i] - offsets[i - 1] times.) * It is necessary in ARRAY JOIN operation. */ using Offset = UInt64; using Offsets = PaddedPODArray; virtual Ptr replicate(const Offsets & offsets) const = 0; /** Split column to smaller columns. Each value goes to column index, selected by corresponding element of 'selector'. * Selector must contain values from 0 to num_columns - 1. * For default implementation, see scatterImpl. */ using ColumnIndex = UInt64; using Selector = PaddedPODArray; virtual std::vector scatter(ColumnIndex num_columns, const Selector & selector) const = 0; /// Insert data from several other columns according to source mask (used in vertical merge). /// For now it is a helper to de-virtualize calls to insert*() functions inside gather loop /// (descendants should call gatherer_stream.gather(*this) to implement this function.) /// TODO: interface decoupled from ColumnGathererStream that allows non-generic specializations. virtual void gather(ColumnGathererStream & gatherer_stream) = 0; /** Computes minimum and maximum element of the column. * In addition to numeric types, the function is completely implemented for Date and DateTime. * For strings and arrays function should return default value. * (except for constant columns; they should return value of the constant). * If column is empty function should return default value. */ virtual void getExtremes(Field & min, Field & max) const = 0; /// Reserves memory for specified amount of elements. If reservation isn't possible, does nothing. /// It affects performance only (not correctness). virtual void reserve(size_t /*n*/) {} /// Size of column data in memory (may be approximate) - for profiling. Zero, if could not be determined. virtual size_t byteSize() const = 0; /// Size of single value in memory (for accounting purposes) virtual size_t byteSizeAt(size_t /*n*/) const = 0; /// Size of memory, allocated for column. /// This is greater or equals to byteSize due to memory reservation in containers. /// Zero, if could not be determined. virtual size_t allocatedBytes() const = 0; /// Make memory region readonly with mprotect if it is large enough. /// The operation is slow and performed only for debug builds. virtual void protect() {} /// If the column contains subcolumns (such as Array, Nullable, etc), do callback on them. /// Shallow: doesn't do recursive calls; don't do call for itself. using ColumnCallback = std::function; virtual void forEachSubcolumn(ColumnCallback) {} /// Columns have equal structure. /// If true - you can use "compareAt", "insertFrom", etc. methods. virtual bool structureEquals(const IColumn &) const { throw Exception("Method structureEquals is not supported for " + getName(), ErrorCodes::NOT_IMPLEMENTED); } static constexpr auto DEFAULT_ROWS_SEARCH_STEP = 8; static constexpr auto MIN_ROWS_TO_SEARCH_DEFAULTS = DEFAULT_ROWS_SEARCH_STEP * 16; static constexpr auto DEFAULT_RATIO_FOR_SPARSE_SERIALIZATION = 0.95; /// Returns number of values in column, that equal to default value of column. /// Checks every @step-th value. So, if step is not 1, returns number, /// that lower than actual. 0 means, that such statistic is unknown for column. virtual size_t getNumberOfDefaultRows(size_t /* step */) const { return 0; } /// Returns indices of values in column, that not equal to default value of column. virtual void getIndicesOfNonDefaultValues(Offsets & indices, size_t from, size_t limit) const; /// Returns column with @total_size elements. /// In result column values from current column are at positions from @offsets. /// Other values are filled by defaults. /// @shift means how much rows to skip from the beginning of current column. /// Used to create full column from sparse. virtual Ptr createWithOffsets(const Offsets & offsets, size_t total_rows, size_t shift) const; /// Compress column in memory to some representation that allows to decompress it back. /// Return itself if compression is not applicable for this column type. virtual Ptr compress() const { /// No compression by default. return getPtr(); } /// If it's CompressedColumn, decompress it and return. /// Otherwise return itself. virtual Ptr decompress() const { return getPtr(); } static MutablePtr mutate(Ptr ptr) { MutablePtr res = ptr->shallowMutate(); /// Now use_count is 2. ptr.reset(); /// Reset use_count to 1. res->forEachSubcolumn([](WrappedPtr & subcolumn) { subcolumn = IColumn::mutate(std::move(subcolumn).detach()); }); return res; } /** Some columns can contain another columns inside. * So, we have a tree of columns. But not all combinations are possible. * There are the following rules: * * ColumnConst may be only at top. It cannot be inside any column. * ColumnNullable can contain only simple columns. */ /// Various properties on behaviour of column type. /// True if column contains something nullable inside. It's true for ColumnNullable, can be true or false for ColumnConst, etc. virtual bool isNullable() const { return false; } /// It's a special kind of column, that contain single value, but is not a ColumnConst. virtual bool isDummy() const { return false; } /** Memory layout properties. * * Each value of a column can be placed in memory contiguously or not. * * Example: simple columns like UInt64 or FixedString store their values contiguously in single memory buffer. * * Example: Tuple store values of each component in separate subcolumn, so the values of Tuples with at least two components are not contiguous. * Another example is Nullable. Each value have null flag, that is stored separately, so the value is not contiguous in memory. * * There are some important cases, when values are not stored contiguously, but for each value, you can get contiguous memory segment, * that will unambiguously identify the value. In this case, methods getDataAt and insertData are implemented. * Example: String column: bytes of strings are stored concatenated in one memory buffer * and offsets to that buffer are stored in another buffer. The same is for Array of fixed-size contiguous elements. * * To avoid confusion between these cases, we don't have isContiguous method. */ /// Values in column have fixed size (including the case when values span many memory segments). virtual bool valuesHaveFixedSize() const { return isFixedAndContiguous(); } /// Values in column are represented as continuous memory segment of fixed size. Implies valuesHaveFixedSize. virtual bool isFixedAndContiguous() const { return false; } /// If isFixedAndContiguous, returns the underlying data array, otherwise throws an exception. virtual StringRef getRawData() const { throw Exception("Column " + getName() + " is not a contiguous block of memory", ErrorCodes::NOT_IMPLEMENTED); } /// If valuesHaveFixedSize, returns size of value, otherwise throw an exception. virtual size_t sizeOfValueIfFixed() const { throw Exception("Values of column " + getName() + " are not fixed size.", ErrorCodes::CANNOT_GET_SIZE_OF_FIELD); } /// Column is ColumnVector of numbers or ColumnConst of it. Note that Nullable columns are not numeric. virtual bool isNumeric() const { return false; } /// If the only value column can contain is NULL. /// Does not imply type of object, because it can be ColumnNullable(ColumnNothing) or ColumnConst(ColumnNullable(ColumnNothing)) virtual bool onlyNull() const { return false; } /// Can be inside ColumnNullable. virtual bool canBeInsideNullable() const { return false; } virtual bool lowCardinality() const { return false; } virtual bool isSparse() const { return false; } virtual bool isCollationSupported() const { return false; } virtual ~IColumn() = default; IColumn() = default; IColumn(const IColumn &) = default; /** Print column name, size, and recursively print all subcolumns. */ String dumpStructure() const; protected: /// Template is to devirtualize calls to insertFrom method. /// In derived classes (that use final keyword), implement scatter method as call to scatterImpl. template std::vector scatterImpl(ColumnIndex num_columns, const Selector & selector) const; template void compareImpl(const Derived & rhs, size_t rhs_row_num, PaddedPODArray * row_indexes, PaddedPODArray & compare_results, int nan_direction_hint) const; template void doCompareColumn(const Derived & rhs, size_t rhs_row_num, PaddedPODArray * row_indexes, PaddedPODArray & compare_results, int direction, int nan_direction_hint) const; template bool hasEqualValuesImpl() const; }; using ColumnPtr = IColumn::Ptr; using MutableColumnPtr = IColumn::MutablePtr; using Columns = std::vector; using MutableColumns = std::vector; using ColumnRawPtrs = std::vector; template struct IsMutableColumns; template struct IsMutableColumns { static const bool value = std::is_assignable::value && IsMutableColumns::value; }; template <> struct IsMutableColumns<> { static const bool value = true; }; template const Type * checkAndGetColumn(const IColumn & column) { return typeid_cast(&column); } template const Type * checkAndGetColumn(const IColumn * column) { return typeid_cast(column); } template bool checkColumn(const IColumn & column) { return checkAndGetColumn(&column); } template bool checkColumn(const IColumn * column) { return checkAndGetColumn(column); } /// True if column's an ColumnConst instance. It's just a syntax sugar for type check. bool isColumnConst(const IColumn & column); /// True if column's an ColumnNullable instance. It's just a syntax sugar for type check. bool isColumnNullable(const IColumn & column); }