#include #include #include #include #include #include namespace ProfileEvents { extern const Event ThrottlerSleepMicroseconds; } namespace DB { namespace ErrorCodes { extern const int QUERY_WAS_CANCELLED; extern const int OUTPUT_IS_NOT_SORTED; extern const int TOO_MANY_ROWS; extern const int TOO_MANY_BYTES; extern const int TOO_MANY_ROWS_OR_BYTES; extern const int LOGICAL_ERROR; extern const int TOO_DEEP_PIPELINE; } const SortDescription & IBlockInputStream::getSortDescription() const { throw Exception("Output of " + getName() + " is not sorted", ErrorCodes::OUTPUT_IS_NOT_SORTED); } /// It's safe to access children without mutex as long as these methods are called before first call to `read()` or `readPrefix()`. Block IBlockInputStream::read() { if (total_rows_approx) { progressImpl(Progress(0, 0, total_rows_approx)); total_rows_approx = 0; } if (!info.started) { info.total_stopwatch.start(); info.started = true; } Block res; if (isCancelledOrThrowIfKilled()) return res; if (!checkTimeLimit()) limit_exceeded_need_break = true; if (!limit_exceeded_need_break) res = readImpl(); if (res) { info.update(res); if (enabled_extremes) updateExtremes(res); if (limits.mode == LIMITS_CURRENT && !limits.size_limits.check(info.rows, info.bytes, "result", ErrorCodes::TOO_MANY_ROWS_OR_BYTES)) limit_exceeded_need_break = true; if (quota) checkQuota(res); } else { /** If the thread is over, then we will ask all children to abort the execution. * This makes sense when running a query with LIMIT * - there is a situation when all the necessary data has already been read, * but children sources are still working, * herewith they can work in separate threads or even remotely. */ cancel(false); } progress(Progress(res.rows(), res.bytes())); #ifndef NDEBUG if (res) { Block header = getHeader(); if (header) assertBlocksHaveEqualStructure(res, header, getName()); } #endif return res; } void IBlockInputStream::readPrefix() { #ifndef NDEBUG if (!read_prefix_is_called) read_prefix_is_called = true; else throw Exception("readPrefix is called twice for " + getName() + " stream", ErrorCodes::LOGICAL_ERROR); #endif readPrefixImpl(); forEachChild([&] (IBlockInputStream & child) { child.readPrefix(); return false; }); } void IBlockInputStream::readSuffix() { #ifndef NDEBUG if (!read_suffix_is_called) read_suffix_is_called = true; else throw Exception("readSuffix is called twice for " + getName() + " stream", ErrorCodes::LOGICAL_ERROR); #endif forEachChild([&] (IBlockInputStream & child) { child.readSuffix(); return false; }); readSuffixImpl(); } void IBlockInputStream::updateExtremes(Block & block) { size_t num_columns = block.columns(); if (!extremes) { MutableColumns extremes_columns(num_columns); for (size_t i = 0; i < num_columns; ++i) { const ColumnPtr & src = block.safeGetByPosition(i).column; if (isColumnConst(*src)) { /// Equal min and max. extremes_columns[i] = src->cloneResized(2); } else { Field min_value; Field max_value; src->getExtremes(min_value, max_value); extremes_columns[i] = src->cloneEmpty(); extremes_columns[i]->insert(min_value); extremes_columns[i]->insert(max_value); } } extremes = block.cloneWithColumns(std::move(extremes_columns)); } else { for (size_t i = 0; i < num_columns; ++i) { ColumnPtr & old_extremes = extremes.safeGetByPosition(i).column; if (isColumnConst(*old_extremes)) continue; Field min_value = (*old_extremes)[0]; Field max_value = (*old_extremes)[1]; Field cur_min_value; Field cur_max_value; block.safeGetByPosition(i).column->getExtremes(cur_min_value, cur_max_value); if (cur_min_value < min_value) min_value = cur_min_value; if (cur_max_value > max_value) max_value = cur_max_value; MutableColumnPtr new_extremes = old_extremes->cloneEmpty(); new_extremes->insert(min_value); new_extremes->insert(max_value); old_extremes = std::move(new_extremes); } } } bool IBlockInputStream::checkTimeLimit() { return limits.speed_limits.checkTimeLimit(info.total_stopwatch.elapsed(), limits.timeout_overflow_mode); } void IBlockInputStream::checkQuota(Block & block) { switch (limits.mode) { case LIMITS_TOTAL: /// Checked in `progress` method. break; case LIMITS_CURRENT: { UInt64 total_elapsed = info.total_stopwatch.elapsedNanoseconds(); quota->used({Quota::RESULT_ROWS, block.rows()}, {Quota::RESULT_BYTES, block.bytes()}, {Quota::EXECUTION_TIME, total_elapsed - prev_elapsed}); prev_elapsed = total_elapsed; break; } } } void IBlockInputStream::progressImpl(const Progress & value) { if (progress_callback) progress_callback(value); if (process_list_elem) { if (!process_list_elem->updateProgressIn(value)) cancel(/* kill */ true); /// The total amount of data processed or intended for processing in all leaf sources, possibly on remote servers. ProgressValues progress = process_list_elem->getProgressIn(); size_t total_rows_estimate = std::max(progress.read_rows, progress.total_rows_to_read); /** Check the restrictions on the amount of data to read, the speed of the query, the quota on the amount of data to read. * NOTE: Maybe it makes sense to have them checked directly in ProcessList? */ if (limits.mode == LIMITS_TOTAL) { if (!limits.size_limits.check(total_rows_estimate, progress.read_bytes, "rows to read", ErrorCodes::TOO_MANY_ROWS, ErrorCodes::TOO_MANY_BYTES)) cancel(false); } size_t total_rows = progress.total_rows_to_read; constexpr UInt64 profile_events_update_period_microseconds = 10 * 1000; // 10 milliseconds UInt64 total_elapsed_microseconds = info.total_stopwatch.elapsedMicroseconds(); if (last_profile_events_update_time + profile_events_update_period_microseconds < total_elapsed_microseconds) { CurrentThread::updatePerformanceCounters(); last_profile_events_update_time = total_elapsed_microseconds; } limits.speed_limits.throttle(progress.read_rows, progress.read_bytes, total_rows, total_elapsed_microseconds); if (quota && limits.mode == LIMITS_TOTAL) quota->used({Quota::READ_ROWS, value.read_rows}, {Quota::READ_BYTES, value.read_bytes}); } } void IBlockInputStream::cancel(bool kill) { if (kill) is_killed = true; bool old_val = false; if (!is_cancelled.compare_exchange_strong(old_val, true, std::memory_order_seq_cst, std::memory_order_relaxed)) return; forEachChild([&] (IBlockInputStream & child) { child.cancel(kill); return false; }); } bool IBlockInputStream::isCancelled() const { return is_cancelled; } bool IBlockInputStream::isCancelledOrThrowIfKilled() const { if (!is_cancelled) return false; if (is_killed) throw Exception("Query was cancelled", ErrorCodes::QUERY_WAS_CANCELLED); return true; } void IBlockInputStream::setProgressCallback(const ProgressCallback & callback) { progress_callback = callback; forEachChild([&] (IBlockInputStream & child) { child.setProgressCallback(callback); return false; }); } void IBlockInputStream::setProcessListElement(QueryStatus * elem) { process_list_elem = elem; forEachChild([&] (IBlockInputStream & child) { child.setProcessListElement(elem); return false; }); } Block IBlockInputStream::getTotals() { if (totals) return totals; Block res; forEachChild([&] (IBlockInputStream & child) { res = child.getTotals(); if (res) return true; return false; }); return res; } Block IBlockInputStream::getExtremes() { if (extremes) return extremes; Block res; forEachChild([&] (IBlockInputStream & child) { res = child.getExtremes(); if (res) return true; return false; }); return res; } String IBlockInputStream::getTreeID() const { std::stringstream s; s << getName(); if (!children.empty()) { s << "("; for (BlockInputStreams::const_iterator it = children.begin(); it != children.end(); ++it) { if (it != children.begin()) s << ", "; s << (*it)->getTreeID(); } s << ")"; } return s.str(); } size_t IBlockInputStream::checkDepthImpl(size_t max_depth, size_t level) const { if (children.empty()) return 0; if (level > max_depth) throw Exception("Query pipeline is too deep. Maximum: " + toString(max_depth), ErrorCodes::TOO_DEEP_PIPELINE); size_t res = 0; for (BlockInputStreams::const_iterator it = children.begin(); it != children.end(); ++it) { size_t child_depth = (*it)->checkDepth(level + 1); if (child_depth > res) res = child_depth; } return res + 1; } void IBlockInputStream::dumpTree(std::ostream & ostr, size_t indent, size_t multiplier) const { ostr << String(indent, ' ') << getName(); if (multiplier > 1) ostr << " × " << multiplier; //ostr << ": " << getHeader().dumpStructure(); ostr << std::endl; ++indent; /// If the subtree is repeated several times, then we output it once with the multiplier. using Multipliers = std::map; Multipliers multipliers; for (const auto & child : children) ++multipliers[child->getTreeID()]; for (const auto & child : children) { String id = child->getTreeID(); size_t & subtree_multiplier = multipliers[id]; if (subtree_multiplier != 0) /// Already printed subtrees are marked with zero in the array of multipliers. { child->dumpTree(ostr, indent, subtree_multiplier); subtree_multiplier = 0; } } } }