#include #include #include #include #include #include #include #include #include namespace DB { namespace ErrorCodes { extern const int BAD_ARGUMENTS; } namespace { constexpr auto DATA_FILE_EXTENSION = ".bin"; constexpr auto INDEX_FILE_EXTENSION = ".idx"; } /// Implementation of IMergedBlockOutputStream. IMergedBlockOutputStream::IMergedBlockOutputStream( MergeTreeData & storage_, size_t min_compress_block_size_, size_t max_compress_block_size_, CompressionCodecPtr codec_, size_t aio_threshold_, bool blocks_are_granules_size_, const IndexGranularity & index_granularity_) : storage(storage_) , min_compress_block_size(min_compress_block_size_) , max_compress_block_size(max_compress_block_size_) , aio_threshold(aio_threshold_) , marks_file_extension(storage.index_granularity_info.marks_file_extension) , mark_size_in_bytes(storage.index_granularity_info.mark_size_in_bytes) , blocks_are_granules_size(blocks_are_granules_size_) , index_granularity(index_granularity_) , compute_granularity(index_granularity.empty()) , codec(std::move(codec_)) { if (blocks_are_granules_size && !index_granularity.empty()) throw Exception("Can't take information about index granularity from blocks, when non empty index_granularity array specified", ErrorCodes::LOGICAL_ERROR); } void IMergedBlockOutputStream::addStreams( const String & path, const String & name, const IDataType & type, const CompressionCodecPtr & effective_codec, size_t estimated_size, bool skip_offsets) { IDataType::StreamCallback callback = [&] (const IDataType::SubstreamPath & substream_path) { if (skip_offsets && !substream_path.empty() && substream_path.back().type == IDataType::Substream::ArraySizes) return; String stream_name = IDataType::getFileNameForStream(name, substream_path); /// Shared offsets for Nested type. if (column_streams.count(stream_name)) return; column_streams[stream_name] = std::make_unique( stream_name, path + stream_name, DATA_FILE_EXTENSION, path + stream_name, marks_file_extension, effective_codec, max_compress_block_size, estimated_size, aio_threshold); }; IDataType::SubstreamPath stream_path; type.enumerateStreams(callback, stream_path); } IDataType::OutputStreamGetter IMergedBlockOutputStream::createStreamGetter( const String & name, WrittenOffsetColumns & offset_columns, bool skip_offsets) { return [&, skip_offsets] (const IDataType::SubstreamPath & substream_path) -> WriteBuffer * { bool is_offsets = !substream_path.empty() && substream_path.back().type == IDataType::Substream::ArraySizes; if (is_offsets && skip_offsets) return nullptr; String stream_name = IDataType::getFileNameForStream(name, substream_path); /// Don't write offsets more than one time for Nested type. if (is_offsets && offset_columns.count(stream_name)) return nullptr; return &column_streams[stream_name]->compressed; }; } void fillIndexGranularityImpl( const Block & block, size_t index_granularity_bytes, size_t fixed_index_granularity_rows, bool blocks_are_granules, size_t index_offset, IndexGranularity & index_granularity) { size_t rows_in_block = block.rows(); size_t index_granularity_for_block; if (index_granularity_bytes == 0) index_granularity_for_block = fixed_index_granularity_rows; else { size_t block_size_in_memory = block.bytes(); if (blocks_are_granules) index_granularity_for_block = rows_in_block; else if (block_size_in_memory >= index_granularity_bytes) { //std::cerr << "BLOCK SIZE In MEMORY:" << block_size_in_memory << std::endl; size_t granules_in_block = block_size_in_memory / index_granularity_bytes; //std::cerr << "GRANULES IN BLOCK:" << granules_in_block << std::endl; index_granularity_for_block = rows_in_block / granules_in_block; } else { size_t size_of_row_in_bytes = block_size_in_memory / rows_in_block; index_granularity_for_block = index_granularity_bytes / size_of_row_in_bytes; } } if (index_granularity_for_block == 0) /// very rare case when index granularity bytes less then single row index_granularity_for_block = 1; for (size_t current_row = index_offset; current_row < rows_in_block; current_row += index_granularity_for_block) index_granularity.appendMark(index_granularity_for_block); } void IMergedBlockOutputStream::fillIndexGranularity(const Block & block) { fillIndexGranularityImpl( block, storage.index_granularity_info.index_granularity_bytes, storage.index_granularity_info.fixed_index_granularity, blocks_are_granules_size, index_offset, index_granularity); } size_t IMergedBlockOutputStream::writeSingleGranule( const String & name, const IDataType & type, const IColumn & column, WrittenOffsetColumns & offset_columns, bool skip_offsets, IDataType::SerializeBinaryBulkStatePtr & serialization_state, IDataType::SerializeBinaryBulkSettings & serialize_settings, size_t from_row, size_t number_of_rows, bool write_marks) { if (write_marks) { /// Write marks. type.enumerateStreams([&] (const IDataType::SubstreamPath & substream_path) { bool is_offsets = !substream_path.empty() && substream_path.back().type == IDataType::Substream::ArraySizes; if (is_offsets && skip_offsets) return; String stream_name = IDataType::getFileNameForStream(name, substream_path); /// Don't write offsets more than one time for Nested type. if (is_offsets && offset_columns.count(stream_name)) return; ColumnStream & stream = *column_streams[stream_name]; /// There could already be enough data to compress into the new block. if (stream.compressed.offset() >= min_compress_block_size) stream.compressed.next(); writeIntBinary(stream.plain_hashing.count(), stream.marks); writeIntBinary(stream.compressed.offset(), stream.marks); if (storage.index_granularity_info.is_adaptive) writeIntBinary(number_of_rows, stream.marks); }, serialize_settings.path); } type.serializeBinaryBulkWithMultipleStreams(column, from_row, number_of_rows, serialize_settings, serialization_state); /// So that instead of the marks pointing to the end of the compressed block, there were marks pointing to the beginning of the next one. type.enumerateStreams([&] (const IDataType::SubstreamPath & substream_path) { bool is_offsets = !substream_path.empty() && substream_path.back().type == IDataType::Substream::ArraySizes; if (is_offsets && skip_offsets) return; String stream_name = IDataType::getFileNameForStream(name, substream_path); /// Don't write offsets more than one time for Nested type. if (is_offsets && offset_columns.count(stream_name)) return; column_streams[stream_name]->compressed.nextIfAtEnd(); }, serialize_settings.path); return from_row + number_of_rows; } std::pair IMergedBlockOutputStream::writeColumn( const String & name, const IDataType & type, const IColumn & column, WrittenOffsetColumns & offset_columns, bool skip_offsets, IDataType::SerializeBinaryBulkStatePtr & serialization_state, size_t from_mark) { auto & settings = storage.global_context.getSettingsRef(); IDataType::SerializeBinaryBulkSettings serialize_settings; serialize_settings.getter = createStreamGetter(name, offset_columns, skip_offsets); serialize_settings.low_cardinality_max_dictionary_size = settings.low_cardinality_max_dictionary_size; serialize_settings.low_cardinality_use_single_dictionary_for_part = settings.low_cardinality_use_single_dictionary_for_part != 0; size_t total_rows = column.size(); size_t current_row = 0; //std::cerr << "FROM MARK:" << from_mark << std::endl; size_t current_column_mark = from_mark; while (current_row < total_rows) { size_t rows_to_write; bool write_marks = true; /// If there is `index_offset`, then the first mark goes not immediately, but after this number of rows. if (current_row == 0 && index_offset != 0) { write_marks = false; rows_to_write = index_offset; } else { if (index_granularity.getMarksCount() <= current_column_mark) throw Exception( "Incorrect size of index granularity expect mark " + toString(current_column_mark) + " totally have marks " + toString(index_granularity.getMarksCount()), ErrorCodes::LOGICAL_ERROR); rows_to_write = index_granularity.getMarkRows(current_column_mark); } current_row = writeSingleGranule( name, type, column, offset_columns, skip_offsets, serialization_state, serialize_settings, current_row, rows_to_write, write_marks ); if (write_marks) current_column_mark++; //std::cerr << "current column mark (loop):" << current_column_mark << std::endl; } //std::cerr << "Current column mark:" << current_column_mark << std::endl; /// Memoize offsets for Nested types, that are already written. They will not be written again for next columns of Nested structure. type.enumerateStreams([&] (const IDataType::SubstreamPath & substream_path) { bool is_offsets = !substream_path.empty() && substream_path.back().type == IDataType::Substream::ArraySizes; if (is_offsets) { String stream_name = IDataType::getFileNameForStream(name, substream_path); offset_columns.insert(stream_name); } }, serialize_settings.path); return std::make_pair(current_column_mark, current_row - total_rows); } /// Implementation of IMergedBlockOutputStream::ColumnStream. IMergedBlockOutputStream::ColumnStream::ColumnStream( const String & escaped_column_name_, const String & data_path, const std::string & data_file_extension_, const std::string & marks_path, const std::string & marks_file_extension_, const CompressionCodecPtr & compression_codec, size_t max_compress_block_size, size_t estimated_size, size_t aio_threshold) : escaped_column_name(escaped_column_name_), data_file_extension{data_file_extension_}, marks_file_extension{marks_file_extension_}, plain_file(createWriteBufferFromFileBase(data_path + data_file_extension, estimated_size, aio_threshold, max_compress_block_size)), plain_hashing(*plain_file), compressed_buf(plain_hashing, compression_codec), compressed(compressed_buf), marks_file(marks_path + marks_file_extension, 4096, O_TRUNC | O_CREAT | O_WRONLY), marks(marks_file) { } void IMergedBlockOutputStream::ColumnStream::finalize() { compressed.next(); plain_file->next(); marks.next(); } void IMergedBlockOutputStream::ColumnStream::sync() { plain_file->sync(); marks_file.sync(); } void IMergedBlockOutputStream::ColumnStream::addToChecksums(MergeTreeData::DataPart::Checksums & checksums) { String name = escaped_column_name; checksums.files[name + data_file_extension].is_compressed = true; checksums.files[name + data_file_extension].uncompressed_size = compressed.count(); checksums.files[name + data_file_extension].uncompressed_hash = compressed.getHash(); checksums.files[name + data_file_extension].file_size = plain_hashing.count(); checksums.files[name + data_file_extension].file_hash = plain_hashing.getHash(); checksums.files[name + marks_file_extension].file_size = marks.count(); checksums.files[name + marks_file_extension].file_hash = marks.getHash(); } /// Implementation of MergedBlockOutputStream. MergedBlockOutputStream::MergedBlockOutputStream( MergeTreeData & storage_, String part_path_, const NamesAndTypesList & columns_list_, CompressionCodecPtr default_codec_, bool blocks_are_granules_size_) : IMergedBlockOutputStream( storage_, storage_.global_context.getSettings().min_compress_block_size, storage_.global_context.getSettings().max_compress_block_size, default_codec_, storage_.global_context.getSettings().min_bytes_to_use_direct_io, blocks_are_granules_size_, {}), columns_list(columns_list_), part_path(part_path_) { init(); for (const auto & it : columns_list) { const auto columns = storage.getColumns(); addStreams(part_path, it.name, *it.type, columns.getCodecOrDefault(it.name, default_codec_), 0, false); } } MergedBlockOutputStream::MergedBlockOutputStream( MergeTreeData & storage_, String part_path_, const NamesAndTypesList & columns_list_, CompressionCodecPtr default_codec_, const MergeTreeData::DataPart::ColumnToSize & merged_column_to_size_, size_t aio_threshold_, bool blocks_are_granules_size_) : IMergedBlockOutputStream( storage_, storage_.global_context.getSettings().min_compress_block_size, storage_.global_context.getSettings().max_compress_block_size, default_codec_, aio_threshold_, blocks_are_granules_size_, {}), columns_list(columns_list_), part_path(part_path_) { init(); /// If summary size is more than threshold than we will use AIO size_t total_size = 0; if (aio_threshold > 0) { for (const auto & it : columns_list) { auto it2 = merged_column_to_size_.find(it.name); if (it2 != merged_column_to_size_.end()) total_size += it2->second; } } for (const auto & it : columns_list) { const auto columns = storage.getColumns(); addStreams(part_path, it.name, *it.type, columns.getCodecOrDefault(it.name, default_codec_), total_size, false); } } std::string MergedBlockOutputStream::getPartPath() const { return part_path; } /// If data is pre-sorted. void MergedBlockOutputStream::write(const Block & block) { writeImpl(block, nullptr); } /** If the data is not sorted, but we pre-calculated the permutation, after which they will be sorted. * This method is used to save RAM, since you do not need to keep two blocks at once - the source and the sorted. */ void MergedBlockOutputStream::writeWithPermutation(const Block & block, const IColumn::Permutation * permutation) { writeImpl(block, permutation); } void MergedBlockOutputStream::writeSuffix() { throw Exception("Method writeSuffix is not supported by MergedBlockOutputStream", ErrorCodes::NOT_IMPLEMENTED); } void MergedBlockOutputStream::writeSuffixAndFinalizePart( MergeTreeData::MutableDataPartPtr & new_part, const NamesAndTypesList * total_column_list, MergeTreeData::DataPart::Checksums * additional_column_checksums) { /// Finish columns serialization. if (!serialization_states.empty()) { auto & settings = storage.global_context.getSettingsRef(); IDataType::SerializeBinaryBulkSettings serialize_settings; serialize_settings.low_cardinality_max_dictionary_size = settings.low_cardinality_max_dictionary_size; serialize_settings.low_cardinality_use_single_dictionary_for_part = settings.low_cardinality_use_single_dictionary_for_part != 0; WrittenOffsetColumns offset_columns; auto it = columns_list.begin(); for (size_t i = 0; i < columns_list.size(); ++i, ++it) { serialize_settings.getter = createStreamGetter(it->name, offset_columns, false); it->type->serializeBinaryBulkStateSuffix(serialize_settings, serialization_states[i]); } } /// Finish skip index serialization for (size_t i = 0; i < storage.skip_indices.size(); ++i) { auto & stream = *skip_indices_streams[i]; if (!skip_indices_aggregators[i]->empty()) skip_indices_aggregators[i]->getGranuleAndReset()->serializeBinary(stream.compressed); } if (!total_column_list) total_column_list = &columns_list; /// Finish write and get checksums. MergeTreeData::DataPart::Checksums checksums; if (additional_column_checksums) checksums = std::move(*additional_column_checksums); if (index_stream) { index_stream->next(); checksums.files["primary.idx"].file_size = index_stream->count(); checksums.files["primary.idx"].file_hash = index_stream->getHash(); index_stream = nullptr; } for (auto & stream : skip_indices_streams) { stream->finalize(); stream->addToChecksums(checksums); } skip_indices_streams.clear(); skip_indices_aggregators.clear(); skip_index_filling.clear(); for (ColumnStreams::iterator it = column_streams.begin(); it != column_streams.end(); ++it) { it->second->finalize(); it->second->addToChecksums(checksums); } column_streams.clear(); if (storage.format_version >= MERGE_TREE_DATA_MIN_FORMAT_VERSION_WITH_CUSTOM_PARTITIONING) { new_part->partition.store(storage, part_path, checksums); if (new_part->minmax_idx.initialized) new_part->minmax_idx.store(storage, part_path, checksums); else if (rows_count) throw Exception("MinMax index was not initialized for new non-empty part " + new_part->name + ". It is a bug.", ErrorCodes::LOGICAL_ERROR); WriteBufferFromFile count_out(part_path + "count.txt", 4096); HashingWriteBuffer count_out_hashing(count_out); writeIntText(rows_count, count_out_hashing); count_out_hashing.next(); checksums.files["count.txt"].file_size = count_out_hashing.count(); checksums.files["count.txt"].file_hash = count_out_hashing.getHash(); } { /// Write a file with a description of columns. WriteBufferFromFile out(part_path + "columns.txt", 4096); total_column_list->writeText(out); } { /// Write file with checksums. WriteBufferFromFile out(part_path + "checksums.txt", 4096); checksums.write(out); } new_part->rows_count = rows_count; //std::cerr << "SETTING CURRENT MARK FOR PART:" << part_path << " to " << current_mark << std::endl; new_part->modification_time = time(nullptr); new_part->columns = *total_column_list; new_part->index.assign(std::make_move_iterator(index_columns.begin()), std::make_move_iterator(index_columns.end())); new_part->checksums = checksums; new_part->bytes_on_disk = checksums.getTotalSizeOnDisk(); new_part->index_granularity = index_granularity; } void MergedBlockOutputStream::init() { Poco::File(part_path).createDirectories(); if (storage.hasPrimaryKey()) { index_file_stream = std::make_unique( part_path + "primary.idx", DBMS_DEFAULT_BUFFER_SIZE, O_TRUNC | O_CREAT | O_WRONLY); index_stream = std::make_unique(*index_file_stream); } for (const auto & index : storage.skip_indices) { String stream_name = index->getFileName(); skip_indices_streams.emplace_back( std::make_unique( stream_name, part_path + stream_name, INDEX_FILE_EXTENSION, part_path + stream_name, marks_file_extension, codec, max_compress_block_size, 0, aio_threshold)); skip_indices_aggregators.push_back(index->createIndexAggregator()); skip_index_filling.push_back(0); } } void MergedBlockOutputStream::writeImpl(const Block & block, const IColumn::Permutation * permutation) { block.checkNumberOfRows(); size_t rows = block.rows(); //std::cerr << "BLOCK ROWS:" << rows << std::endl; if (!rows) return; /// Fill index granularity for this block /// if it's unknown (in case of insert data or horizontal merge, /// but not in case of vertical merge) if (compute_granularity) fillIndexGranularity(block); /// The set of written offset columns so that you do not write shared offsets of nested structures columns several times WrittenOffsetColumns offset_columns; auto primary_key_column_names = storage.primary_key_columns; std::set skip_indexes_column_names_set; for (const auto & index : storage.skip_indices) std::copy(index->columns.cbegin(), index->columns.cend(), std::inserter(skip_indexes_column_names_set, skip_indexes_column_names_set.end())); Names skip_indexes_column_names(skip_indexes_column_names_set.begin(), skip_indexes_column_names_set.end()); /// Here we will add the columns related to the Primary Key, then write the index. std::vector primary_key_columns(primary_key_column_names.size()); std::map primary_key_column_name_to_position; for (size_t i = 0, size = primary_key_column_names.size(); i < size; ++i) { const auto & name = primary_key_column_names[i]; if (!primary_key_column_name_to_position.emplace(name, i).second) throw Exception("Primary key contains duplicate columns", ErrorCodes::BAD_ARGUMENTS); primary_key_columns[i] = block.getByName(name); /// Reorder primary key columns in advance and add them to `primary_key_columns`. if (permutation) primary_key_columns[i].column = primary_key_columns[i].column->permute(*permutation, 0); } /// The same for skip indexes columns std::vector skip_indexes_columns(skip_indexes_column_names.size()); std::map skip_indexes_column_name_to_position; for (size_t i = 0, size = skip_indexes_column_names.size(); i < size; ++i) { const auto & name = skip_indexes_column_names[i]; skip_indexes_column_name_to_position.emplace(name, i); skip_indexes_columns[i] = block.getByName(name); /// Reorder index columns in advance. if (permutation) skip_indexes_columns[i].column = skip_indexes_columns[i].column->permute(*permutation, 0); } if (index_columns.empty()) { index_columns.resize(primary_key_column_names.size()); for (size_t i = 0, size = primary_key_column_names.size(); i < size; ++i) index_columns[i] = primary_key_columns[i].column->cloneEmpty(); } if (serialization_states.empty()) { serialization_states.reserve(columns_list.size()); WrittenOffsetColumns tmp_offset_columns; IDataType::SerializeBinaryBulkSettings settings; for (const auto & col : columns_list) { settings.getter = createStreamGetter(col.name, tmp_offset_columns, false); serialization_states.emplace_back(nullptr); col.type->serializeBinaryBulkStatePrefix(settings, serialization_states.back()); } } size_t new_index_offset = 0; /// Now write the data. auto it = columns_list.begin(); for (size_t i = 0; i < columns_list.size(); ++i, ++it) { const ColumnWithTypeAndName & column = block.getByName(it->name); if (permutation) { auto primary_column_it = primary_key_column_name_to_position.find(it->name); auto skip_index_column_it = skip_indexes_column_name_to_position.find(it->name); if (primary_key_column_name_to_position.end() != primary_column_it) { const auto & primary_column = *primary_key_columns[primary_column_it->second].column; std::tie(std::ignore, new_index_offset) = writeColumn(column.name, *column.type, primary_column, offset_columns, false, serialization_states[i], current_mark); } else if (skip_indexes_column_name_to_position.end() != skip_index_column_it) { const auto & index_column = *skip_indexes_columns[skip_index_column_it->second].column; writeColumn(column.name, *column.type, index_column, offset_columns, false, serialization_states[i], current_mark); } else { /// We rearrange the columns that are not included in the primary key here; Then the result is released - to save RAM. ColumnPtr permuted_column = column.column->permute(*permutation, 0); std::tie(std::ignore, new_index_offset) = writeColumn(column.name, *column.type, *permuted_column, offset_columns, false, serialization_states[i], current_mark); } } else { std::tie(std::ignore, new_index_offset) = writeColumn(column.name, *column.type, *column.column, offset_columns, false, serialization_states[i], current_mark); } } rows_count += rows; { /// Creating block for update Block indices_update_block(skip_indexes_columns); /// Filling and writing skip indices like in IMergedBlockOutputStream::writeColumn for (size_t i = 0; i < storage.skip_indices.size(); ++i) { const auto index = storage.skip_indices[i]; auto & stream = *skip_indices_streams[i]; size_t prev_pos = 0; size_t current_mark = 0; while (prev_pos < rows) { UInt64 limit = 0; if (prev_pos == 0 && index_offset != 0) { limit = index_offset; } else { limit = index_granularity.getMarkRows(current_mark); if (skip_indices_aggregators[i]->empty()) { skip_indices_aggregators[i] = index->createIndexAggregator(); skip_index_filling[i] = 0; if (stream.compressed.offset() >= min_compress_block_size) stream.compressed.next(); writeIntBinary(stream.plain_hashing.count(), stream.marks); writeIntBinary(stream.compressed.offset(), stream.marks); /// Actually this numbers is redundant, but we have to store them /// to be compatible with normal .mrk2 file format if (storage.index_granularity_info.is_adaptive) writeIntBinary(1UL, stream.marks); } } size_t pos = prev_pos; skip_indices_aggregators[i]->update(indices_update_block, &pos, limit); if (pos == prev_pos + limit) { ++skip_index_filling[i]; /// write index if it is filled if (skip_index_filling[i] == index->granularity) { skip_indices_aggregators[i]->getGranuleAndReset()->serializeBinary(stream.compressed); skip_index_filling[i] = 0; } } prev_pos = pos; current_mark++; } } } { /** While filling index (index_columns), disable memory tracker. * Because memory is allocated here (maybe in context of INSERT query), * but then freed in completely different place (while merging parts), where query memory_tracker is not available. * And otherwise it will look like excessively growing memory consumption in context of query. * (observed in long INSERT SELECTs) */ auto temporarily_disable_memory_tracker = getCurrentMemoryTrackerActionLock(); /// Write index. The index contains Primary Key value for each `index_granularity` row. //std::cerr << "Index Granularity size:" << index_granularity.size() << std::endl; //std::cerr << "Index Granularity first elem:" << index_granularity[0] << std::endl; for (size_t i = index_offset; i < rows;) { if (storage.hasPrimaryKey()) { for (size_t j = 0, size = primary_key_columns.size(); j < size; ++j) { const IColumn & primary_column = *primary_key_columns[j].column.get(); index_columns[j]->insertFrom(primary_column, i); primary_key_columns[j].type->serializeBinary(primary_column, i, *index_stream); } } //std::cerr << "I:" << i << " Total rows:" << rows << std::endl; //std::cerr << "Increment current mark:" << current_mark << std::endl; ++current_mark; if (current_mark < index_granularity.getMarksCount()) i += index_granularity.getMarkRows(current_mark); else break; } } //std::cerr << "Index granularity size:" << index_granularity.size() << std::endl; //std::cerr << "block written, total marks:" << current_mark << std::endl; index_offset = new_index_offset; } /// Implementation of MergedColumnOnlyOutputStream. MergedColumnOnlyOutputStream::MergedColumnOnlyOutputStream( MergeTreeData & storage_, const Block & header_, String part_path_, bool sync_, CompressionCodecPtr default_codec_, bool skip_offsets_, WrittenOffsetColumns & already_written_offset_columns, const IndexGranularity & index_granularity_) : IMergedBlockOutputStream( storage_, storage_.global_context.getSettings().min_compress_block_size, storage_.global_context.getSettings().max_compress_block_size, default_codec_, storage_.global_context.getSettings().min_bytes_to_use_direct_io, false, index_granularity_), header(header_), part_path(part_path_), sync(sync_), skip_offsets(skip_offsets_), already_written_offset_columns(already_written_offset_columns) { } void MergedColumnOnlyOutputStream::write(const Block & block) { if (!initialized) { column_streams.clear(); serialization_states.clear(); serialization_states.reserve(block.columns()); WrittenOffsetColumns tmp_offset_columns; IDataType::SerializeBinaryBulkSettings settings; for (size_t i = 0; i < block.columns(); ++i) { const auto & col = block.safeGetByPosition(i); const auto columns = storage.getColumns(); addStreams(part_path, col.name, *col.type, columns.getCodecOrDefault(col.name, codec), 0, skip_offsets); serialization_states.emplace_back(nullptr); settings.getter = createStreamGetter(col.name, tmp_offset_columns, false); col.type->serializeBinaryBulkStatePrefix(settings, serialization_states.back()); } initialized = true; } size_t new_index_offset = 0; size_t new_current_mark = 0; WrittenOffsetColumns offset_columns = already_written_offset_columns; for (size_t i = 0; i < block.columns(); ++i) { const ColumnWithTypeAndName & column = block.safeGetByPosition(i); std::tie(new_current_mark, new_index_offset) = writeColumn(column.name, *column.type, *column.column, offset_columns, skip_offsets, serialization_states[i], current_mark); } index_offset = new_index_offset; current_mark = new_current_mark; } void MergedColumnOnlyOutputStream::writeSuffix() { throw Exception("Method writeSuffix is not supported by MergedColumnOnlyOutputStream", ErrorCodes::NOT_IMPLEMENTED); } MergeTreeData::DataPart::Checksums MergedColumnOnlyOutputStream::writeSuffixAndGetChecksums() { /// Finish columns serialization. auto & settings = storage.global_context.getSettingsRef(); IDataType::SerializeBinaryBulkSettings serialize_settings; serialize_settings.low_cardinality_max_dictionary_size = settings.low_cardinality_max_dictionary_size; serialize_settings.low_cardinality_use_single_dictionary_for_part = settings.low_cardinality_use_single_dictionary_for_part != 0; for (size_t i = 0, size = header.columns(); i < size; ++i) { auto & column = header.getByPosition(i); serialize_settings.getter = createStreamGetter(column.name, already_written_offset_columns, skip_offsets); column.type->serializeBinaryBulkStateSuffix(serialize_settings, serialization_states[i]); } MergeTreeData::DataPart::Checksums checksums; for (auto & column_stream : column_streams) { column_stream.second->finalize(); if (sync) column_stream.second->sync(); column_stream.second->addToChecksums(checksums); } column_streams.clear(); serialization_states.clear(); initialized = false; return checksums; } }