#include #include namespace DB { namespace ErrorCodes { extern const int TYPE_MISMATCH; extern const int ARGUMENT_OUT_OF_BOUND; extern const int BAD_ARGUMENTS; extern const int DICTIONARY_IS_EMPTY; extern const int LOGICAL_ERROR; extern const int UNKNOWN_TYPE; } static const auto initial_array_size = 1024; static const auto max_array_size = 500000; FlatDictionary::FlatDictionary(const std::string & name, const DictionaryStructure & dict_struct, DictionarySourcePtr source_ptr, const DictionaryLifetime dict_lifetime, bool require_nonempty) : name{name}, dict_struct(dict_struct), source_ptr{std::move(source_ptr)}, dict_lifetime(dict_lifetime), require_nonempty(require_nonempty), loaded_ids(initial_array_size, false) { createAttributes(); try { loadData(); calculateBytesAllocated(); } catch (...) { creation_exception = std::current_exception(); } creation_time = std::chrono::system_clock::now(); } FlatDictionary::FlatDictionary(const FlatDictionary & other) : FlatDictionary{other.name, other.dict_struct, other.source_ptr->clone(), other.dict_lifetime, other.require_nonempty} { } void FlatDictionary::toParent(const PaddedPODArray & ids, PaddedPODArray & out) const { const auto null_value = std::get(hierarchical_attribute->null_values); getItemsNumber(*hierarchical_attribute, ids, [&] (const size_t row, const UInt64 value) { out[row] = value; }, [&] (const size_t) { return null_value; }); } /// Allow to use single value in same way as array. static inline FlatDictionary::Key getAt(const PaddedPODArray & arr, const size_t idx) { return arr[idx]; } static inline FlatDictionary::Key getAt(const FlatDictionary::Key & value, const size_t idx) { return value; } template void FlatDictionary::isInImpl( const ChildType & child_ids, const AncestorType & ancestor_ids, PaddedPODArray & out) const { const auto null_value = std::get(hierarchical_attribute->null_values); const auto & attr = *std::get>(hierarchical_attribute->arrays); const auto rows = out.size(); size_t loaded_size = attr.size(); for (const auto row : ext::range(0, rows)) { auto id = getAt(child_ids, row); const auto ancestor_id = getAt(ancestor_ids, row); while (id < loaded_size && id != null_value && id != ancestor_id) id = attr[id]; out[row] = id != null_value && id == ancestor_id; } query_count.fetch_add(rows, std::memory_order_relaxed); } void FlatDictionary::isInVectorVector( const PaddedPODArray & child_ids, const PaddedPODArray & ancestor_ids, PaddedPODArray & out) const { isInImpl(child_ids, ancestor_ids, out); } void FlatDictionary::isInVectorConstant( const PaddedPODArray & child_ids, const Key ancestor_id, PaddedPODArray & out) const { isInImpl(child_ids, ancestor_id, out); } void FlatDictionary::isInConstantVector( const Key child_id, const PaddedPODArray & ancestor_ids, PaddedPODArray & out) const { isInImpl(child_id, ancestor_ids, out); } #define DECLARE(TYPE)\ void FlatDictionary::get##TYPE(const std::string & attribute_name, const PaddedPODArray & ids, PaddedPODArray & out) const\ {\ const auto & attribute = getAttribute(attribute_name);\ if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::TYPE))\ throw Exception{\ name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),\ ErrorCodes::TYPE_MISMATCH};\ \ const auto null_value = std::get(attribute.null_values);\ \ getItemsNumber(attribute, ids,\ [&] (const size_t row, const auto value) { out[row] = value; },\ [&] (const size_t) { return null_value; });\ } DECLARE(UInt8) DECLARE(UInt16) DECLARE(UInt32) DECLARE(UInt64) DECLARE(Int8) DECLARE(Int16) DECLARE(Int32) DECLARE(Int64) DECLARE(Float32) DECLARE(Float64) #undef DECLARE void FlatDictionary::getString(const std::string & attribute_name, const PaddedPODArray & ids, ColumnString * out) const { const auto & attribute = getAttribute(attribute_name); if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::String)) throw Exception{ name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type), ErrorCodes::TYPE_MISMATCH}; const auto & null_value = std::get(attribute.null_values); getItemsImpl(attribute, ids, [&] (const size_t row, const StringRef value) { out->insertData(value.data, value.size); }, [&] (const size_t) { return null_value; }); } #define DECLARE(TYPE)\ void FlatDictionary::get##TYPE(\ const std::string & attribute_name, const PaddedPODArray & ids, const PaddedPODArray & def,\ PaddedPODArray & out) const\ {\ const auto & attribute = getAttribute(attribute_name);\ if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::TYPE))\ throw Exception{\ name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),\ ErrorCodes::TYPE_MISMATCH};\ \ getItemsNumber(attribute, ids,\ [&] (const size_t row, const auto value) { out[row] = value; },\ [&] (const size_t row) { return def[row]; });\ } DECLARE(UInt8) DECLARE(UInt16) DECLARE(UInt32) DECLARE(UInt64) DECLARE(Int8) DECLARE(Int16) DECLARE(Int32) DECLARE(Int64) DECLARE(Float32) DECLARE(Float64) #undef DECLARE void FlatDictionary::getString( const std::string & attribute_name, const PaddedPODArray & ids, const ColumnString * const def, ColumnString * const out) const { const auto & attribute = getAttribute(attribute_name); if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::String)) throw Exception{ name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type), ErrorCodes::TYPE_MISMATCH}; getItemsImpl(attribute, ids, [&] (const size_t row, const StringRef value) { out->insertData(value.data, value.size); }, [&] (const size_t row) { return def->getDataAt(row); }); } #define DECLARE(TYPE)\ void FlatDictionary::get##TYPE(\ const std::string & attribute_name, const PaddedPODArray & ids, const TYPE def,\ PaddedPODArray & out) const\ {\ const auto & attribute = getAttribute(attribute_name);\ if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::TYPE))\ throw Exception{\ name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),\ ErrorCodes::TYPE_MISMATCH};\ \ getItemsNumber(attribute, ids,\ [&] (const size_t row, const auto value) { out[row] = value; },\ [&] (const size_t) { return def; });\ } DECLARE(UInt8) DECLARE(UInt16) DECLARE(UInt32) DECLARE(UInt64) DECLARE(Int8) DECLARE(Int16) DECLARE(Int32) DECLARE(Int64) DECLARE(Float32) DECLARE(Float64) #undef DECLARE void FlatDictionary::getString( const std::string & attribute_name, const PaddedPODArray & ids, const String & def, ColumnString * const out) const { const auto & attribute = getAttribute(attribute_name); if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::String)) throw Exception{ name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type), ErrorCodes::TYPE_MISMATCH}; FlatDictionary::getItemsImpl(attribute, ids, [&] (const size_t row, const StringRef value) { out->insertData(value.data, value.size); }, [&] (const size_t) { return StringRef{def}; }); } void FlatDictionary::has(const PaddedPODArray & ids, PaddedPODArray & out) const { const auto & attribute = attributes.front(); switch (attribute.type) { case AttributeUnderlyingType::UInt8: has(attribute, ids, out); break; case AttributeUnderlyingType::UInt16: has(attribute, ids, out); break; case AttributeUnderlyingType::UInt32: has(attribute, ids, out); break; case AttributeUnderlyingType::UInt64: has(attribute, ids, out); break; case AttributeUnderlyingType::Int8: has(attribute, ids, out); break; case AttributeUnderlyingType::Int16: has(attribute, ids, out); break; case AttributeUnderlyingType::Int32: has(attribute, ids, out); break; case AttributeUnderlyingType::Int64: has(attribute, ids, out); break; case AttributeUnderlyingType::Float32: has(attribute, ids, out); break; case AttributeUnderlyingType::Float64: has(attribute, ids, out); break; case AttributeUnderlyingType::String: has(attribute, ids, out); break; } } void FlatDictionary::createAttributes() { const auto size = dict_struct.attributes.size(); attributes.reserve(size); for (const auto & attribute : dict_struct.attributes) { attribute_index_by_name.emplace(attribute.name, attributes.size()); attributes.push_back(createAttributeWithType(attribute.underlying_type, attribute.null_value)); if (attribute.hierarchical) { hierarchical_attribute = &attributes.back(); if (hierarchical_attribute->type != AttributeUnderlyingType::UInt64) throw Exception{ name + ": hierarchical attribute must be UInt64.", ErrorCodes::TYPE_MISMATCH}; } } } void FlatDictionary::loadData() { auto stream = source_ptr->loadAll(); stream->readPrefix(); while (const auto block = stream->read()) { const auto & id_column = *block.safeGetByPosition(0).column; element_count += id_column.size(); for (const auto attribute_idx : ext::range(0, attributes.size())) { const auto & attribute_column = *block.safeGetByPosition(attribute_idx + 1).column; auto & attribute = attributes[attribute_idx]; for (const auto row_idx : ext::range(0, id_column.size())) setAttributeValue(attribute, id_column[row_idx].get(), attribute_column[row_idx]); } } stream->readSuffix(); if (require_nonempty && 0 == element_count) throw Exception{ name + ": dictionary source is empty and 'require_nonempty' property is set.", ErrorCodes::DICTIONARY_IS_EMPTY}; } template void FlatDictionary::addAttributeSize(const Attribute & attribute) { const auto & array_ref = std::get>(attribute.arrays); bytes_allocated += sizeof(PaddedPODArray) + array_ref->allocated_bytes(); bucket_count = array_ref->capacity(); } void FlatDictionary::calculateBytesAllocated() { bytes_allocated += attributes.size() * sizeof(attributes.front()); for (const auto & attribute : attributes) { switch (attribute.type) { case AttributeUnderlyingType::UInt8: addAttributeSize(attribute); break; case AttributeUnderlyingType::UInt16: addAttributeSize(attribute); break; case AttributeUnderlyingType::UInt32: addAttributeSize(attribute); break; case AttributeUnderlyingType::UInt64: addAttributeSize(attribute); break; case AttributeUnderlyingType::Int8: addAttributeSize(attribute); break; case AttributeUnderlyingType::Int16: addAttributeSize(attribute); break; case AttributeUnderlyingType::Int32: addAttributeSize(attribute); break; case AttributeUnderlyingType::Int64: addAttributeSize(attribute); break; case AttributeUnderlyingType::Float32: addAttributeSize(attribute); break; case AttributeUnderlyingType::Float64: addAttributeSize(attribute); break; case AttributeUnderlyingType::String: { addAttributeSize(attribute); bytes_allocated += sizeof(Arena) + attribute.string_arena->size(); break; } } } } template void FlatDictionary::createAttributeImpl(Attribute & attribute, const Field & null_value) { const auto & null_value_ref = std::get(attribute.null_values) = null_value.get::Type>(); std::get>(attribute.arrays) = std::make_unique>(initial_array_size, null_value_ref); } template <> void FlatDictionary::createAttributeImpl(Attribute & attribute, const Field & null_value) { attribute.string_arena = std::make_unique(); auto & null_value_ref = std::get(attribute.null_values); const String & string = null_value.get::Type>(); const auto string_in_arena = attribute.string_arena->insert(string.data(), string.size()); null_value_ref = StringRef{string_in_arena, string.size()}; std::get>(attribute.arrays) = std::make_unique>(initial_array_size, null_value_ref); } FlatDictionary::Attribute FlatDictionary::createAttributeWithType(const AttributeUnderlyingType type, const Field & null_value) { Attribute attr{type}; switch (type) { case AttributeUnderlyingType::UInt8: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::UInt16: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::UInt32: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::UInt64: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::Int8: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::Int16: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::Int32: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::Int64: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::Float32: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::Float64: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::String: createAttributeImpl(attr, null_value); break; } return attr; } template void FlatDictionary::getItemsNumber( const Attribute & attribute, const PaddedPODArray & ids, ValueSetter && set_value, DefaultGetter && get_default) const { if (false) {} #define DISPATCH(TYPE) \ else if (attribute.type == AttributeUnderlyingType::TYPE) \ getItemsImpl(attribute, ids, std::forward(set_value), std::forward(get_default)); DISPATCH(UInt8) DISPATCH(UInt16) DISPATCH(UInt32) DISPATCH(UInt64) DISPATCH(Int8) DISPATCH(Int16) DISPATCH(Int32) DISPATCH(Int64) DISPATCH(Float32) DISPATCH(Float64) #undef DISPATCH else throw Exception("Unexpected type of attribute: " + toString(attribute.type), ErrorCodes::LOGICAL_ERROR); } template void FlatDictionary::getItemsImpl( const Attribute & attribute, const PaddedPODArray & ids, ValueSetter && set_value, DefaultGetter && get_default) const { const auto & attr = *std::get>(attribute.arrays); const auto rows = ext::size(ids); for (const auto row : ext::range(0, rows)) { const auto id = ids[row]; set_value(row, id < ext::size(attr) && loaded_ids[id] ? attr[id] : get_default(row)); } query_count.fetch_add(rows, std::memory_order_relaxed); } template void FlatDictionary::resize(Attribute & attribute, const Key id) { if (id >= max_array_size) throw Exception{ name + ": identifier should be less than " + toString(max_array_size), ErrorCodes::ARGUMENT_OUT_OF_BOUND}; auto & array = *std::get>(attribute.arrays); if (id >= array.size()) { const size_t elements_count = id + 1; //id=0 -> elements_count=1 loaded_ids.resize(elements_count, false); array.resize_fill(elements_count, std::get(attribute.null_values)); } } template void FlatDictionary::setAttributeValueImpl(Attribute & attribute, const Key id, const T & value) { resize(attribute, id); auto & array = *std::get>(attribute.arrays); array[id] = value; loaded_ids[id] = true; } template <> void FlatDictionary::setAttributeValueImpl(Attribute & attribute, const Key id, const String & string) { resize(attribute, id); const auto string_in_arena = attribute.string_arena->insert(string.data(), string.size()); auto & array = *std::get>(attribute.arrays); array[id] = StringRef{string_in_arena, string.size()}; loaded_ids[id] = true; } void FlatDictionary::setAttributeValue(Attribute & attribute, const Key id, const Field & value) { switch (attribute.type) { case AttributeUnderlyingType::UInt8: setAttributeValueImpl(attribute, id, value.get()); break; case AttributeUnderlyingType::UInt16: setAttributeValueImpl(attribute, id, value.get()); break; case AttributeUnderlyingType::UInt32: setAttributeValueImpl(attribute, id, value.get()); break; case AttributeUnderlyingType::UInt64: setAttributeValueImpl(attribute, id, value.get()); break; case AttributeUnderlyingType::Int8: setAttributeValueImpl(attribute, id, value.get()); break; case AttributeUnderlyingType::Int16: setAttributeValueImpl(attribute, id, value.get()); break; case AttributeUnderlyingType::Int32: setAttributeValueImpl(attribute, id, value.get()); break; case AttributeUnderlyingType::Int64: setAttributeValueImpl(attribute, id, value.get()); break; case AttributeUnderlyingType::Float32: setAttributeValueImpl(attribute, id, value.get()); break; case AttributeUnderlyingType::Float64: setAttributeValueImpl(attribute, id, value.get()); break; case AttributeUnderlyingType::String: setAttributeValueImpl(attribute, id, value.get()); break; } } const FlatDictionary::Attribute & FlatDictionary::getAttribute(const std::string & attribute_name) const { const auto it = attribute_index_by_name.find(attribute_name); if (it == std::end(attribute_index_by_name)) throw Exception{ name + ": no such attribute '" + attribute_name + "'", ErrorCodes::BAD_ARGUMENTS}; return attributes[it->second]; } template void FlatDictionary::has(const Attribute & attribute, const PaddedPODArray & ids, PaddedPODArray & out) const { const auto ids_count = ext::size(ids); for (const auto i : ext::range(0, ids_count)) { const auto id = ids[i]; out[i] = id < loaded_ids.size() && loaded_ids[id]; } query_count.fetch_add(ids_count, std::memory_order_relaxed); } PaddedPODArray FlatDictionary::getIds() const { const auto ids_count = ext::size(loaded_ids); PaddedPODArray ids; for (auto idx : ext::range(0, ids_count)) { if (loaded_ids[idx]) { ids.push_back(idx); } } return ids; } BlockInputStreamPtr FlatDictionary::getBlockInputStream(const Names & column_names, size_t max_block_size) const { using BlockInputStreamType = DictionaryBlockInputStream; return std::make_shared(shared_from_this(), max_block_size, getIds() ,column_names); } }