#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace DB { using LogAST = DebugASTLog; /// set to true to enable logs namespace ErrorCodes { extern const int UNKNOWN_TYPE_OF_AST_NODE; extern const int UNKNOWN_IDENTIFIER; extern const int ILLEGAL_PREWHERE; extern const int LOGICAL_ERROR; extern const int ILLEGAL_TYPE_OF_ARGUMENT; } namespace { /// Check if there is an ignore function. It's used for disabling constant folding in query /// predicates because some performance tests use ignore function as a non-optimize guard. bool allowEarlyConstantFolding(const ExpressionActions & actions, const Settings & settings) { if (!settings.enable_early_constant_folding) return false; for (const auto & action : actions.getActions()) { if (action.type == action.APPLY_FUNCTION && action.function_base) { auto name = action.function_base->getName(); if (name == "ignore") return false; } } return true; } } bool sanitizeBlock(Block & block, bool throw_if_cannot_create_column) { for (auto & col : block) { if (!col.column) { if (isNotCreatable(col.type->getTypeId())) { if (throw_if_cannot_create_column) throw Exception("Cannot create column of type " + col.type->getName(), ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT); return false; } col.column = col.type->createColumn(); } else if (!col.column->empty()) col.column = col.column->cloneEmpty(); } return true; } ExpressionAnalyzer::ExpressionAnalyzer( const ASTPtr & query_, const SyntaxAnalyzerResultPtr & syntax_analyzer_result_, const Context & context_, size_t subquery_depth_, bool do_global) : query(query_), context(context_), settings(context.getSettings()) , subquery_depth(subquery_depth_) , syntax(syntax_analyzer_result_) { /// external_tables, subqueries_for_sets for global subqueries. /// Replaces global subqueries with the generated names of temporary tables that will be sent to remote servers. initGlobalSubqueriesAndExternalTables(do_global); /// has_aggregation, aggregation_keys, aggregate_descriptions, aggregated_columns. /// This analysis should be performed after processing global subqueries, because otherwise, /// if the aggregate function contains a global subquery, then `analyzeAggregation` method will save /// in `aggregate_descriptions` the information about the parameters of this aggregate function, among which /// global subquery. Then, when you call `initGlobalSubqueriesAndExternalTables` method, this /// the global subquery will be replaced with a temporary table, resulting in aggregate_descriptions /// will contain out-of-date information, which will lead to an error when the query is executed. analyzeAggregation(); } bool ExpressionAnalyzer::isRemoteStorage() const { return storage() && storage()->isRemote(); } void ExpressionAnalyzer::analyzeAggregation() { /** Find aggregation keys (aggregation_keys), information about aggregate functions (aggregate_descriptions), * as well as a set of columns obtained after the aggregation, if any, * or after all the actions that are usually performed before aggregation (aggregated_columns). * * Everything below (compiling temporary ExpressionActions) - only for the purpose of query analysis (type output). */ auto * select_query = query->as(); ExpressionActionsPtr temp_actions = std::make_shared(sourceColumns(), context); if (select_query) { bool is_array_join_left; ASTPtr array_join_expression_list = select_query->arrayJoinExpressionList(is_array_join_left); if (array_join_expression_list) { getRootActionsNoMakeSet(array_join_expression_list, true, temp_actions, false); addMultipleArrayJoinAction(temp_actions, is_array_join_left); array_join_columns.clear(); for (auto & column : temp_actions->getSampleBlock().getNamesAndTypesList()) if (syntax->array_join_result_to_source.count(column.name)) array_join_columns.emplace_back(column); } const ASTTablesInSelectQueryElement * join = select_query->join(); if (join) { getRootActionsNoMakeSet(analyzedJoin().leftKeysList(), true, temp_actions, false); addJoinAction(temp_actions); } } has_aggregation = makeAggregateDescriptions(temp_actions); if (select_query && (select_query->groupBy() || select_query->having())) has_aggregation = true; if (has_aggregation) { /// Find out aggregation keys. if (select_query) { if (select_query->groupBy()) { NameSet unique_keys; ASTs & group_asts = select_query->groupBy()->children; for (ssize_t i = 0; i < ssize_t(group_asts.size()); ++i) { ssize_t size = group_asts.size(); getRootActionsNoMakeSet(group_asts[i], true, temp_actions, false); const auto & column_name = group_asts[i]->getColumnName(); const auto & block = temp_actions->getSampleBlock(); if (!block.has(column_name)) throw Exception("Unknown identifier (in GROUP BY): " + column_name, ErrorCodes::UNKNOWN_IDENTIFIER); const auto & col = block.getByName(column_name); /// Constant expressions have non-null column pointer at this stage. if (col.column && isColumnConst(*col.column)) { /// But don't remove last key column if no aggregate functions, otherwise aggregation will not work. if (!aggregate_descriptions.empty() || size > 1) { if (i + 1 < static_cast(size)) group_asts[i] = std::move(group_asts.back()); group_asts.pop_back(); --i; continue; } } NameAndTypePair key{column_name, col.type}; /// Aggregation keys are uniqued. if (!unique_keys.count(key.name)) { unique_keys.insert(key.name); aggregation_keys.push_back(key); /// Key is no longer needed, therefore we can save a little by moving it. aggregated_columns.push_back(std::move(key)); } } if (group_asts.empty()) { select_query->setExpression(ASTSelectQuery::Expression::GROUP_BY, {}); has_aggregation = select_query->having() || !aggregate_descriptions.empty(); } } } else aggregated_columns = temp_actions->getSampleBlock().getNamesAndTypesList(); for (const auto & desc : aggregate_descriptions) aggregated_columns.emplace_back(desc.column_name, desc.function->getReturnType()); } else { aggregated_columns = temp_actions->getSampleBlock().getNamesAndTypesList(); } } void ExpressionAnalyzer::initGlobalSubqueriesAndExternalTables(bool do_global) { if (do_global) { GlobalSubqueriesVisitor::Data subqueries_data(context, subquery_depth, isRemoteStorage(), external_tables, subqueries_for_sets, has_global_subqueries); GlobalSubqueriesVisitor(subqueries_data).visit(query); } } NamesAndTypesList ExpressionAnalyzer::sourceWithJoinedColumns() const { auto result_columns = sourceColumns(); result_columns.insert(result_columns.end(), array_join_columns.begin(), array_join_columns.end()); result_columns.insert(result_columns.end(), analyzedJoin().columnsAddedByJoin().begin(), analyzedJoin().columnsAddedByJoin().end()); return result_columns; } void SelectQueryExpressionAnalyzer::tryMakeSetForIndexFromSubquery(const ASTPtr & subquery_or_table_name) { auto set_key = PreparedSetKey::forSubquery(*subquery_or_table_name); if (prepared_sets.count(set_key)) return; /// Already prepared. if (auto set_ptr_from_storage_set = isPlainStorageSetInSubquery(subquery_or_table_name)) { prepared_sets.insert({set_key, set_ptr_from_storage_set}); return; } auto interpreter_subquery = interpretSubquery(subquery_or_table_name, context, {}, query_options); auto stream = interpreter_subquery->execute().getInputStream(); SetPtr set = std::make_shared(settings.size_limits_for_set, true, context.getSettingsRef().transform_null_in); set->setHeader(stream->getHeader()); stream->readPrefix(); while (Block block = stream->read()) { /// If the limits have been exceeded, give up and let the default subquery processing actions take place. if (!set->insertFromBlock(block)) return; } set->finishInsert(); stream->readSuffix(); prepared_sets[set_key] = std::move(set); } SetPtr SelectQueryExpressionAnalyzer::isPlainStorageSetInSubquery(const ASTPtr & subquery_or_table_name) { const auto * table = subquery_or_table_name->as(); if (!table) return nullptr; auto table_id = context.resolveStorageID(subquery_or_table_name); const auto storage = DatabaseCatalog::instance().getTable(table_id, context); if (storage->getName() != "Set") return nullptr; const auto storage_set = std::dynamic_pointer_cast(storage); return storage_set->getSet(); } /// Performance optimisation for IN() if storage supports it. void SelectQueryExpressionAnalyzer::makeSetsForIndex(const ASTPtr & node) { if (!node || !storage() || !storage()->supportsIndexForIn()) return; for (auto & child : node->children) { /// Don't descend into subqueries. if (child->as()) continue; /// Don't descend into lambda functions const auto * func = child->as(); if (func && func->name == "lambda") continue; makeSetsForIndex(child); } const auto * func = node->as(); if (func && functionIsInOperator(func->name)) { const IAST & args = *func->arguments; const ASTPtr & left_in_operand = args.children.at(0); if (storage()->mayBenefitFromIndexForIn(left_in_operand, context, metadata_snapshot)) { const ASTPtr & arg = args.children.at(1); if (arg->as() || arg->as()) { if (settings.use_index_for_in_with_subqueries) tryMakeSetForIndexFromSubquery(arg); } else { ExpressionActionsPtr temp_actions = std::make_shared(sourceWithJoinedColumns(), context); getRootActions(left_in_operand, true, temp_actions); Block sample_block_with_calculated_columns = temp_actions->getSampleBlock(); if (sample_block_with_calculated_columns.has(left_in_operand->getColumnName())) makeExplicitSet(func, sample_block_with_calculated_columns, true, context, settings.size_limits_for_set, prepared_sets); } } } } void ExpressionAnalyzer::getRootActions(const ASTPtr & ast, bool no_subqueries, ExpressionActionsPtr & actions, bool only_consts) { LogAST log; ActionsVisitor::Data visitor_data(context, settings.size_limits_for_set, subquery_depth, sourceColumns(), actions, prepared_sets, subqueries_for_sets, no_subqueries, false, only_consts, !isRemoteStorage()); ActionsVisitor(visitor_data, log.stream()).visit(ast); visitor_data.updateActions(actions); } void ExpressionAnalyzer::getRootActionsNoMakeSet(const ASTPtr & ast, bool no_subqueries, ExpressionActionsPtr & actions, bool only_consts) { LogAST log; ActionsVisitor::Data visitor_data(context, settings.size_limits_for_set, subquery_depth, sourceColumns(), actions, prepared_sets, subqueries_for_sets, no_subqueries, true, only_consts, !isRemoteStorage()); ActionsVisitor(visitor_data, log.stream()).visit(ast); visitor_data.updateActions(actions); } bool ExpressionAnalyzer::makeAggregateDescriptions(ExpressionActionsPtr & actions) { for (const ASTFunction * node : aggregates()) { AggregateDescription aggregate; aggregate.column_name = node->getColumnName(); const ASTs & arguments = node->arguments->children; aggregate.argument_names.resize(arguments.size()); DataTypes types(arguments.size()); for (size_t i = 0; i < arguments.size(); ++i) { getRootActionsNoMakeSet(arguments[i], true, actions); const std::string & name = arguments[i]->getColumnName(); types[i] = actions->getSampleBlock().getByName(name).type; aggregate.argument_names[i] = name; } AggregateFunctionProperties properties; aggregate.parameters = (node->parameters) ? getAggregateFunctionParametersArray(node->parameters) : Array(); aggregate.function = AggregateFunctionFactory::instance().get(node->name, types, aggregate.parameters, properties); aggregate_descriptions.push_back(aggregate); } return !aggregates().empty(); } const ASTSelectQuery * ExpressionAnalyzer::getSelectQuery() const { const auto * select_query = query->as(); if (!select_query) throw Exception("Not a select query", ErrorCodes::LOGICAL_ERROR); return select_query; } const ASTSelectQuery * SelectQueryExpressionAnalyzer::getAggregatingQuery() const { if (!has_aggregation) throw Exception("No aggregation", ErrorCodes::LOGICAL_ERROR); return getSelectQuery(); } void ExpressionAnalyzer::initChain(ExpressionActionsChain & chain, const NamesAndTypesList & columns) const { if (chain.steps.empty()) { chain.steps.emplace_back(std::make_shared(columns, context)); } } /// "Big" ARRAY JOIN. void ExpressionAnalyzer::addMultipleArrayJoinAction(ExpressionActionsPtr & actions, bool array_join_is_left) const { NameSet result_columns; for (const auto & result_source : syntax->array_join_result_to_source) { /// Assign new names to columns, if needed. if (result_source.first != result_source.second) actions->add(ExpressionAction::copyColumn(result_source.second, result_source.first)); /// Make ARRAY JOIN (replace arrays with their insides) for the columns in these new names. result_columns.insert(result_source.first); } actions->add(ExpressionAction::arrayJoin(result_columns, array_join_is_left, context)); } bool SelectQueryExpressionAnalyzer::appendArrayJoin(ExpressionActionsChain & chain, bool only_types) { const auto * select_query = getSelectQuery(); bool is_array_join_left; ASTPtr array_join_expression_list = select_query->arrayJoinExpressionList(is_array_join_left); if (!array_join_expression_list) return false; initChain(chain, sourceColumns()); ExpressionActionsChain::Step & step = chain.steps.back(); getRootActions(array_join_expression_list, only_types, step.actions); addMultipleArrayJoinAction(step.actions, is_array_join_left); return true; } void ExpressionAnalyzer::addJoinAction(ExpressionActionsPtr & actions, JoinPtr join) const { actions->add(ExpressionAction::ordinaryJoin(syntax->analyzed_join, join)); } bool SelectQueryExpressionAnalyzer::appendJoin(ExpressionActionsChain & chain, bool only_types) { const ASTTablesInSelectQueryElement * ast_join = getSelectQuery()->join(); if (!ast_join) return false; JoinPtr table_join = makeTableJoin(*ast_join); initChain(chain, sourceColumns()); ExpressionActionsChain::Step & step = chain.steps.back(); getRootActions(analyzedJoin().leftKeysList(), only_types, step.actions); addJoinAction(step.actions, table_join); return true; } static JoinPtr tryGetStorageJoin(std::shared_ptr analyzed_join) { if (auto * table = analyzed_join->joined_storage.get()) if (auto * storage_join = dynamic_cast(table)) return storage_join->getJoin(analyzed_join); return {}; } static ExpressionActionsPtr createJoinedBlockActions(const Context & context, const TableJoin & analyzed_join) { ASTPtr expression_list = analyzed_join.rightKeysList(); auto syntax_result = SyntaxAnalyzer(context).analyze(expression_list, analyzed_join.columnsFromJoinedTable()); return ExpressionAnalyzer(expression_list, syntax_result, context).getActions(true, false); } static bool allowDictJoin(StoragePtr joined_storage, const Context & context, String & dict_name, String & key_name) { const auto * dict = dynamic_cast(joined_storage.get()); if (!dict) return false; dict_name = dict->dictionaryName(); auto dictionary = context.getExternalDictionariesLoader().getDictionary(dict_name); if (!dictionary) return false; const DictionaryStructure & structure = dictionary->getStructure(); if (structure.id) { key_name = structure.id->name; return true; } return false; } static std::shared_ptr makeJoin(std::shared_ptr analyzed_join, const Block & sample_block, const Context & context) { bool allow_merge_join = analyzed_join->allowMergeJoin(); /// HashJoin with Dictionary optimisation String dict_name; String key_name; if (analyzed_join->joined_storage && allowDictJoin(analyzed_join->joined_storage, context, dict_name, key_name)) { Names original_names; NamesAndTypesList result_columns; if (analyzed_join->allowDictJoin(key_name, sample_block, original_names, result_columns)) { analyzed_join->dictionary_reader = std::make_shared(dict_name, original_names, result_columns, context); return std::make_shared(analyzed_join, sample_block); } } if (analyzed_join->forceHashJoin() || (analyzed_join->preferMergeJoin() && !allow_merge_join)) return std::make_shared(analyzed_join, sample_block); else if (analyzed_join->forceMergeJoin() || (analyzed_join->preferMergeJoin() && allow_merge_join)) return std::make_shared(analyzed_join, sample_block); return std::make_shared(analyzed_join, sample_block); } JoinPtr SelectQueryExpressionAnalyzer::makeTableJoin(const ASTTablesInSelectQueryElement & join_element) { /// Two JOINs are not supported with the same subquery, but different USINGs. auto join_hash = join_element.getTreeHash(); String join_subquery_id = toString(join_hash.first) + "_" + toString(join_hash.second); SubqueryForSet & subquery_for_join = subqueries_for_sets[join_subquery_id]; /// Use StorageJoin if any. if (!subquery_for_join.join) subquery_for_join.join = tryGetStorageJoin(syntax->analyzed_join); if (!subquery_for_join.join) { /// Actions which need to be calculated on joined block. ExpressionActionsPtr joined_block_actions = createJoinedBlockActions(context, analyzedJoin()); Names original_right_columns; if (!subquery_for_join.source) { NamesWithAliases required_columns_with_aliases = analyzedJoin().getRequiredColumns( joined_block_actions->getSampleBlock(), joined_block_actions->getRequiredColumns()); for (auto & pr : required_columns_with_aliases) original_right_columns.push_back(pr.first); /** For GLOBAL JOINs (in the case, for example, of the push method for executing GLOBAL subqueries), the following occurs * - in the addExternalStorage function, the JOIN (SELECT ...) subquery is replaced with JOIN _data1, * in the subquery_for_set object this subquery is exposed as source and the temporary table _data1 as the `table`. * - this function shows the expression JOIN _data1. */ auto interpreter = interpretSubquery(join_element.table_expression, context, original_right_columns, query_options); subquery_for_join.makeSource(interpreter, std::move(required_columns_with_aliases)); } /// TODO You do not need to set this up when JOIN is only needed on remote servers. subquery_for_join.setJoinActions(joined_block_actions); /// changes subquery_for_join.sample_block inside subquery_for_join.join = makeJoin(syntax->analyzed_join, subquery_for_join.sample_block, context); /// Do not make subquery for join over dictionary. if (syntax->analyzed_join->dictionary_reader) { JoinPtr join = subquery_for_join.join; subqueries_for_sets.erase(join_subquery_id); return join; } } return subquery_for_join.join; } bool SelectQueryExpressionAnalyzer::appendPrewhere( ExpressionActionsChain & chain, bool only_types, const Names & additional_required_columns) { const auto * select_query = getSelectQuery(); if (!select_query->prewhere()) return false; initChain(chain, sourceColumns()); auto & step = chain.getLastStep(); getRootActions(select_query->prewhere(), only_types, step.actions); String prewhere_column_name = select_query->prewhere()->getColumnName(); step.required_output.push_back(prewhere_column_name); step.can_remove_required_output.push_back(true); { /// Remove unused source_columns from prewhere actions. auto tmp_actions = std::make_shared(sourceColumns(), context); getRootActions(select_query->prewhere(), only_types, tmp_actions); tmp_actions->finalize({prewhere_column_name}); auto required_columns = tmp_actions->getRequiredColumns(); NameSet required_source_columns(required_columns.begin(), required_columns.end()); /// Add required columns to required output in order not to remove them after prewhere execution. /// TODO: add sampling and final execution to common chain. for (const auto & column : additional_required_columns) { if (required_source_columns.count(column)) { step.required_output.push_back(column); step.can_remove_required_output.push_back(true); } } auto names = step.actions->getSampleBlock().getNames(); NameSet name_set(names.begin(), names.end()); for (const auto & column : sourceColumns()) if (required_source_columns.count(column.name) == 0) name_set.erase(column.name); Names required_output(name_set.begin(), name_set.end()); step.actions->finalize(required_output); } { /// Add empty action with input = {prewhere actions output} + {unused source columns} /// Reasons: /// 1. Remove remove source columns which are used only in prewhere actions during prewhere actions execution. /// Example: select A prewhere B > 0. B can be removed at prewhere step. /// 2. Store side columns which were calculated during prewhere actions execution if they are used. /// Example: select F(A) prewhere F(A) > 0. F(A) can be saved from prewhere step. /// 3. Check if we can remove filter column at prewhere step. If we can, action will store single REMOVE_COLUMN. ColumnsWithTypeAndName columns = step.actions->getSampleBlock().getColumnsWithTypeAndName(); auto required_columns = step.actions->getRequiredColumns(); NameSet prewhere_input_names(required_columns.begin(), required_columns.end()); NameSet unused_source_columns; for (const auto & column : sourceColumns()) { if (prewhere_input_names.count(column.name) == 0) { columns.emplace_back(column.type, column.name); unused_source_columns.emplace(column.name); } } chain.steps.emplace_back(std::make_shared(std::move(columns), context)); chain.steps.back().additional_input = std::move(unused_source_columns); } return true; } void SelectQueryExpressionAnalyzer::appendPreliminaryFilter(ExpressionActionsChain & chain, ExpressionActionsPtr actions, String column_name) { initChain(chain, sourceColumns()); ExpressionActionsChain::Step & step = chain.steps.back(); // FIXME: assert(filter_info); step.actions = std::move(actions); step.required_output.push_back(std::move(column_name)); step.can_remove_required_output = {true}; chain.addStep(); } bool SelectQueryExpressionAnalyzer::appendWhere(ExpressionActionsChain & chain, bool only_types) { const auto * select_query = getSelectQuery(); if (!select_query->where()) return false; initChain(chain, sourceColumns()); ExpressionActionsChain::Step & step = chain.steps.back(); step.required_output.push_back(select_query->where()->getColumnName()); step.can_remove_required_output = {true}; getRootActions(select_query->where(), only_types, step.actions); return true; } bool SelectQueryExpressionAnalyzer::appendGroupBy(ExpressionActionsChain & chain, bool only_types, bool optimize_aggregation_in_order, ManyExpressionActions & group_by_elements_actions) { const auto * select_query = getAggregatingQuery(); if (!select_query->groupBy()) return false; initChain(chain, sourceColumns()); ExpressionActionsChain::Step & step = chain.steps.back(); ASTs asts = select_query->groupBy()->children; for (const auto & ast : asts) { step.required_output.emplace_back(ast->getColumnName()); getRootActions(ast, only_types, step.actions); } if (optimize_aggregation_in_order) { auto all_columns = sourceWithJoinedColumns(); for (auto & child : asts) { group_by_elements_actions.emplace_back(std::make_shared(all_columns, context)); getRootActions(child, only_types, group_by_elements_actions.back()); } } return true; } void SelectQueryExpressionAnalyzer::appendAggregateFunctionsArguments(ExpressionActionsChain & chain, bool only_types) { const auto * select_query = getAggregatingQuery(); initChain(chain, sourceColumns()); ExpressionActionsChain::Step & step = chain.steps.back(); for (const auto & desc : aggregate_descriptions) for (const auto & name : desc.argument_names) step.required_output.emplace_back(name); /// Collect aggregates removing duplicates by node.getColumnName() /// It's not clear why we recollect aggregates (for query parts) while we're able to use previously collected ones (for entire query) /// @note The original recollection logic didn't remove duplicates. GetAggregatesVisitor::Data data; GetAggregatesVisitor(data).visit(select_query->select()); if (select_query->having()) GetAggregatesVisitor(data).visit(select_query->having()); if (select_query->orderBy()) GetAggregatesVisitor(data).visit(select_query->orderBy()); /// TODO: data.aggregates -> aggregates() for (const ASTFunction * node : data.aggregates) for (auto & argument : node->arguments->children) getRootActions(argument, only_types, step.actions); } bool SelectQueryExpressionAnalyzer::appendHaving(ExpressionActionsChain & chain, bool only_types) { const auto * select_query = getAggregatingQuery(); if (!select_query->having()) return false; initChain(chain, aggregated_columns); ExpressionActionsChain::Step & step = chain.steps.back(); step.required_output.push_back(select_query->having()->getColumnName()); getRootActions(select_query->having(), only_types, step.actions); return true; } void SelectQueryExpressionAnalyzer::appendSelect(ExpressionActionsChain & chain, bool only_types) { const auto * select_query = getSelectQuery(); initChain(chain, aggregated_columns); ExpressionActionsChain::Step & step = chain.steps.back(); getRootActions(select_query->select(), only_types, step.actions); for (const auto & child : select_query->select()->children) step.required_output.push_back(child->getColumnName()); } bool SelectQueryExpressionAnalyzer::appendOrderBy(ExpressionActionsChain & chain, bool only_types, bool optimize_read_in_order, ManyExpressionActions & order_by_elements_actions) { const auto * select_query = getSelectQuery(); if (!select_query->orderBy()) return false; initChain(chain, aggregated_columns); ExpressionActionsChain::Step & step = chain.steps.back(); getRootActions(select_query->orderBy(), only_types, step.actions); for (auto & child : select_query->orderBy()->children) { const auto * ast = child->as(); if (!ast || ast->children.empty()) throw Exception("Bad order expression AST", ErrorCodes::UNKNOWN_TYPE_OF_AST_NODE); ASTPtr order_expression = ast->children.at(0); step.required_output.push_back(order_expression->getColumnName()); } if (optimize_read_in_order) { auto all_columns = sourceWithJoinedColumns(); for (auto & child : select_query->orderBy()->children) { order_by_elements_actions.emplace_back(std::make_shared(all_columns, context)); getRootActions(child, only_types, order_by_elements_actions.back()); } } return true; } bool SelectQueryExpressionAnalyzer::appendLimitBy(ExpressionActionsChain & chain, bool only_types) { const auto * select_query = getSelectQuery(); if (!select_query->limitBy()) return false; initChain(chain, aggregated_columns); ExpressionActionsChain::Step & step = chain.steps.back(); getRootActions(select_query->limitBy(), only_types, step.actions); NameSet aggregated_names; for (const auto & column : aggregated_columns) { step.required_output.push_back(column.name); aggregated_names.insert(column.name); } for (const auto & child : select_query->limitBy()->children) { auto child_name = child->getColumnName(); if (!aggregated_names.count(child_name)) step.required_output.push_back(std::move(child_name)); } return true; } void SelectQueryExpressionAnalyzer::appendProjectResult(ExpressionActionsChain & chain) const { const auto * select_query = getSelectQuery(); initChain(chain, aggregated_columns); ExpressionActionsChain::Step & step = chain.steps.back(); NamesWithAliases result_columns; ASTs asts = select_query->select()->children; for (const auto & ast : asts) { String result_name = ast->getAliasOrColumnName(); if (required_result_columns.empty() || required_result_columns.count(result_name)) { std::string source_name = ast->getColumnName(); /* * For temporary columns created by ExpressionAnalyzer for literals, * use the correct source column. Using the default display name * returned by getColumnName is not enough, and we have to use the * column id set by EA. In principle, this logic applies to all kinds * of columns, not only literals. Literals are especially problematic * for two reasons: * 1) confusing different literal columns leads to weird side * effects (see 01101_literal_columns_clash); * 2) the disambiguation mechanism in SyntaxAnalyzer, that, among * other things, creates unique aliases for columns with same * names from different tables, is applied before these temporary * columns are created by ExpressionAnalyzer. * Similar problems should also manifest for function columns, which * are likewise created at a later stage by EA. * In general, we need to have explicit separation between display * names and identifiers for columns. This code is a workaround for * a particular subclass of problems, and not a proper solution. */ if (const auto * as_literal = ast->as()) { source_name = as_literal->unique_column_name; assert(!source_name.empty()); } result_columns.emplace_back(source_name, result_name); step.required_output.push_back(result_columns.back().second); } } step.actions->add(ExpressionAction::project(result_columns)); } void ExpressionAnalyzer::appendExpression(ExpressionActionsChain & chain, const ASTPtr & expr, bool only_types) { initChain(chain, sourceColumns()); ExpressionActionsChain::Step & step = chain.steps.back(); getRootActions(expr, only_types, step.actions); step.required_output.push_back(expr->getColumnName()); } ExpressionActionsPtr ExpressionAnalyzer::getActions(bool add_aliases, bool project_result) { ExpressionActionsPtr actions = std::make_shared(aggregated_columns, context); NamesWithAliases result_columns; Names result_names; ASTs asts; if (const auto * node = query->as()) asts = node->children; else asts = ASTs(1, query); for (const auto & ast : asts) { std::string name = ast->getColumnName(); std::string alias; if (add_aliases) alias = ast->getAliasOrColumnName(); else alias = name; result_columns.emplace_back(name, alias); result_names.push_back(alias); getRootActions(ast, false, actions); } if (add_aliases) { if (project_result) actions->add(ExpressionAction::project(result_columns)); else actions->add(ExpressionAction::addAliases(result_columns)); } if (!(add_aliases && project_result)) { /// We will not delete the original columns. for (const auto & column_name_type : sourceColumns()) result_names.push_back(column_name_type.name); } actions->finalize(result_names); return actions; } ExpressionActionsPtr ExpressionAnalyzer::getConstActions() { ExpressionActionsPtr actions = std::make_shared(NamesAndTypesList(), context); getRootActions(query, true, actions, true); return actions; } ExpressionActionsPtr SelectQueryExpressionAnalyzer::simpleSelectActions() { ExpressionActionsChain new_chain(context); appendSelect(new_chain, false); return new_chain.getLastActions(); } ExpressionAnalysisResult::ExpressionAnalysisResult( SelectQueryExpressionAnalyzer & query_analyzer, const StorageMetadataPtr & metadata_snapshot, bool first_stage_, bool second_stage_, bool only_types, const FilterInfoPtr & filter_info_, const Block & source_header) : first_stage(first_stage_) , second_stage(second_stage_) , need_aggregate(query_analyzer.hasAggregation()) { /// first_stage: Do I need to perform the first part of the pipeline - running on remote servers during distributed processing. /// second_stage: Do I need to execute the second part of the pipeline - running on the initiating server during distributed processing. /** First we compose a chain of actions and remember the necessary steps from it. * Regardless of from_stage and to_stage, we will compose a complete sequence of actions to perform optimization and * throw out unnecessary columns based on the entire query. In unnecessary parts of the query, we will not execute subqueries. */ const ASTSelectQuery & query = *query_analyzer.getSelectQuery(); const Context & context = query_analyzer.context; const Settings & settings = context.getSettingsRef(); const ConstStoragePtr & storage = query_analyzer.storage(); bool finalized = false; size_t where_step_num = 0; auto finalize_chain = [&](ExpressionActionsChain & chain) { chain.finalize(); if (!finalized) { finalize(chain, context, where_step_num); finalized = true; } chain.clear(); }; if (storage) { query_analyzer.makeSetsForIndex(query.where()); query_analyzer.makeSetsForIndex(query.prewhere()); } { ExpressionActionsChain chain(context); Names additional_required_columns_after_prewhere; if (storage && (query.sampleSize() || settings.parallel_replicas_count > 1)) { Names columns_for_sampling = metadata_snapshot->getColumnsRequiredForSampling(); additional_required_columns_after_prewhere.insert(additional_required_columns_after_prewhere.end(), columns_for_sampling.begin(), columns_for_sampling.end()); } if (storage && query.final()) { Names columns_for_final = metadata_snapshot->getColumnsRequiredForFinal(); additional_required_columns_after_prewhere.insert(additional_required_columns_after_prewhere.end(), columns_for_final.begin(), columns_for_final.end()); } if (storage && filter_info_) { filter_info = filter_info_; query_analyzer.appendPreliminaryFilter(chain, filter_info->actions, filter_info->column_name); } if (query_analyzer.appendPrewhere(chain, !first_stage, additional_required_columns_after_prewhere)) { prewhere_info = std::make_shared( chain.steps.front().actions, query.prewhere()->getColumnName()); if (allowEarlyConstantFolding(*prewhere_info->prewhere_actions, settings)) { Block before_prewhere_sample = source_header; if (sanitizeBlock(before_prewhere_sample)) { prewhere_info->prewhere_actions->execute(before_prewhere_sample); auto & column_elem = before_prewhere_sample.getByName(query.prewhere()->getColumnName()); /// If the filter column is a constant, record it. if (column_elem.column) prewhere_constant_filter_description = ConstantFilterDescription(*column_elem.column); } } chain.addStep(); } query_analyzer.appendArrayJoin(chain, only_types || !first_stage); before_join = chain.getLastActions(true); if (before_join) chain.addStep(); if (query_analyzer.appendJoin(chain, only_types || !first_stage)) { join = chain.getLastActions(); if (!join) throw Exception("No expected JOIN", ErrorCodes::LOGICAL_ERROR); chain.addStep(); } if (query_analyzer.appendWhere(chain, only_types || !first_stage)) { where_step_num = chain.steps.size() - 1; before_where = chain.getLastActions(); if (allowEarlyConstantFolding(*before_where, settings)) { Block before_where_sample; if (chain.steps.size() > 1) before_where_sample = chain.steps[chain.steps.size() - 2].actions->getSampleBlock(); else before_where_sample = source_header; if (sanitizeBlock(before_where_sample)) { before_where->execute(before_where_sample); auto & column_elem = before_where_sample.getByName(query.where()->getColumnName()); /// If the filter column is a constant, record it. if (column_elem.column) where_constant_filter_description = ConstantFilterDescription(*column_elem.column); } } chain.addStep(); } if (need_aggregate) { /// TODO correct conditions optimize_aggregation_in_order = context.getSettingsRef().optimize_aggregation_in_order && storage && query.groupBy(); query_analyzer.appendGroupBy(chain, only_types || !first_stage, optimize_aggregation_in_order, group_by_elements_actions); query_analyzer.appendAggregateFunctionsArguments(chain, only_types || !first_stage); before_aggregation = chain.getLastActions(); finalize_chain(chain); if (query_analyzer.appendHaving(chain, only_types || !second_stage)) { before_having = chain.getLastActions(); chain.addStep(); } } bool join_allow_read_in_order = true; if (hasJoin()) { /// You may find it strange but we support read_in_order for HashJoin and do not support for MergeJoin. auto join_algo = join->getTableJoinAlgo(); join_allow_read_in_order = typeid_cast(join_algo.get()) && !join_algo->hasStreamWithNonJoinedRows(); } optimize_read_in_order = settings.optimize_read_in_order && storage && query.orderBy() && !query_analyzer.hasAggregation() && !query.final() && join_allow_read_in_order; /// If there is aggregation, we execute expressions in SELECT and ORDER BY on the initiating server, otherwise on the source servers. query_analyzer.appendSelect(chain, only_types || (need_aggregate ? !second_stage : !first_stage)); selected_columns = chain.getLastStep().required_output; has_order_by = query_analyzer.appendOrderBy(chain, only_types || (need_aggregate ? !second_stage : !first_stage), optimize_read_in_order, order_by_elements_actions); before_order_and_select = chain.getLastActions(); chain.addStep(); if (query_analyzer.appendLimitBy(chain, only_types || !second_stage)) { before_limit_by = chain.getLastActions(); chain.addStep(); } query_analyzer.appendProjectResult(chain); final_projection = chain.getLastActions(); finalize_chain(chain); } /// Before executing WHERE and HAVING, remove the extra columns from the block (mostly the aggregation keys). removeExtraColumns(); checkActions(); } void ExpressionAnalysisResult::finalize(const ExpressionActionsChain & chain, const Context & context_, size_t where_step_num) { if (hasPrewhere()) { const ExpressionActionsChain::Step & step = chain.steps.at(0); prewhere_info->remove_prewhere_column = step.can_remove_required_output.at(0); Names columns_to_remove; for (size_t i = 1; i < step.required_output.size(); ++i) { if (step.can_remove_required_output[i]) columns_to_remove.push_back(step.required_output[i]); } if (!columns_to_remove.empty()) { auto columns = prewhere_info->prewhere_actions->getSampleBlock().getNamesAndTypesList(); ExpressionActionsPtr actions = std::make_shared(columns, context_); for (const auto & column : columns_to_remove) actions->add(ExpressionAction::removeColumn(column)); prewhere_info->remove_columns_actions = std::move(actions); } columns_to_remove_after_prewhere = std::move(columns_to_remove); } else if (hasFilter()) { /// Can't have prewhere and filter set simultaneously filter_info->do_remove_column = chain.steps.at(0).can_remove_required_output.at(0); } if (hasWhere()) remove_where_filter = chain.steps.at(where_step_num).can_remove_required_output.at(0); } void ExpressionAnalysisResult::removeExtraColumns() const { if (hasFilter()) filter_info->actions->prependProjectInput(); if (hasWhere()) before_where->prependProjectInput(); if (hasHaving()) before_having->prependProjectInput(); } void ExpressionAnalysisResult::checkActions() const { /// Check that PREWHERE doesn't contain unusual actions. Unusual actions are that can change number of rows. if (hasPrewhere()) { auto check_actions = [](const ExpressionActionsPtr & actions) { if (actions) for (const auto & action : actions->getActions()) if (action.type == ExpressionAction::Type::JOIN || action.type == ExpressionAction::Type::ARRAY_JOIN) throw Exception("PREWHERE cannot contain ARRAY JOIN or JOIN action", ErrorCodes::ILLEGAL_PREWHERE); }; check_actions(prewhere_info->prewhere_actions); check_actions(prewhere_info->alias_actions); check_actions(prewhere_info->remove_columns_actions); } } }