#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace fs = std::filesystem; namespace { const UInt64 FORCE_OPTIMIZE_SKIP_UNUSED_SHARDS_HAS_SHARDING_KEY = 1; const UInt64 FORCE_OPTIMIZE_SKIP_UNUSED_SHARDS_ALWAYS = 2; const UInt64 DISTRIBUTED_GROUP_BY_NO_MERGE_AFTER_AGGREGATION = 2; const UInt64 PARALLEL_DISTRIBUTED_INSERT_SELECT_ALL = 2; } namespace ProfileEvents { extern const Event DistributedRejectedInserts; extern const Event DistributedDelayedInserts; extern const Event DistributedDelayedInsertsMilliseconds; } namespace CurrentMetrics { extern const Metric StorageDistributedThreads; extern const Metric StorageDistributedThreadsActive; } namespace DB { namespace ErrorCodes { extern const int LOGICAL_ERROR; extern const int NOT_IMPLEMENTED; extern const int STORAGE_REQUIRES_PARAMETER; extern const int BAD_ARGUMENTS; extern const int NUMBER_OF_ARGUMENTS_DOESNT_MATCH; extern const int INCORRECT_NUMBER_OF_COLUMNS; extern const int INFINITE_LOOP; extern const int TYPE_MISMATCH; extern const int TOO_MANY_ROWS; extern const int UNABLE_TO_SKIP_UNUSED_SHARDS; extern const int INVALID_SHARD_ID; extern const int ALTER_OF_COLUMN_IS_FORBIDDEN; extern const int DISTRIBUTED_TOO_MANY_PENDING_BYTES; extern const int ARGUMENT_OUT_OF_BOUND; extern const int TOO_LARGE_DISTRIBUTED_DEPTH; } namespace ActionLocks { extern const StorageActionBlockType DistributedSend; } namespace { /// Calculate maximum number in file names in directory and all subdirectories. /// To ensure global order of data blocks yet to be sent across server restarts. UInt64 getMaximumFileNumber(const std::string & dir_path) { UInt64 res = 0; std::filesystem::recursive_directory_iterator begin(dir_path); std::filesystem::recursive_directory_iterator end; for (auto it = begin; it != end; ++it) { const auto & file_path = it->path(); if (!std::filesystem::is_regular_file(*it) || !endsWith(file_path.filename().string(), ".bin")) continue; UInt64 num = 0; try { num = parse(file_path.filename().stem().string()); } catch (Exception & e) { e.addMessage("Unexpected file name " + file_path.filename().string() + " found at " + file_path.parent_path().string() + ", should have numeric base name."); throw; } if (num > res) res = num; } return res; } std::string makeFormattedListOfShards(const ClusterPtr & cluster) { WriteBufferFromOwnString buf; bool head = true; buf << "["; for (const auto & shard_info : cluster->getShardsInfo()) { (head ? buf : buf << ", ") << shard_info.shard_num; head = false; } buf << "]"; return buf.str(); } ExpressionActionsPtr buildShardingKeyExpression(const ASTPtr & sharding_key, ContextPtr context, const NamesAndTypesList & columns, bool project) { ASTPtr query = sharding_key; auto syntax_result = TreeRewriter(context).analyze(query, columns); return ExpressionAnalyzer(query, syntax_result, context).getActions(project); } bool isExpressionActionsDeterministic(const ExpressionActionsPtr & actions) { for (const auto & action : actions->getActions()) { if (action.node->type != ActionsDAG::ActionType::FUNCTION) continue; if (!action.node->function_base->isDeterministic()) return false; } return true; } class ReplacingConstantExpressionsMatcher { public: using Data = Block; static bool needChildVisit(ASTPtr &, const ASTPtr &) { return true; } static void visit(ASTPtr & node, Block & block_with_constants) { if (!node->as()) return; std::string name = node->getColumnName(); if (block_with_constants.has(name)) { auto result = block_with_constants.getByName(name); if (!isColumnConst(*result.column)) return; node = std::make_shared(assert_cast(*result.column).getField()); } } }; void replaceConstantExpressions( ASTPtr & node, ContextPtr context, const NamesAndTypesList & columns, ConstStoragePtr storage, const StorageSnapshotPtr & storage_snapshot) { auto syntax_result = TreeRewriter(context).analyze(node, columns, storage, storage_snapshot); Block block_with_constants = KeyCondition::getBlockWithConstants(node, syntax_result, context); InDepthNodeVisitor visitor(block_with_constants); visitor.visit(node); } size_t getClusterQueriedNodes(const Settings & settings, const ClusterPtr & cluster) { size_t num_local_shards = cluster->getLocalShardCount(); size_t num_remote_shards = cluster->getRemoteShardCount(); return (num_remote_shards + num_local_shards) * settings.max_parallel_replicas; } } /// For destruction of std::unique_ptr of type that is incomplete in class definition. StorageDistributed::~StorageDistributed() = default; NamesAndTypesList StorageDistributed::getVirtuals() const { /// NOTE This is weird. Most of these virtual columns are part of MergeTree /// tables info. But Distributed is general-purpose engine. return NamesAndTypesList{ NameAndTypePair("_table", std::make_shared(std::make_shared())), NameAndTypePair("_part", std::make_shared(std::make_shared())), NameAndTypePair("_part_index", std::make_shared()), NameAndTypePair("_part_uuid", std::make_shared()), NameAndTypePair("_partition_id", std::make_shared(std::make_shared())), NameAndTypePair("_sample_factor", std::make_shared()), NameAndTypePair("_part_offset", std::make_shared()), NameAndTypePair("_row_exists", std::make_shared()), NameAndTypePair("_shard_num", std::make_shared()), /// deprecated }; } StorageDistributed::StorageDistributed( const StorageID & id_, const ColumnsDescription & columns_, const ConstraintsDescription & constraints_, const String & comment, const String & remote_database_, const String & remote_table_, const String & cluster_name_, ContextPtr context_, const ASTPtr & sharding_key_, const String & storage_policy_name_, const String & relative_data_path_, const DistributedSettings & distributed_settings_, bool attach_, ClusterPtr owned_cluster_, ASTPtr remote_table_function_ptr_) : IStorage(id_) , WithContext(context_->getGlobalContext()) , remote_database(remote_database_) , remote_table(remote_table_) , remote_table_function_ptr(remote_table_function_ptr_) , log(&Poco::Logger::get("StorageDistributed (" + id_.table_name + ")")) , owned_cluster(std::move(owned_cluster_)) , cluster_name(getContext()->getMacros()->expand(cluster_name_)) , has_sharding_key(sharding_key_) , relative_data_path(relative_data_path_) , distributed_settings(distributed_settings_) , rng(randomSeed()) { StorageInMemoryMetadata storage_metadata; if (columns_.empty()) { StorageID id = StorageID::createEmpty(); id.table_name = remote_table; id.database_name = remote_database; storage_metadata.setColumns(getStructureOfRemoteTable(*getCluster(), id, getContext(), remote_table_function_ptr)); } else storage_metadata.setColumns(columns_); storage_metadata.setConstraints(constraints_); storage_metadata.setComment(comment); setInMemoryMetadata(storage_metadata); if (sharding_key_) { sharding_key_expr = buildShardingKeyExpression(sharding_key_, getContext(), storage_metadata.getColumns().getAllPhysical(), false); sharding_key_column_name = sharding_key_->getColumnName(); sharding_key_is_deterministic = isExpressionActionsDeterministic(sharding_key_expr); } if (!relative_data_path.empty()) { storage_policy = getContext()->getStoragePolicy(storage_policy_name_); data_volume = storage_policy->getVolume(0); if (storage_policy->getVolumes().size() > 1) LOG_WARNING(log, "Storage policy for Distributed table has multiple volumes. " "Only {} volume will be used to store data. Other will be ignored.", data_volume->getName()); } /// Sanity check. Skip check if the table is already created to allow the server to start. if (!attach_) { if (remote_database.empty() && !remote_table_function_ptr && !getCluster()->maybeCrossReplication()) LOG_WARNING(log, "Name of remote database is empty. Default database will be used implicitly."); size_t num_local_shards = getCluster()->getLocalShardCount(); if (num_local_shards && (remote_database.empty() || remote_database == id_.database_name) && remote_table == id_.table_name) throw Exception(ErrorCodes::INFINITE_LOOP, "Distributed table {} looks at itself", id_.table_name); } initializeFromDisk(); } StorageDistributed::StorageDistributed( const StorageID & id_, const ColumnsDescription & columns_, const ConstraintsDescription & constraints_, ASTPtr remote_table_function_ptr_, const String & cluster_name_, ContextPtr context_, const ASTPtr & sharding_key_, const String & storage_policy_name_, const String & relative_data_path_, const DistributedSettings & distributed_settings_, bool attach, ClusterPtr owned_cluster_) : StorageDistributed( id_, columns_, constraints_, String{}, String{}, String{}, cluster_name_, context_, sharding_key_, storage_policy_name_, relative_data_path_, distributed_settings_, attach, std::move(owned_cluster_), remote_table_function_ptr_) { } // QueryProcessingStage::Enum // StorageDistributed::getQueryProcessingStageAnalyzer( // [[maybe_unused]] ContextPtr local_context, // [[maybe_unused]] QueryProcessingStage::Enum to_stage, // [[maybe_unused]] const StorageSnapshotPtr & storage_snapshot, // [[maybe_unused]] SelectQueryInfo & query_info) const // { // if (query_info.query_tree) // LOG_INFO(log, "getQueryProcessingStageAnalyzer tree {}", query_info.query_tree->dumpTree()); // if (query_info.table_expression) // LOG_INFO(log, "getQueryProcessingStageAnalyzer table_expression {}", query_info.table_expression->dumpTree()); // if (query_info.filter_actions_dag) // LOG_INFO(log, "getQueryProcessingStageAnalyzer dag {}", query_info.filter_actions_dag->dumpDAG()); // const auto & settings = local_context->getSettingsRef(); // ClusterPtr cluster = getCluster(); // size_t nodes = getClusterQueriedNodes(settings, cluster); // if (query_info.use_custom_key) // { // LOG_INFO(log, "Single shard cluster used with custom_key, transforming replicas into virtual shards"); // query_info.cluster = cluster->getClusterWithReplicasAsShards(settings, settings.max_parallel_replicas); // } // else // { // query_info.cluster = cluster; // if (nodes > 1 && settings.optimize_skip_unused_shards) // { // /// Always calculate optimized cluster here, to avoid conditions during read() // /// (Anyway it will be calculated in the read()) // ClusterPtr optimized_cluster = getOptimizedCluster(local_context, storage_snapshot, query_info); // if (optimized_cluster) // { // LOG_DEBUG(log, "Skipping irrelevant shards - the query will be sent to the following shards of the cluster (shard numbers): {}", // makeFormattedListOfShards(optimized_cluster)); // cluster = optimized_cluster; // query_info.optimized_cluster = cluster; // nodes = getClusterQueriedNodes(settings, cluster); // } // else // { // LOG_DEBUG(log, "Unable to figure out irrelevant shards from WHERE/PREWHERE clauses - the query will be sent to all shards of the cluster{}", // has_sharding_key ? "" : " (no sharding key)"); // } // } // } // query_info.cluster = cluster; // return QueryProcessingStage::WithMergeableState; // } QueryProcessingStage::Enum StorageDistributed::getQueryProcessingStage( ContextPtr local_context, QueryProcessingStage::Enum to_stage, const StorageSnapshotPtr & storage_snapshot, SelectQueryInfo & query_info) const { const auto & settings = local_context->getSettingsRef(); // if (settings.allow_experimental_analyzer) // return getQueryProcessingStageAnalyzer(local_context, to_stage, storage_snapshot, query_info); ClusterPtr cluster = getCluster(); size_t nodes = getClusterQueriedNodes(settings, cluster); if (query_info.use_custom_key) { LOG_INFO(log, "Single shard cluster used with custom_key, transforming replicas into virtual shards"); query_info.cluster = cluster->getClusterWithReplicasAsShards(settings, settings.max_parallel_replicas); } else { query_info.cluster = cluster; if (nodes > 1 && settings.optimize_skip_unused_shards) { /// Always calculate optimized cluster here, to avoid conditions during read() /// (Anyway it will be calculated in the read()) ClusterPtr optimized_cluster = getOptimizedCluster(local_context, storage_snapshot, query_info); if (optimized_cluster) { LOG_DEBUG(log, "Skipping irrelevant shards - the query will be sent to the following shards of the cluster (shard numbers): {}", makeFormattedListOfShards(optimized_cluster)); cluster = optimized_cluster; query_info.optimized_cluster = cluster; nodes = getClusterQueriedNodes(settings, cluster); } else { LOG_DEBUG(log, "Unable to figure out irrelevant shards from WHERE/PREWHERE clauses - the query will be sent to all shards of the cluster{}", has_sharding_key ? "" : " (no sharding key)"); } } } if (settings.distributed_group_by_no_merge) { if (settings.distributed_group_by_no_merge == DISTRIBUTED_GROUP_BY_NO_MERGE_AFTER_AGGREGATION) { if (settings.distributed_push_down_limit) return QueryProcessingStage::WithMergeableStateAfterAggregationAndLimit; else return QueryProcessingStage::WithMergeableStateAfterAggregation; } else { /// NOTE: distributed_group_by_no_merge=1 does not respect distributed_push_down_limit /// (since in this case queries processed separately and the initiator is just a proxy in this case). if (to_stage != QueryProcessingStage::Complete) throw Exception(ErrorCodes::LOGICAL_ERROR, "Queries with distributed_group_by_no_merge=1 should be processed to Complete stage"); return QueryProcessingStage::Complete; } } /// Nested distributed query cannot return Complete stage, /// since the parent query need to aggregate the results after. if (to_stage == QueryProcessingStage::WithMergeableState) return QueryProcessingStage::WithMergeableState; /// If there is only one node, the query can be fully processed by the /// shard, initiator will work as a proxy only. if (nodes == 1) { /// In case the query was processed to /// WithMergeableStateAfterAggregation/WithMergeableStateAfterAggregationAndLimit /// (which are greater the Complete stage) /// we cannot return Complete (will break aliases and similar), /// relevant for Distributed over Distributed return std::max(to_stage, QueryProcessingStage::Complete); } else if (nodes == 0) { /// In case of 0 shards, the query should be processed fully on the initiator, /// since we need to apply aggregations. /// That's why we need to return FetchColumns. return QueryProcessingStage::FetchColumns; } std::optional optimized_stage; if (settings.allow_experimental_analyzer) optimized_stage = getOptimizedQueryProcessingStageAnalyzer(query_info, settings); else optimized_stage = getOptimizedQueryProcessingStage(query_info, settings); if (optimized_stage) { if (*optimized_stage == QueryProcessingStage::Complete) return std::min(to_stage, *optimized_stage); return *optimized_stage; } return QueryProcessingStage::WithMergeableState; } std::optional StorageDistributed::getOptimizedQueryProcessingStageAnalyzer(const SelectQueryInfo & query_info, const Settings & settings) const { bool optimize_sharding_key_aggregation = settings.optimize_skip_unused_shards && settings.optimize_distributed_group_by_sharding_key && has_sharding_key && (settings.allow_nondeterministic_optimize_skip_unused_shards || sharding_key_is_deterministic); QueryProcessingStage::Enum default_stage = QueryProcessingStage::WithMergeableStateAfterAggregation; if (settings.distributed_push_down_limit) default_stage = QueryProcessingStage::WithMergeableStateAfterAggregationAndLimit; const auto & query_node = query_info.query_tree->as(); // std::cerr << query_node.dumpTree() << std::endl; // std::cerr << query_info.table_expression->dumpTree() << std::endl; auto expr_contains_sharding_key = [&](const ListNode & exprs) -> bool { std::unordered_set expr_columns; for (auto & expr : exprs) { const auto * id = expr->as(); if (!id) continue; auto source = id->getColumnSourceOrNull(); if (!source) continue; if (source.get() != query_info.table_expression.get()) continue; expr_columns.emplace(id->getColumnName()); } for (const auto & column : sharding_key_expr->getRequiredColumns()) { if (!expr_columns.contains(column)) return false; } return true; }; // GROUP BY qualifiers // - TODO: WITH TOTALS can be implemented // - TODO: WITH ROLLUP can be implemented (I guess) if (query_node.isGroupByWithTotals() || query_node.isGroupByWithRollup() || query_node.isGroupByWithCube()) return {}; // Window functions are not supported. if (query_node.hasWindow()) return {}; // TODO: extremes support can be implemented if (settings.extremes) return {}; // DISTINCT if (query_node.isDistinct()) { if (!optimize_sharding_key_aggregation || !expr_contains_sharding_key(query_node.getProjection())) return {}; } // GROUP BY bool has_aggregates = query_info.has_aggregates; if (query_info.syntax_analyzer_result) has_aggregates = !query_info.syntax_analyzer_result->aggregates.empty(); if (has_aggregates || query_node.hasGroupBy()) { if (!optimize_sharding_key_aggregation || !query_node.hasGroupBy() || !expr_contains_sharding_key(query_node.getGroupBy())) return {}; } // LIMIT BY if (query_node.hasLimitBy()) { if (!optimize_sharding_key_aggregation || !expr_contains_sharding_key(query_node.getLimitBy())) return {}; } // ORDER BY if (query_node.hasOrderBy()) return default_stage; // LIMIT // OFFSET if (query_node.hasLimit() || query_node.hasOffset()) return default_stage; // Only simple SELECT FROM GROUP BY sharding_key can use Complete state. return QueryProcessingStage::Complete; } std::optional StorageDistributed::getOptimizedQueryProcessingStage(const SelectQueryInfo & query_info, const Settings & settings) const { bool optimize_sharding_key_aggregation = settings.optimize_skip_unused_shards && settings.optimize_distributed_group_by_sharding_key && has_sharding_key && (settings.allow_nondeterministic_optimize_skip_unused_shards || sharding_key_is_deterministic); QueryProcessingStage::Enum default_stage = QueryProcessingStage::WithMergeableStateAfterAggregation; if (settings.distributed_push_down_limit) default_stage = QueryProcessingStage::WithMergeableStateAfterAggregationAndLimit; const auto & select = query_info.query->as(); auto expr_contains_sharding_key = [&](const auto & exprs) -> bool { std::unordered_set expr_columns; for (auto & expr : exprs) { auto id = expr->template as(); if (!id) continue; expr_columns.emplace(id->name()); } for (const auto & column : sharding_key_expr->getRequiredColumns()) { if (!expr_columns.contains(column)) return false; } return true; }; // GROUP BY qualifiers // - TODO: WITH TOTALS can be implemented // - TODO: WITH ROLLUP can be implemented (I guess) if (select.group_by_with_totals || select.group_by_with_rollup || select.group_by_with_cube) return {}; // Window functions are not supported. if (query_info.has_window) return {}; // TODO: extremes support can be implemented if (settings.extremes) return {}; // DISTINCT if (select.distinct) { if (!optimize_sharding_key_aggregation || !expr_contains_sharding_key(select.select()->children)) return {}; } // GROUP BY const ASTPtr group_by = select.groupBy(); bool has_aggregates = query_info.has_aggregates; if (query_info.syntax_analyzer_result) has_aggregates = !query_info.syntax_analyzer_result->aggregates.empty(); if (has_aggregates || group_by) { if (!optimize_sharding_key_aggregation || !group_by || !expr_contains_sharding_key(group_by->children)) return {}; } // LIMIT BY if (const ASTPtr limit_by = select.limitBy()) { if (!optimize_sharding_key_aggregation || !expr_contains_sharding_key(limit_by->children)) return {}; } // ORDER BY if (const ASTPtr order_by = select.orderBy()) return default_stage; // LIMIT // OFFSET if (select.limitLength() || select.limitOffset()) return default_stage; // Only simple SELECT FROM GROUP BY sharding_key can use Complete state. return QueryProcessingStage::Complete; } static bool requiresObjectColumns(const ColumnsDescription & all_columns, ASTPtr query) { if (!hasDynamicSubcolumns(all_columns)) return false; if (!query) return true; RequiredSourceColumnsVisitor::Data columns_context; RequiredSourceColumnsVisitor(columns_context).visit(query); auto required_columns = columns_context.requiredColumns(); for (const auto & required_column : required_columns) { auto name_in_storage = Nested::splitName(required_column).first; auto column_in_storage = all_columns.tryGetPhysical(name_in_storage); if (column_in_storage && column_in_storage->type->hasDynamicSubcolumns()) return true; } return false; } StorageSnapshotPtr StorageDistributed::getStorageSnapshot(const StorageMetadataPtr & metadata_snapshot, ContextPtr query_context) const { return getStorageSnapshotForQuery(metadata_snapshot, nullptr, query_context); } StorageSnapshotPtr StorageDistributed::getStorageSnapshotForQuery( const StorageMetadataPtr & metadata_snapshot, const ASTPtr & query, ContextPtr /*query_context*/) const { /// If query doesn't use columns of type Object, don't deduce /// concrete types for them, because it required extra round trip. auto snapshot_data = std::make_unique(); if (!requiresObjectColumns(metadata_snapshot->getColumns(), query)) return std::make_shared(*this, metadata_snapshot, ColumnsDescription{}, std::move(snapshot_data)); snapshot_data->objects_by_shard = getExtendedObjectsOfRemoteTables( *getCluster(), StorageID{remote_database, remote_table}, metadata_snapshot->getColumns(), getContext()); auto object_columns = DB::getConcreteObjectColumns( snapshot_data->objects_by_shard.begin(), snapshot_data->objects_by_shard.end(), metadata_snapshot->getColumns(), [](const auto & shard_num_and_columns) -> const auto & { return shard_num_and_columns.second; }); return std::make_shared(*this, metadata_snapshot, std::move(object_columns), std::move(snapshot_data)); } namespace { QueryTreeNodePtr buildQueryTreeDistributed(SelectQueryInfo & query_info, const StorageSnapshotPtr & distributed_storage_snapshot, const StorageID & remote_storage_id, const ASTPtr & remote_table_function) { auto & planner_context = query_info.planner_context; const auto & query_context = planner_context->getQueryContext(); std::optional table_expression_modifiers; if (auto * query_info_table_node = query_info.table_expression->as()) table_expression_modifiers = query_info_table_node->getTableExpressionModifiers(); else if (auto * query_info_table_function_node = query_info.table_expression->as()) table_expression_modifiers = query_info_table_function_node->getTableExpressionModifiers(); QueryTreeNodePtr replacement_table_expression; if (remote_table_function) { auto remote_table_function_query_tree = buildQueryTree(remote_table_function, query_context); auto & remote_table_function_node = remote_table_function_query_tree->as(); auto table_function_node = std::make_shared(remote_table_function_node.getFunctionName()); table_function_node->getArgumentsNode() = remote_table_function_node.getArgumentsNode(); if (table_expression_modifiers) table_function_node->setTableExpressionModifiers(*table_expression_modifiers); QueryAnalysisPass query_analysis_pass; query_analysis_pass.run(table_function_node, query_context); replacement_table_expression = std::move(table_function_node); } else { auto resolved_remote_storage_id = remote_storage_id; // In case of cross-replication we don't know what database is used for the table. // `storage_id.hasDatabase()` can return false only on the initiator node. // Each shard will use the default database (in the case of cross-replication shards may have different defaults). if (remote_storage_id.hasDatabase()) resolved_remote_storage_id = query_context->resolveStorageID(remote_storage_id); auto get_column_options = GetColumnsOptions(GetColumnsOptions::All).withExtendedObjects().withVirtuals(); auto column_names_and_types = distributed_storage_snapshot->getColumns(get_column_options); auto storage = std::make_shared(resolved_remote_storage_id, ColumnsDescription{column_names_and_types}); auto table_node = std::make_shared(std::move(storage), query_context); if (table_expression_modifiers) table_node->setTableExpressionModifiers(*table_expression_modifiers); replacement_table_expression = std::move(table_node); } replacement_table_expression->setAlias(query_info.table_expression->getAlias()); auto query_tree_to_modify = query_info.query_tree->cloneAndReplace(query_info.table_expression, std::move(replacement_table_expression)); return buildQueryTreeForShard(query_info, query_tree_to_modify); } } void StorageDistributed::read( QueryPlan & query_plan, const Names &, const StorageSnapshotPtr & storage_snapshot, SelectQueryInfo & query_info, ContextPtr local_context, QueryProcessingStage::Enum processed_stage, const size_t /*max_block_size*/, const size_t /*num_streams*/) { Block header; ASTPtr query_ast; if (local_context->getSettingsRef().allow_experimental_analyzer) { StorageID remote_storage_id = StorageID::createEmpty(); if (!remote_table_function_ptr) remote_storage_id = StorageID{remote_database, remote_table}; auto query_tree_distributed = buildQueryTreeDistributed(query_info, storage_snapshot, remote_storage_id, remote_table_function_ptr); header = InterpreterSelectQueryAnalyzer::getSampleBlock(query_tree_distributed, local_context, SelectQueryOptions(processed_stage).analyze()); query_ast = queryNodeToSelectQuery(query_tree_distributed); } else { header = InterpreterSelectQuery(query_info.query, local_context, SelectQueryOptions(processed_stage).analyze()).getSampleBlock(); query_ast = query_info.query; } const auto & modified_query_ast = ClusterProxy::rewriteSelectQuery( local_context, query_ast, remote_database, remote_table, remote_table_function_ptr); /// Return directly (with correct header) if no shard to query. if (query_info.getCluster()->getShardsInfo().empty()) { if (local_context->getSettingsRef().allow_experimental_analyzer) return; Pipe pipe(std::make_shared(header)); auto read_from_pipe = std::make_unique(std::move(pipe)); read_from_pipe->setStepDescription("Read from NullSource (Distributed)"); query_plan.addStep(std::move(read_from_pipe)); return; } StorageID main_table = StorageID::createEmpty(); if (!remote_table_function_ptr) main_table = StorageID{remote_database, remote_table}; const auto & snapshot_data = assert_cast(*storage_snapshot->data); ClusterProxy::SelectStreamFactory select_stream_factory = ClusterProxy::SelectStreamFactory( header, snapshot_data.objects_by_shard, storage_snapshot, processed_stage); auto settings = local_context->getSettingsRef(); ClusterProxy::AdditionalShardFilterGenerator additional_shard_filter_generator; if (query_info.use_custom_key) { if (auto custom_key_ast = parseCustomKeyForTable(settings.parallel_replicas_custom_key, *local_context)) { if (query_info.getCluster()->getShardCount() == 1) { // we are reading from single shard with multiple replicas but didn't transform replicas // into virtual shards with custom_key set throw Exception(ErrorCodes::LOGICAL_ERROR, "Replicas weren't transformed into virtual shards"); } additional_shard_filter_generator = [&, my_custom_key_ast = std::move(custom_key_ast), shard_count = query_info.cluster->getShardCount()](uint64_t shard_num) -> ASTPtr { return getCustomKeyFilterForParallelReplica( shard_count, shard_num - 1, my_custom_key_ast, settings.parallel_replicas_custom_key_filter_type, *this, local_context); }; } } ClusterProxy::executeQuery( query_plan, header, processed_stage, main_table, remote_table_function_ptr, select_stream_factory, log, modified_query_ast, local_context, query_info, sharding_key_expr, sharding_key_column_name, query_info.cluster, additional_shard_filter_generator); /// This is a bug, it is possible only when there is no shards to query, and this is handled earlier. if (!query_plan.isInitialized()) throw Exception(ErrorCodes::LOGICAL_ERROR, "Pipeline is not initialized"); } SinkToStoragePtr StorageDistributed::write(const ASTPtr &, const StorageMetadataPtr & metadata_snapshot, ContextPtr local_context, bool /*async_insert*/) { auto cluster = getCluster(); const auto & settings = local_context->getSettingsRef(); auto shard_num = cluster->getLocalShardCount() + cluster->getRemoteShardCount(); /// If sharding key is not specified, then you can only write to a shard containing only one shard if (!settings.insert_shard_id && !settings.insert_distributed_one_random_shard && !has_sharding_key && shard_num >= 2) { throw Exception(ErrorCodes::STORAGE_REQUIRES_PARAMETER, "Method write is not supported by storage {} with more than one shard and no sharding key provided", getName()); } if (settings.insert_shard_id && settings.insert_shard_id > shard_num) { throw Exception(ErrorCodes::INVALID_SHARD_ID, "Shard id should be range from 1 to shard number"); } /// Force sync insertion if it is remote() table function bool insert_sync = settings.insert_distributed_sync || settings.insert_shard_id || owned_cluster; auto timeout = settings.insert_distributed_timeout; Names columns_to_send; if (settings.insert_allow_materialized_columns) columns_to_send = metadata_snapshot->getSampleBlock().getNames(); else columns_to_send = metadata_snapshot->getSampleBlockNonMaterialized().getNames(); /// DistributedSink will not own cluster, but will own ConnectionPools of the cluster return std::make_shared( local_context, *this, metadata_snapshot, cluster, insert_sync, timeout, StorageID{remote_database, remote_table}, columns_to_send); } std::optional StorageDistributed::distributedWriteBetweenDistributedTables(const StorageDistributed & src_distributed, const ASTInsertQuery & query, ContextPtr local_context) const { const auto & settings = local_context->getSettingsRef(); auto new_query = std::dynamic_pointer_cast(query.clone()); /// Unwrap view() function. if (src_distributed.remote_table_function_ptr) { const TableFunctionPtr src_table_function = TableFunctionFactory::instance().get(src_distributed.remote_table_function_ptr, local_context); const TableFunctionView * view_function = assert_cast(src_table_function.get()); new_query->select = view_function->getSelectQuery().clone(); } else { const auto select_with_union_query = std::make_shared(); select_with_union_query->list_of_selects = std::make_shared(); auto * select = query.select->as().list_of_selects->children.at(0)->as(); auto new_select_query = std::dynamic_pointer_cast(select->clone()); select_with_union_query->list_of_selects->children.push_back(new_select_query); new_select_query->replaceDatabaseAndTable(src_distributed.getRemoteDatabaseName(), src_distributed.getRemoteTableName()); new_query->select = select_with_union_query; } const Cluster::AddressesWithFailover & src_addresses = src_distributed.getCluster()->getShardsAddresses(); const Cluster::AddressesWithFailover & dst_addresses = getCluster()->getShardsAddresses(); /// Compare addresses instead of cluster name, to handle remote()/cluster(). /// (since for remote()/cluster() the getClusterName() is empty string) if (src_addresses != dst_addresses) { /// The warning should be produced only for root queries, /// since in case of parallel_distributed_insert_select=1, /// it will produce warning for the rewritten insert, /// since destination table is still Distributed there. if (local_context->getClientInfo().distributed_depth == 0) { LOG_WARNING(log, "Parallel distributed INSERT SELECT is not possible " "(source cluster={} ({} addresses), destination cluster={} ({} addresses))", src_distributed.getClusterName(), src_addresses.size(), getClusterName(), dst_addresses.size()); } return {}; } if (settings.parallel_distributed_insert_select == PARALLEL_DISTRIBUTED_INSERT_SELECT_ALL) { new_query->table_id = StorageID(getRemoteDatabaseName(), getRemoteTableName()); /// Reset table function for INSERT INTO remote()/cluster() new_query->table_function.reset(); } const auto & cluster = getCluster(); const auto & shards_info = cluster->getShardsInfo(); String new_query_str; { WriteBufferFromOwnString buf; IAST::FormatSettings ast_format_settings(buf, /*one_line*/ true, /*hilite*/ false, /*always_quote_identifiers_=*/ true); new_query->IAST::format(ast_format_settings); new_query_str = buf.str(); } QueryPipeline pipeline; ContextMutablePtr query_context = Context::createCopy(local_context); query_context->increaseDistributedDepth(); for (size_t shard_index : collections::range(0, shards_info.size())) { const auto & shard_info = shards_info[shard_index]; if (shard_info.isLocal()) { InterpreterInsertQuery interpreter(new_query, query_context); pipeline.addCompletedPipeline(interpreter.execute().pipeline); } else { auto timeouts = ConnectionTimeouts::getTCPTimeoutsWithFailover(settings); auto connections = shard_info.pool->getMany(timeouts, &settings, PoolMode::GET_ONE); if (connections.empty() || connections.front().isNull()) throw Exception(ErrorCodes::LOGICAL_ERROR, "Expected exactly one connection for shard {}", shard_info.shard_num); /// INSERT SELECT query returns empty block auto remote_query_executor = std::make_shared(std::move(connections), new_query_str, Block{}, query_context); QueryPipeline remote_pipeline(std::make_shared(remote_query_executor, false, settings.async_socket_for_remote, settings.async_query_sending_for_remote)); remote_pipeline.complete(std::make_shared(remote_query_executor->getHeader())); pipeline.addCompletedPipeline(std::move(remote_pipeline)); } } return pipeline; } std::optional StorageDistributed::distributedWriteFromClusterStorage(const IStorageCluster & src_storage_cluster, const ASTInsertQuery & query, ContextPtr local_context) const { const auto & settings = local_context->getSettingsRef(); auto & select = query.select->as(); /// Select query is needed for pruining on virtual columns auto extension = src_storage_cluster.getTaskIteratorExtension( select.list_of_selects->children.at(0)->as()->clone(), local_context); auto dst_cluster = getCluster(); auto new_query = std::dynamic_pointer_cast(query.clone()); if (settings.parallel_distributed_insert_select == PARALLEL_DISTRIBUTED_INSERT_SELECT_ALL) { new_query->table_id = StorageID(getRemoteDatabaseName(), getRemoteTableName()); /// Reset table function for INSERT INTO remote()/cluster() new_query->table_function.reset(); } String new_query_str; { WriteBufferFromOwnString buf; IAST::FormatSettings ast_format_settings(buf, /*one_line*/ true, /*hilite*/ false, /*always_quote_identifiers*/ true); new_query->IAST::format(ast_format_settings); new_query_str = buf.str(); } QueryPipeline pipeline; ContextMutablePtr query_context = Context::createCopy(local_context); query_context->increaseDistributedDepth(); /// Here we take addresses from destination cluster and assume source table exists on these nodes for (const auto & replicas : getCluster()->getShardsAddresses()) { /// There will be only one replica, because we consider each replica as a shard for (const auto & node : replicas) { auto connection = std::make_shared( node.host_name, node.port, query_context->getGlobalContext()->getCurrentDatabase(), node.user, node.password, node.quota_key, node.cluster, node.cluster_secret, "ParallelInsertSelectInititiator", node.compression, node.secure ); auto remote_query_executor = std::make_shared( connection, new_query_str, Block{}, query_context, /*throttler=*/nullptr, Scalars{}, Tables{}, QueryProcessingStage::Complete, extension); QueryPipeline remote_pipeline(std::make_shared(remote_query_executor, false, settings.async_socket_for_remote, settings.async_query_sending_for_remote)); remote_pipeline.complete(std::make_shared(remote_query_executor->getHeader())); pipeline.addCompletedPipeline(std::move(remote_pipeline)); } } return pipeline; } std::optional StorageDistributed::distributedWrite(const ASTInsertQuery & query, ContextPtr local_context) { const Settings & settings = local_context->getSettingsRef(); if (settings.max_distributed_depth && local_context->getClientInfo().distributed_depth >= settings.max_distributed_depth) throw Exception(ErrorCodes::TOO_LARGE_DISTRIBUTED_DEPTH, "Maximum distributed depth exceeded"); auto & select = query.select->as(); StoragePtr src_storage; /// Distributed write only works in the most trivial case INSERT ... SELECT /// without any unions or joins on the right side if (select.list_of_selects->children.size() == 1) { if (auto * select_query = select.list_of_selects->children.at(0)->as()) { JoinedTables joined_tables(Context::createCopy(local_context), *select_query); if (joined_tables.tablesCount() == 1) { src_storage = joined_tables.getLeftTableStorage(); } } } if (!src_storage) return {}; if (auto src_distributed = std::dynamic_pointer_cast(src_storage)) { return distributedWriteBetweenDistributedTables(*src_distributed, query, local_context); } if (auto src_storage_cluster = std::dynamic_pointer_cast(src_storage)) { return distributedWriteFromClusterStorage(*src_storage_cluster, query, local_context); } if (local_context->getClientInfo().distributed_depth == 0) { throw Exception(ErrorCodes::BAD_ARGUMENTS, "Parallel distributed INSERT SELECT is not possible. "\ "Reason: distributed reading is supported only from Distributed engine " "or *Cluster table functions, but got {} storage", src_storage->getName()); } return {}; } void StorageDistributed::checkAlterIsPossible(const AlterCommands & commands, ContextPtr local_context) const { std::optional name_deps{}; for (const auto & command : commands) { if (command.type != AlterCommand::Type::ADD_COLUMN && command.type != AlterCommand::Type::MODIFY_COLUMN && command.type != AlterCommand::Type::DROP_COLUMN && command.type != AlterCommand::Type::COMMENT_COLUMN && command.type != AlterCommand::Type::RENAME_COLUMN && command.type != AlterCommand::Type::COMMENT_TABLE) throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Alter of type '{}' is not supported by storage {}", command.type, getName()); if (command.type == AlterCommand::DROP_COLUMN && !command.clear) { if (!name_deps) name_deps = getDependentViewsByColumn(local_context); const auto & deps_mv = name_deps.value()[command.column_name]; if (!deps_mv.empty()) { throw Exception(ErrorCodes::ALTER_OF_COLUMN_IS_FORBIDDEN, "Trying to ALTER DROP column {} which is referenced by materialized view {}", backQuoteIfNeed(command.column_name), toString(deps_mv)); } } } } void StorageDistributed::alter(const AlterCommands & params, ContextPtr local_context, AlterLockHolder &) { auto table_id = getStorageID(); checkAlterIsPossible(params, local_context); StorageInMemoryMetadata new_metadata = getInMemoryMetadata(); params.apply(new_metadata, local_context); DatabaseCatalog::instance().getDatabase(table_id.database_name)->alterTable(local_context, table_id, new_metadata); setInMemoryMetadata(new_metadata); } void StorageDistributed::initializeFromDisk() { if (!storage_policy) return; const auto & disks = data_volume->getDisks(); /// Make initialization for large number of disks parallel. ThreadPool pool(CurrentMetrics::StorageDistributedThreads, CurrentMetrics::StorageDistributedThreadsActive, disks.size()); for (const DiskPtr & disk : disks) { pool.scheduleOrThrowOnError([&]() { initializeDirectoryQueuesForDisk(disk); }); } pool.wait(); const auto & paths = getDataPaths(); std::vector last_increment(paths.size()); for (size_t i = 0; i < paths.size(); ++i) { pool.scheduleOrThrowOnError([&, i]() { last_increment[i] = getMaximumFileNumber(paths[i]); }); } pool.wait(); for (const auto inc : last_increment) { if (inc > file_names_increment.value) file_names_increment.value.store(inc); } LOG_DEBUG(log, "Auto-increment is {}", file_names_increment.value); } void StorageDistributed::shutdown() { monitors_blocker.cancelForever(); std::lock_guard lock(cluster_nodes_mutex); LOG_DEBUG(log, "Joining background threads for async INSERT"); cluster_nodes_data.clear(); LOG_DEBUG(log, "Background threads for async INSERT joined"); } void StorageDistributed::drop() { // Some INSERT in-between shutdown() and drop() can call // getDirectoryQueue() again, so call shutdown() to clear them, but // when the drop() (this function) executed none of INSERT is allowed in // parallel. // // And second time shutdown() should be fast, since none of // DirectoryMonitor should do anything, because ActionBlocker is canceled // (in shutdown()). shutdown(); // Distributed table without sharding_key does not allows INSERTs if (relative_data_path.empty()) return; LOG_DEBUG(log, "Removing pending blocks for async INSERT from filesystem on DROP TABLE"); auto disks = data_volume->getDisks(); for (const auto & disk : disks) { if (!disk->exists(relative_data_path)) { LOG_INFO(log, "Path {} is already removed from disk {}", relative_data_path, disk->getName()); continue; } disk->removeRecursive(relative_data_path); } LOG_DEBUG(log, "Removed"); } Strings StorageDistributed::getDataPaths() const { Strings paths; if (relative_data_path.empty()) return paths; for (const DiskPtr & disk : data_volume->getDisks()) paths.push_back(disk->getPath() + relative_data_path); return paths; } void StorageDistributed::truncate(const ASTPtr &, const StorageMetadataPtr &, ContextPtr, TableExclusiveLockHolder &) { std::lock_guard lock(cluster_nodes_mutex); LOG_DEBUG(log, "Removing pending blocks for async INSERT from filesystem on TRUNCATE TABLE"); for (auto it = cluster_nodes_data.begin(); it != cluster_nodes_data.end();) { it->second.directory_monitor->shutdownAndDropAllData(); it = cluster_nodes_data.erase(it); } LOG_DEBUG(log, "Removed"); } StoragePolicyPtr StorageDistributed::getStoragePolicy() const { return storage_policy; } void StorageDistributed::initializeDirectoryQueuesForDisk(const DiskPtr & disk) { const std::string path(disk->getPath() + relative_data_path); fs::create_directories(path); std::filesystem::directory_iterator begin(path); std::filesystem::directory_iterator end; for (auto it = begin; it != end; ++it) { const auto & dir_path = it->path(); if (std::filesystem::is_directory(dir_path)) { /// Created by DistributedSink const auto & tmp_path = dir_path / "tmp"; if (std::filesystem::is_directory(tmp_path) && std::filesystem::is_empty(tmp_path)) std::filesystem::remove(tmp_path); const auto & broken_path = dir_path / "broken"; if (std::filesystem::is_directory(broken_path) && std::filesystem::is_empty(broken_path)) std::filesystem::remove(broken_path); if (std::filesystem::is_empty(dir_path)) { LOG_DEBUG(log, "Removing {} (used for async INSERT into Distributed)", dir_path.string()); /// Will be created by DistributedSink on demand. std::filesystem::remove(dir_path); } else { getDirectoryQueue(disk, dir_path.filename().string()); } } } } DistributedAsyncInsertDirectoryQueue & StorageDistributed::getDirectoryQueue(const DiskPtr & disk, const std::string & name) { const std::string & disk_path = disk->getPath(); const std::string key(disk_path + name); std::lock_guard lock(cluster_nodes_mutex); auto & node_data = cluster_nodes_data[key]; if (!node_data.directory_monitor) { node_data.connection_pool = DistributedAsyncInsertDirectoryQueue::createPool(name, *this); node_data.directory_monitor = std::make_unique( *this, disk, relative_data_path + name, node_data.connection_pool, monitors_blocker, getContext()->getDistributedSchedulePool()); } return *node_data.directory_monitor; } std::vector StorageDistributed::getDirectoryQueueStatuses() const { std::vector statuses; std::lock_guard lock(cluster_nodes_mutex); statuses.reserve(cluster_nodes_data.size()); for (const auto & node : cluster_nodes_data) statuses.push_back(node.second.directory_monitor->getStatus()); return statuses; } std::optional StorageDistributed::totalBytes(const Settings &) const { UInt64 total_bytes = 0; for (const auto & status : getDirectoryQueueStatuses()) total_bytes += status.bytes_count; return total_bytes; } size_t StorageDistributed::getShardCount() const { return getCluster()->getShardCount(); } ClusterPtr StorageDistributed::getCluster() const { return owned_cluster ? owned_cluster : getContext()->getCluster(cluster_name); } ClusterPtr StorageDistributed::getOptimizedCluster( ContextPtr local_context, const StorageSnapshotPtr & storage_snapshot, const SelectQueryInfo & query_info) const { ClusterPtr cluster = getCluster(); const Settings & settings = local_context->getSettingsRef(); bool sharding_key_is_usable = settings.allow_nondeterministic_optimize_skip_unused_shards || sharding_key_is_deterministic; if (has_sharding_key && sharding_key_is_usable) { ClusterPtr optimized = skipUnusedShards(cluster, query_info, storage_snapshot, local_context); if (optimized) return optimized; } UInt64 force = settings.force_optimize_skip_unused_shards; if (force == FORCE_OPTIMIZE_SKIP_UNUSED_SHARDS_ALWAYS || (force == FORCE_OPTIMIZE_SKIP_UNUSED_SHARDS_HAS_SHARDING_KEY && has_sharding_key)) { if (!has_sharding_key) throw Exception(ErrorCodes::UNABLE_TO_SKIP_UNUSED_SHARDS, "No sharding key"); else if (!sharding_key_is_usable) throw Exception(ErrorCodes::UNABLE_TO_SKIP_UNUSED_SHARDS, "Sharding key is not deterministic"); else throw Exception(ErrorCodes::UNABLE_TO_SKIP_UNUSED_SHARDS, "Sharding key {} is not used", sharding_key_column_name); } return {}; } IColumn::Selector StorageDistributed::createSelector(const ClusterPtr cluster, const ColumnWithTypeAndName & result) { const auto & slot_to_shard = cluster->getSlotToShard(); const IColumn * column = result.column.get(); if (auto col_const = typeid_cast(column)) column = &col_const->getDataColumn(); // If result.type is DataTypeLowCardinality, do shard according to its dictionaryType #define CREATE_FOR_TYPE(TYPE) \ if (typeid_cast(result.type.get())) \ return createBlockSelector(*column, slot_to_shard); \ else if (auto * type_low_cardinality = typeid_cast(result.type.get())) \ if (typeid_cast(type_low_cardinality->getDictionaryType().get())) \ return createBlockSelector(*column->convertToFullColumnIfLowCardinality(), slot_to_shard); CREATE_FOR_TYPE(UInt8) CREATE_FOR_TYPE(UInt16) CREATE_FOR_TYPE(UInt32) CREATE_FOR_TYPE(UInt64) CREATE_FOR_TYPE(Int8) CREATE_FOR_TYPE(Int16) CREATE_FOR_TYPE(Int32) CREATE_FOR_TYPE(Int64) #undef CREATE_FOR_TYPE throw Exception(ErrorCodes::TYPE_MISMATCH, "Sharding key expression does not evaluate to an integer type"); } ClusterPtr StorageDistributed::skipUnusedShardsWithAnalyzer( ClusterPtr cluster, const SelectQueryInfo & query_info, [[maybe_unused]] const StorageSnapshotPtr & storage_snapshot, ContextPtr local_context) const { ActionsDAG::NodeRawConstPtrs nodes; const auto & prewhere_info = query_info.prewhere_info; if (prewhere_info) { { const auto & node = prewhere_info->prewhere_actions->findInOutputs(prewhere_info->prewhere_column_name); nodes.push_back(&node); } if (prewhere_info->row_level_filter) { const auto & node = prewhere_info->row_level_filter->findInOutputs(prewhere_info->row_level_column_name); nodes.push_back(&node); } } if (query_info.filter_actions_dag) nodes.push_back(query_info.filter_actions_dag->getOutputs().at(0)); if (nodes.empty()) return nullptr; auto filter_actions_dag = ActionsDAG::buildFilterActionsDAG(nodes, {}, local_context); size_t limit = local_context->getSettingsRef().optimize_skip_unused_shards_limit; if (!limit || limit > SSIZE_MAX) { throw Exception(ErrorCodes::ARGUMENT_OUT_OF_BOUND, "optimize_skip_unused_shards_limit out of range (0, {}]", SSIZE_MAX); } const auto & sharding_key_dag = sharding_key_expr->getActionsDAG(); const auto * expr_node = sharding_key_dag.tryFindInOutputs(sharding_key_column_name); if (!expr_node) throw Exception( ErrorCodes::LOGICAL_ERROR, "Cannot find sharding key column {} in expression {}", sharding_key_column_name, sharding_key_dag.dumpDAG()); // std::cerr << "--- expr\n"; // std::cerr << sharding_key_dag.dumpDAG() << std::endl; const auto * predicate = filter_actions_dag->getOutputs().at(0); const auto variants = evaluateExpressionOverConstantCondition(predicate, {expr_node}, local_context, limit); // Can't get a definite answer if we can skip any shards if (!variants) return nullptr; // std::cerr << "==== num variants " << variants->size() << std::endl; std::set shards; for (const auto & variant : *variants) { //std::cerr << variant.at(0).column->getUInt(0) << std::endl; const auto selector = createSelector(cluster, variant.at(0)); shards.insert(selector.begin(), selector.end()); } // for (int i : shards) // std::cerr << ".. shard " << i << std::endl; return cluster->getClusterWithMultipleShards({shards.begin(), shards.end()}); } /// Returns a new cluster with fewer shards if constant folding for `sharding_key_expr` is possible /// using constraints from "PREWHERE" and "WHERE" conditions, otherwise returns `nullptr` ClusterPtr StorageDistributed::skipUnusedShards( ClusterPtr cluster, const SelectQueryInfo & query_info, const StorageSnapshotPtr & storage_snapshot, ContextPtr local_context) const { if (local_context->getSettingsRef().allow_experimental_analyzer) return skipUnusedShardsWithAnalyzer(cluster, query_info, storage_snapshot, local_context); const auto & select = query_info.query->as(); if (!select.prewhere() && !select.where()) return nullptr; /// FIXME: support analyzer if (!query_info.syntax_analyzer_result) return nullptr; ASTPtr condition_ast; /// Remove JOIN from the query since it may contain a condition for other tables. /// But only the conditions for the left table should be analyzed for shard skipping. { ASTPtr select_without_join_ptr = select.clone(); ASTSelectQuery select_without_join = select_without_join_ptr->as(); TreeRewriterResult analyzer_result_without_join = *query_info.syntax_analyzer_result; removeJoin(select_without_join, analyzer_result_without_join, local_context); if (!select_without_join.prewhere() && !select_without_join.where()) return nullptr; if (select_without_join.prewhere() && select_without_join.where()) condition_ast = makeASTFunction("and", select_without_join.prewhere()->clone(), select_without_join.where()->clone()); else condition_ast = select_without_join.prewhere() ? select_without_join.prewhere()->clone() : select_without_join.where()->clone(); } replaceConstantExpressions(condition_ast, local_context, storage_snapshot->metadata->getColumns().getAll(), shared_from_this(), storage_snapshot); size_t limit = local_context->getSettingsRef().optimize_skip_unused_shards_limit; if (!limit || limit > SSIZE_MAX) { throw Exception(ErrorCodes::ARGUMENT_OUT_OF_BOUND, "optimize_skip_unused_shards_limit out of range (0, {}]", SSIZE_MAX); } // To interpret limit==0 as limit is reached ++limit; const auto blocks = evaluateExpressionOverConstantCondition(condition_ast, sharding_key_expr, limit); if (!limit) { LOG_DEBUG(log, "Number of values for sharding key exceeds optimize_skip_unused_shards_limit={}, " "try to increase it, but note that this may increase query processing time.", local_context->getSettingsRef().optimize_skip_unused_shards_limit); return nullptr; } // Can't get a definite answer if we can skip any shards if (!blocks) return nullptr; std::set shards; for (const auto & block : *blocks) { if (!block.has(sharding_key_column_name)) throw Exception(ErrorCodes::TOO_MANY_ROWS, "sharding_key_expr should evaluate as a single row"); const ColumnWithTypeAndName & result = block.getByName(sharding_key_column_name); const auto selector = createSelector(cluster, result); shards.insert(selector.begin(), selector.end()); } return cluster->getClusterWithMultipleShards({shards.begin(), shards.end()}); } ActionLock StorageDistributed::getActionLock(StorageActionBlockType type) { if (type == ActionLocks::DistributedSend) return monitors_blocker.cancel(); return {}; } void StorageDistributed::flushAndPrepareForShutdown() { if (!getDistributedSettingsRef().flush_on_detach) { LOG_INFO(log, "Skip flushing data (due to flush_on_detach=0)"); return; } try { flushClusterNodesAllData(getContext()); } catch (...) { tryLogCurrentException(log, "Cannot flush"); } } void StorageDistributed::flushClusterNodesAllData(ContextPtr local_context) { /// Sync SYSTEM FLUSH DISTRIBUTED with TRUNCATE auto table_lock = lockForShare(local_context->getCurrentQueryId(), local_context->getSettingsRef().lock_acquire_timeout); std::vector> directory_monitors; { std::lock_guard lock(cluster_nodes_mutex); directory_monitors.reserve(cluster_nodes_data.size()); for (auto & node : cluster_nodes_data) directory_monitors.push_back(node.second.directory_monitor); } /// TODO: Maybe it should be executed in parallel for (auto & node : directory_monitors) node->flushAllData(); } void StorageDistributed::rename(const String & new_path_to_table_data, const StorageID & new_table_id) { assert(relative_data_path != new_path_to_table_data); if (!relative_data_path.empty()) renameOnDisk(new_path_to_table_data); renameInMemory(new_table_id); } size_t StorageDistributed::getRandomShardIndex(const Cluster::ShardsInfo & shards) { UInt32 total_weight = 0; for (const auto & shard : shards) total_weight += shard.weight; assert(total_weight > 0); size_t res; { std::lock_guard lock(rng_mutex); res = std::uniform_int_distribution(0, total_weight - 1)(rng); } for (auto i = 0ul, s = shards.size(); i < s; ++i) { if (shards[i].weight > res) return i; res -= shards[i].weight; } UNREACHABLE(); } void StorageDistributed::renameOnDisk(const String & new_path_to_table_data) { for (const DiskPtr & disk : data_volume->getDisks()) { disk->createDirectories(new_path_to_table_data); disk->moveDirectory(relative_data_path, new_path_to_table_data); auto new_path = disk->getPath() + new_path_to_table_data; LOG_DEBUG(log, "Updating path to {}", new_path); std::lock_guard lock(cluster_nodes_mutex); for (auto & node : cluster_nodes_data) node.second.directory_monitor->updatePath(new_path_to_table_data); } relative_data_path = new_path_to_table_data; } void StorageDistributed::delayInsertOrThrowIfNeeded() const { if (!distributed_settings.bytes_to_throw_insert && !distributed_settings.bytes_to_delay_insert) return; UInt64 total_bytes = *totalBytes(getContext()->getSettingsRef()); if (distributed_settings.bytes_to_throw_insert && total_bytes > distributed_settings.bytes_to_throw_insert) { ProfileEvents::increment(ProfileEvents::DistributedRejectedInserts); throw Exception(ErrorCodes::DISTRIBUTED_TOO_MANY_PENDING_BYTES, "Too many bytes pending for async INSERT: {} (bytes_to_throw_insert={})", formatReadableSizeWithBinarySuffix(total_bytes), formatReadableSizeWithBinarySuffix(distributed_settings.bytes_to_throw_insert)); } if (distributed_settings.bytes_to_delay_insert && total_bytes > distributed_settings.bytes_to_delay_insert) { /// Step is 5% of the delay and minimal one second. /// NOTE: max_delay_to_insert is in seconds, and step is in ms. const size_t step_ms = static_cast(std::min(1., static_cast(distributed_settings.max_delay_to_insert) * 1'000 * 0.05)); UInt64 delayed_ms = 0; do { delayed_ms += step_ms; std::this_thread::sleep_for(std::chrono::milliseconds(step_ms)); } while (*totalBytes(getContext()->getSettingsRef()) > distributed_settings.bytes_to_delay_insert && delayed_ms < distributed_settings.max_delay_to_insert*1000); ProfileEvents::increment(ProfileEvents::DistributedDelayedInserts); ProfileEvents::increment(ProfileEvents::DistributedDelayedInsertsMilliseconds, delayed_ms); UInt64 new_total_bytes = *totalBytes(getContext()->getSettingsRef()); LOG_INFO(log, "Too many bytes pending for async INSERT: was {}, now {}, INSERT was delayed to {} ms", formatReadableSizeWithBinarySuffix(total_bytes), formatReadableSizeWithBinarySuffix(new_total_bytes), delayed_ms); if (new_total_bytes > distributed_settings.bytes_to_delay_insert) { ProfileEvents::increment(ProfileEvents::DistributedRejectedInserts); throw Exception(ErrorCodes::DISTRIBUTED_TOO_MANY_PENDING_BYTES, "Too many bytes pending for async INSERT: {} (bytes_to_delay_insert={})", formatReadableSizeWithBinarySuffix(new_total_bytes), formatReadableSizeWithBinarySuffix(distributed_settings.bytes_to_delay_insert)); } } } void registerStorageDistributed(StorageFactory & factory) { factory.registerStorage("Distributed", [](const StorageFactory::Arguments & args) { /** Arguments of engine is following: * - name of cluster in configuration; * - name of remote database; * - name of remote table; * - policy to store data in; * * Remote database may be specified in following form: * - identifier; * - constant expression with string result, like currentDatabase(); * -- string literal as specific case; * - empty string means 'use default database from cluster'. * * Distributed engine also supports SETTINGS clause. */ ASTs & engine_args = args.engine_args; if (engine_args.size() < 3 || engine_args.size() > 5) throw Exception(ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH, "Storage Distributed requires from 3 " "to 5 parameters - name of configuration section with list " "of remote servers, name of remote database, name " "of remote table, sharding key expression (optional), policy to store data in (optional)."); String cluster_name = getClusterNameAndMakeLiteral(engine_args[0]); const ContextPtr & context = args.getContext(); const ContextPtr & local_context = args.getLocalContext(); engine_args[1] = evaluateConstantExpressionOrIdentifierAsLiteral(engine_args[1], local_context); engine_args[2] = evaluateConstantExpressionOrIdentifierAsLiteral(engine_args[2], local_context); String remote_database = checkAndGetLiteralArgument(engine_args[1], "remote_database"); String remote_table = checkAndGetLiteralArgument(engine_args[2], "remote_table"); const auto & sharding_key = engine_args.size() >= 4 ? engine_args[3] : nullptr; String storage_policy = "default"; if (engine_args.size() >= 5) { engine_args[4] = evaluateConstantExpressionOrIdentifierAsLiteral(engine_args[4], local_context); storage_policy = checkAndGetLiteralArgument(engine_args[4], "storage_policy"); } /// Check that sharding_key exists in the table and has numeric type. if (sharding_key) { auto sharding_expr = buildShardingKeyExpression(sharding_key, context, args.columns.getAllPhysical(), true); const Block & block = sharding_expr->getSampleBlock(); if (block.columns() != 1) throw Exception(ErrorCodes::INCORRECT_NUMBER_OF_COLUMNS, "Sharding expression must return exactly one column"); auto type = block.getByPosition(0).type; if (!type->isValueRepresentedByInteger()) throw Exception(ErrorCodes::TYPE_MISMATCH, "Sharding expression has type {}, but should be one of integer type", type->getName()); } /// TODO: move some arguments from the arguments to the SETTINGS. DistributedSettings distributed_settings; if (args.storage_def->settings) { distributed_settings.loadFromQuery(*args.storage_def); } if (distributed_settings.max_delay_to_insert < 1) throw Exception(ErrorCodes::ARGUMENT_OUT_OF_BOUND, "max_delay_to_insert cannot be less then 1"); if (distributed_settings.bytes_to_throw_insert && distributed_settings.bytes_to_delay_insert && distributed_settings.bytes_to_throw_insert <= distributed_settings.bytes_to_delay_insert) { throw Exception(ErrorCodes::ARGUMENT_OUT_OF_BOUND, "bytes_to_throw_insert cannot be less or equal to bytes_to_delay_insert (since it is handled first)"); } /// Set default values from the distributed_directory_monitor_* global context settings. if (!distributed_settings.monitor_batch_inserts.changed) distributed_settings.monitor_batch_inserts = context->getSettingsRef().distributed_directory_monitor_batch_inserts; if (!distributed_settings.monitor_split_batch_on_failure.changed) distributed_settings.monitor_split_batch_on_failure = context->getSettingsRef().distributed_directory_monitor_split_batch_on_failure; if (!distributed_settings.monitor_sleep_time_ms.changed) distributed_settings.monitor_sleep_time_ms = context->getSettingsRef().distributed_directory_monitor_sleep_time_ms; if (!distributed_settings.monitor_max_sleep_time_ms.changed) distributed_settings.monitor_max_sleep_time_ms = context->getSettingsRef().distributed_directory_monitor_max_sleep_time_ms; return std::make_shared( args.table_id, args.columns, args.constraints, args.comment, remote_database, remote_table, cluster_name, context, sharding_key, storage_policy, args.relative_data_path, distributed_settings, args.attach); }, { .supports_settings = true, .supports_parallel_insert = true, .supports_schema_inference = true, .source_access_type = AccessType::REMOTE, }); } }