#include #include #include #include #include #include #include #include #include #include namespace DB { namespace ErrorCodes { extern const int ILLEGAL_COLUMN; extern const int LOGICAL_ERROR; extern const int INCORRECT_DATA; } namespace { void checkColumn(const IColumn & column) { if (!dynamic_cast(&column)) throw Exception("ColumnUnique expected as an argument of ColumnLowCardinality.", ErrorCodes::ILLEGAL_COLUMN); } template PaddedPODArray * getIndexesData(IColumn & indexes) { auto * column = typeid_cast *>(&indexes); if (column) return &column->getData(); return nullptr; } template MutableColumnPtr mapUniqueIndexImplRef(PaddedPODArray & index) { PaddedPODArray copy(index.cbegin(), index.cend()); HashMap hash_map; for (auto val : index) hash_map.insert({val, static_cast(hash_map.size())}); auto res_col = ColumnVector::create(); auto & data = res_col->getData(); data.resize(hash_map.size()); for (const auto & val : hash_map) data[val.getMapped()] = val.getKey(); for (auto & ind : index) ind = hash_map[ind]; for (size_t i = 0; i < index.size(); ++i) if (data[index[i]] != copy[i]) throw Exception("Expected " + toString(data[index[i]]) + ", but got " + toString(copy[i]), ErrorCodes::LOGICAL_ERROR); return res_col; } template MutableColumnPtr mapUniqueIndexImpl(PaddedPODArray & index) { if (index.empty()) return ColumnVector::create(); auto size = index.size(); T max_val = index[0]; for (size_t i = 1; i < size; ++i) max_val = std::max(max_val, index[i]); /// May happen when dictionary is shared. if (max_val > size) return mapUniqueIndexImplRef(index); auto map_size = static_cast(max_val) + 1; PaddedPODArray map(map_size, 0); T zero_pos_value = index[0]; index[0] = 0; T cur_pos = 0; for (size_t i = 1; i < size; ++i) { T val = index[i]; if (val != zero_pos_value && map[val] == 0) { ++cur_pos; map[val] = cur_pos; } index[i] = map[val]; } auto res_col = ColumnVector::create(static_cast(cur_pos) + 1); auto & data = res_col->getData(); data[0] = zero_pos_value; for (size_t i = 0; i < map_size; ++i) { auto val = map[i]; if (val) data[val] = static_cast(i); } return res_col; } /// Returns unique values of column. Write new index to column. MutableColumnPtr mapUniqueIndex(IColumn & column) { if (auto * data_uint8 = getIndexesData(column)) return mapUniqueIndexImpl(*data_uint8); else if (auto * data_uint16 = getIndexesData(column)) return mapUniqueIndexImpl(*data_uint16); else if (auto * data_uint32 = getIndexesData(column)) return mapUniqueIndexImpl(*data_uint32); else if (auto * data_uint64 = getIndexesData(column)) return mapUniqueIndexImpl(*data_uint64); else throw Exception("Indexes column for getUniqueIndex must be ColumnUInt, got " + column.getName(), ErrorCodes::LOGICAL_ERROR); } } ColumnLowCardinality::ColumnLowCardinality(MutableColumnPtr && column_unique_, MutableColumnPtr && indexes_, bool is_shared) : dictionary(std::move(column_unique_), is_shared), idx(std::move(indexes_)) { } void ColumnLowCardinality::insert(const Field & x) { compactIfSharedDictionary(); idx.insertPosition(dictionary.getColumnUnique().uniqueInsert(x)); } void ColumnLowCardinality::insertDefault() { idx.insertPosition(getDictionary().getDefaultValueIndex()); } void ColumnLowCardinality::insertFrom(const IColumn & src, size_t n) { const auto * low_cardinality_src = typeid_cast(&src); if (!low_cardinality_src) throw Exception("Expected ColumnLowCardinality, got " + src.getName(), ErrorCodes::ILLEGAL_COLUMN); size_t position = low_cardinality_src->getIndexes().getUInt(n); if (&low_cardinality_src->getDictionary() == &getDictionary()) { /// Dictionary is shared with src column. Insert only index. idx.insertPosition(position); } else { compactIfSharedDictionary(); const auto & nested = *low_cardinality_src->getDictionary().getNestedColumn(); idx.insertPosition(dictionary.getColumnUnique().uniqueInsertFrom(nested, position)); } } void ColumnLowCardinality::insertFromFullColumn(const IColumn & src, size_t n) { compactIfSharedDictionary(); idx.insertPosition(dictionary.getColumnUnique().uniqueInsertFrom(src, n)); } void ColumnLowCardinality::insertRangeFrom(const IColumn & src, size_t start, size_t length) { const auto * low_cardinality_src = typeid_cast(&src); if (!low_cardinality_src) throw Exception("Expected ColumnLowCardinality, got " + src.getName(), ErrorCodes::ILLEGAL_COLUMN); if (&low_cardinality_src->getDictionary() == &getDictionary()) { /// Dictionary is shared with src column. Insert only indexes. idx.insertPositionsRange(low_cardinality_src->getIndexes(), start, length); } else { compactIfSharedDictionary(); /// TODO: Support native insertion from other unique column. It will help to avoid null map creation. auto sub_idx = IColumn::mutate(low_cardinality_src->getIndexes().cut(start, length)); auto idx_map = mapUniqueIndex(*sub_idx); auto src_nested = low_cardinality_src->getDictionary().getNestedColumn(); auto used_keys = src_nested->index(*idx_map, 0); auto inserted_indexes = dictionary.getColumnUnique().uniqueInsertRangeFrom(*used_keys, 0, used_keys->size()); idx.insertPositionsRange(*inserted_indexes->index(*sub_idx, 0), 0, length); } } void ColumnLowCardinality::insertRangeFromFullColumn(const IColumn & src, size_t start, size_t length) { compactIfSharedDictionary(); auto inserted_indexes = dictionary.getColumnUnique().uniqueInsertRangeFrom(src, start, length); idx.insertPositionsRange(*inserted_indexes, 0, length); } static void checkPositionsAreLimited(const IColumn & positions, UInt64 limit) { auto check_for_type = [&](auto type) { using ColumnType = decltype(type); const auto * column_ptr = typeid_cast *>(&positions); if (!column_ptr) return false; const auto & data = column_ptr->getData(); size_t num_rows = data.size(); UInt64 max_position = 0; for (size_t i = 0; i < num_rows; ++i) max_position = std::max(max_position, data[i]); if (max_position >= limit) throw Exception(ErrorCodes::INCORRECT_DATA, "Index for LowCardinality is out of range. Dictionary size is {}, " "but found index with value {}", limit, max_position); return true; }; if (!check_for_type(UInt8()) && !check_for_type(UInt16()) && !check_for_type(UInt32()) && !check_for_type(UInt64())) throw Exception("Invalid column for ColumnLowCardinality index. Expected UInt, got " + positions.getName(), ErrorCodes::ILLEGAL_COLUMN); } void ColumnLowCardinality::insertRangeFromDictionaryEncodedColumn(const IColumn & keys, const IColumn & positions) { checkPositionsAreLimited(positions, keys.size()); compactIfSharedDictionary(); auto inserted_indexes = dictionary.getColumnUnique().uniqueInsertRangeFrom(keys, 0, keys.size()); idx.insertPositionsRange(*inserted_indexes->index(positions, 0), 0, positions.size()); } void ColumnLowCardinality::insertData(const char * pos, size_t length) { compactIfSharedDictionary(); idx.insertPosition(dictionary.getColumnUnique().uniqueInsertData(pos, length)); } StringRef ColumnLowCardinality::serializeValueIntoArena(size_t n, Arena & arena, char const *& begin) const { return getDictionary().serializeValueIntoArena(getIndexes().getUInt(n), arena, begin); } const char * ColumnLowCardinality::deserializeAndInsertFromArena(const char * pos) { compactIfSharedDictionary(); const char * new_pos; idx.insertPosition(dictionary.getColumnUnique().uniqueDeserializeAndInsertFromArena(pos, new_pos)); return new_pos; } const char * ColumnLowCardinality::skipSerializedInArena(const char * pos) const { return getDictionary().skipSerializedInArena(pos); } void ColumnLowCardinality::updateWeakHash32(WeakHash32 & hash) const { auto s = size(); if (hash.getData().size() != s) throw Exception("Size of WeakHash32 does not match size of column: column size is " + std::to_string(s) + ", hash size is " + std::to_string(hash.getData().size()), ErrorCodes::LOGICAL_ERROR); const auto & dict = getDictionary().getNestedColumn(); WeakHash32 dict_hash(dict->size()); dict->updateWeakHash32(dict_hash); idx.updateWeakHash(hash, dict_hash); } void ColumnLowCardinality::updateHashFast(SipHash & hash) const { idx.getPositions()->updateHashFast(hash); getDictionary().getNestedColumn()->updateHashFast(hash); } void ColumnLowCardinality::gather(ColumnGathererStream & gatherer) { gatherer.gather(*this); } MutableColumnPtr ColumnLowCardinality::cloneResized(size_t size) const { auto unique_ptr = dictionary.getColumnUniquePtr(); if (size == 0) unique_ptr = unique_ptr->cloneEmpty(); return ColumnLowCardinality::create(IColumn::mutate(std::move(unique_ptr)), getIndexes().cloneResized(size)); } int ColumnLowCardinality::compareAtImpl(size_t n, size_t m, const IColumn & rhs, int nan_direction_hint, const Collator * collator) const { const auto & low_cardinality_column = assert_cast(rhs); size_t n_index = getIndexes().getUInt(n); size_t m_index = low_cardinality_column.getIndexes().getUInt(m); if (collator) return getDictionary().getNestedColumn()->compareAtWithCollation(n_index, m_index, *low_cardinality_column.getDictionary().getNestedColumn(), nan_direction_hint, *collator); return getDictionary().compareAt(n_index, m_index, low_cardinality_column.getDictionary(), nan_direction_hint); } int ColumnLowCardinality::compareAt(size_t n, size_t m, const IColumn & rhs, int nan_direction_hint) const { return compareAtImpl(n, m, rhs, nan_direction_hint); } int ColumnLowCardinality::compareAtWithCollation(size_t n, size_t m, const IColumn & rhs, int nan_direction_hint, const Collator & collator) const { return compareAtImpl(n, m, rhs, nan_direction_hint, &collator); } void ColumnLowCardinality::compareColumn(const IColumn & rhs, size_t rhs_row_num, PaddedPODArray * row_indexes, PaddedPODArray & compare_results, int direction, int nan_direction_hint) const { return doCompareColumn( assert_cast(rhs), rhs_row_num, row_indexes, compare_results, direction, nan_direction_hint); } bool ColumnLowCardinality::hasEqualValues() const { if (getDictionary().size() <= 1) return true; return getIndexes().hasEqualValues(); } void ColumnLowCardinality::getPermutationImpl(IColumn::PermutationSortDirection direction, IColumn::PermutationSortStability stability, size_t limit, int nan_direction_hint, Permutation & res, const Collator * collator) const { if (limit == 0) limit = size(); size_t unique_limit = getDictionary().size(); Permutation unique_perm; if (collator) getDictionary().getNestedColumn()->getPermutationWithCollation(*collator, direction, stability, unique_limit, nan_direction_hint, unique_perm); else getDictionary().getNestedColumn()->getPermutation(direction, stability, unique_limit, nan_direction_hint, unique_perm); /// TODO: optimize with sse. /// Get indexes per row in column_unique. std::vector> indexes_per_row(getDictionary().size()); size_t indexes_size = getIndexes().size(); for (size_t row = 0; row < indexes_size; ++row) indexes_per_row[getIndexes().getUInt(row)].push_back(row); /// Replicate permutation. size_t perm_size = std::min(indexes_size, limit); res.resize(perm_size); size_t perm_index = 0; for (size_t row = 0; row < unique_perm.size() && perm_index < perm_size; ++row) { const auto & row_indexes = indexes_per_row[unique_perm[row]]; for (auto row_index : row_indexes) { res[perm_index] = row_index; ++perm_index; if (perm_index == perm_size) break; } } } void ColumnLowCardinality::getPermutation(IColumn::PermutationSortDirection direction, IColumn::PermutationSortStability stability, size_t limit, int nan_direction_hint, IColumn::Permutation & res) const { getPermutationImpl(direction, stability, limit, nan_direction_hint, res); } void ColumnLowCardinality::updatePermutation(IColumn::PermutationSortDirection direction, IColumn::PermutationSortStability stability, size_t limit, int nan_direction_hint, IColumn::Permutation & res, EqualRanges & equal_ranges) const { bool ascending = direction == IColumn::PermutationSortDirection::Ascending; auto comparator = [this, ascending, stability, nan_direction_hint](size_t lhs, size_t rhs) { int ret = getDictionary().compareAt(getIndexes().getUInt(lhs), getIndexes().getUInt(rhs), getDictionary(), nan_direction_hint); if (unlikely(stability == IColumn::PermutationSortStability::Stable && ret == 0)) return lhs < rhs; if (ascending) return ret < 0; else return ret > 0; }; auto equal_comparator = [this, nan_direction_hint](size_t lhs, size_t rhs) { int ret = getDictionary().compareAt(getIndexes().getUInt(lhs), getIndexes().getUInt(rhs), getDictionary(), nan_direction_hint); return ret == 0; }; updatePermutationImpl(limit, res, equal_ranges, comparator, equal_comparator, DefaultSort(), DefaultPartialSort()); } void ColumnLowCardinality::getPermutationWithCollation(const Collator & collator, IColumn::PermutationSortDirection direction, IColumn::PermutationSortStability stability, size_t limit, int nan_direction_hint, IColumn::Permutation & res) const { getPermutationImpl(direction, stability, limit, nan_direction_hint, res, &collator); } void ColumnLowCardinality::updatePermutationWithCollation(const Collator & collator, IColumn::PermutationSortDirection direction, IColumn::PermutationSortStability stability, size_t limit, int nan_direction_hint, IColumn::Permutation & res, EqualRanges & equal_ranges) const { bool ascending = direction == IColumn::PermutationSortDirection::Ascending; auto comparator = [this, &collator, ascending, stability, nan_direction_hint](size_t lhs, size_t rhs) { auto nested_column = getDictionary().getNestedColumn(); size_t lhs_index = getIndexes().getUInt(lhs); size_t rhs_index = getIndexes().getUInt(rhs); int ret = nested_column->compareAtWithCollation(lhs_index, rhs_index, *nested_column, nan_direction_hint, collator); if (unlikely(stability == IColumn::PermutationSortStability::Stable && ret == 0)) return lhs < rhs; if (ascending) return ret < 0; else return ret > 0; }; auto equal_comparator = [this, &collator, nan_direction_hint](size_t lhs, size_t rhs) { int ret = getDictionary().getNestedColumn()->compareAtWithCollation(getIndexes().getUInt(lhs), getIndexes().getUInt(rhs), *getDictionary().getNestedColumn(), nan_direction_hint, collator); return ret == 0; }; updatePermutationImpl(limit, res, equal_ranges, comparator, equal_comparator, DefaultSort(), DefaultPartialSort()); } std::vector ColumnLowCardinality::scatter(ColumnIndex num_columns, const Selector & selector) const { auto columns = getIndexes().scatter(num_columns, selector); for (auto & column : columns) { auto unique_ptr = dictionary.getColumnUniquePtr(); column = ColumnLowCardinality::create(IColumn::mutate(std::move(unique_ptr)), std::move(column)); } return columns; } void ColumnLowCardinality::setSharedDictionary(const ColumnPtr & column_unique) { if (!empty()) throw Exception("Can't set ColumnUnique for ColumnLowCardinality because is't not empty.", ErrorCodes::LOGICAL_ERROR); dictionary.setShared(column_unique); } ColumnLowCardinality::MutablePtr ColumnLowCardinality::cutAndCompact(size_t start, size_t length) const { auto sub_positions = IColumn::mutate(idx.getPositions()->cut(start, length)); /// Create column with new indexes and old dictionary. /// Dictionary is shared, but will be recreated after compactInplace call. auto column = ColumnLowCardinality::create(getDictionary().assumeMutable(), std::move(sub_positions)); /// Will create new dictionary. column->compactInplace(); return column; } void ColumnLowCardinality::compactInplace() { auto positions = idx.detachPositions(); dictionary.compact(positions); idx.attachPositions(std::move(positions)); } void ColumnLowCardinality::compactIfSharedDictionary() { if (dictionary.isShared()) compactInplace(); } ColumnLowCardinality::DictionaryEncodedColumn ColumnLowCardinality::getMinimalDictionaryEncodedColumn(UInt64 offset, UInt64 limit) const { MutableColumnPtr sub_indexes = IColumn::mutate(idx.getPositions()->cut(offset, limit)); auto indexes_map = mapUniqueIndex(*sub_indexes); auto sub_keys = getDictionary().getNestedColumn()->index(*indexes_map, 0); return {std::move(sub_keys), std::move(sub_indexes)}; } ColumnPtr ColumnLowCardinality::countKeys() const { const auto & nested_column = getDictionary().getNestedColumn(); size_t dict_size = nested_column->size(); auto counter = ColumnUInt64::create(dict_size, 0); idx.countKeys(counter->getData()); return counter; } bool ColumnLowCardinality::containsNull() const { return getDictionary().nestedColumnIsNullable() && idx.containsDefault(); } ColumnLowCardinality::Index::Index() : positions(ColumnUInt8::create()), size_of_type(sizeof(UInt8)) {} ColumnLowCardinality::Index::Index(MutableColumnPtr && positions_) : positions(std::move(positions_)) { updateSizeOfType(); } ColumnLowCardinality::Index::Index(ColumnPtr positions_) : positions(std::move(positions_)) { updateSizeOfType(); } template void ColumnLowCardinality::Index::callForType(Callback && callback, size_t size_of_type) { switch (size_of_type) { case sizeof(UInt8): { callback(UInt8()); break; } case sizeof(UInt16): { callback(UInt16()); break; } case sizeof(UInt32): { callback(UInt32()); break; } case sizeof(UInt64): { callback(UInt64()); break; } default: { throw Exception("Unexpected size of index type for ColumnLowCardinality: " + toString(size_of_type), ErrorCodes::LOGICAL_ERROR); } } } size_t ColumnLowCardinality::Index::getSizeOfIndexType(const IColumn & column, size_t hint) { auto check_for = [&](auto type) { return typeid_cast *>(&column) != nullptr; }; auto try_get_size_for = [&](auto type) -> size_t { return check_for(type) ? sizeof(decltype(type)) : 0; }; if (hint) { size_t size = 0; callForType([&](auto type) { size = try_get_size_for(type); }, hint); if (size) return size; } if (auto size = try_get_size_for(UInt8())) return size; if (auto size = try_get_size_for(UInt16())) return size; if (auto size = try_get_size_for(UInt32())) return size; if (auto size = try_get_size_for(UInt64())) return size; throw Exception("Unexpected indexes type for ColumnLowCardinality. Expected UInt, got " + column.getName(), ErrorCodes::ILLEGAL_COLUMN); } void ColumnLowCardinality::Index::attachPositions(ColumnPtr positions_) { positions = std::move(positions_); updateSizeOfType(); } template typename ColumnVector::Container & ColumnLowCardinality::Index::getPositionsData() { auto * positions_ptr = typeid_cast *>(positions->assumeMutable().get()); if (!positions_ptr) throw Exception("Invalid indexes type for ColumnLowCardinality." " Expected UInt" + toString(8 * sizeof(IndexType)) + ", got " + positions->getName(), ErrorCodes::LOGICAL_ERROR); return positions_ptr->getData(); } template const typename ColumnVector::Container & ColumnLowCardinality::Index::getPositionsData() const { const auto * positions_ptr = typeid_cast *>(positions.get()); if (!positions_ptr) throw Exception("Invalid indexes type for ColumnLowCardinality." " Expected UInt" + toString(8 * sizeof(IndexType)) + ", got " + positions->getName(), ErrorCodes::LOGICAL_ERROR); return positions_ptr->getData(); } template void ColumnLowCardinality::Index::convertPositions() { auto convert = [&](auto x) { using CurIndexType = decltype(x); auto & data = getPositionsData(); if (sizeof(CurIndexType) > sizeof(IndexType)) throw Exception("Converting indexes to smaller type: from " + toString(sizeof(CurIndexType)) + " to " + toString(sizeof(IndexType)), ErrorCodes::LOGICAL_ERROR); if (sizeof(CurIndexType) != sizeof(IndexType)) { size_t size = data.size(); auto new_positions = ColumnVector::create(size); auto & new_data = new_positions->getData(); /// TODO: Optimize with SSE? for (size_t i = 0; i < size; ++i) new_data[i] = static_cast(data[i]); positions = std::move(new_positions); size_of_type = sizeof(IndexType); } }; callForType(std::move(convert), size_of_type); checkSizeOfType(); } void ColumnLowCardinality::Index::expandType() { auto expand = [&](auto type) { using CurIndexType = decltype(type); constexpr auto next_size = NumberTraits::nextSize(sizeof(CurIndexType)); if (next_size == sizeof(CurIndexType)) throw Exception("Can't expand indexes type for ColumnLowCardinality from type: " + demangle(typeid(CurIndexType).name()), ErrorCodes::LOGICAL_ERROR); using NewIndexType = typename NumberTraits::Construct::Type; convertPositions(); }; callForType(std::move(expand), size_of_type); } UInt64 ColumnLowCardinality::Index::getMaxPositionForCurrentType() const { UInt64 value = 0; callForType([&](auto type) { value = std::numeric_limits::max(); }, size_of_type); return value; } size_t ColumnLowCardinality::Index::getPositionAt(size_t row) const { size_t pos; auto get_position = [&](auto type) { using CurIndexType = decltype(type); pos = getPositionsData()[row]; }; callForType(std::move(get_position), size_of_type); return pos; } void ColumnLowCardinality::Index::insertPosition(UInt64 position) { while (position > getMaxPositionForCurrentType()) expandType(); positions->insert(position); checkSizeOfType(); } void ColumnLowCardinality::Index::insertPositionsRange(const IColumn & column, UInt64 offset, UInt64 limit) { auto insert_for_type = [&](auto type) { using ColumnType = decltype(type); const auto * column_ptr = typeid_cast *>(&column); if (!column_ptr) return false; if (size_of_type < sizeof(ColumnType)) convertPositions(); if (size_of_type == sizeof(ColumnType)) positions->insertRangeFrom(column, offset, limit); else { auto copy = [&](auto cur_type) { using CurIndexType = decltype(cur_type); auto & positions_data = getPositionsData(); const auto & column_data = column_ptr->getData(); UInt64 size = positions_data.size(); positions_data.resize(size + limit); for (UInt64 i = 0; i < limit; ++i) positions_data[size + i] = static_cast(column_data[offset + i]); }; callForType(std::move(copy), size_of_type); } return true; }; if (!insert_for_type(UInt8()) && !insert_for_type(UInt16()) && !insert_for_type(UInt32()) && !insert_for_type(UInt64())) throw Exception("Invalid column for ColumnLowCardinality index. Expected UInt, got " + column.getName(), ErrorCodes::ILLEGAL_COLUMN); checkSizeOfType(); } void ColumnLowCardinality::Index::checkSizeOfType() { if (size_of_type != getSizeOfIndexType(*positions, size_of_type)) throw Exception("Invalid size of type. Expected " + toString(8 * size_of_type) + ", but positions are " + positions->getName(), ErrorCodes::LOGICAL_ERROR); } void ColumnLowCardinality::Index::countKeys(ColumnUInt64::Container & counts) const { auto counter = [&](auto x) { using CurIndexType = decltype(x); auto & data = getPositionsData(); for (auto pos : data) ++counts[pos]; }; callForType(std::move(counter), size_of_type); } bool ColumnLowCardinality::Index::containsDefault() const { bool contains = false; auto check_contains_default = [&](auto x) { using CurIndexType = decltype(x); auto & data = getPositionsData(); for (auto pos : data) { if (pos == 0) { contains = true; break; } } }; callForType(std::move(check_contains_default), size_of_type); return contains; } void ColumnLowCardinality::Index::updateWeakHash(WeakHash32 & hash, WeakHash32 & dict_hash) const { auto & hash_data = hash.getData(); auto & dict_hash_data = dict_hash.getData(); auto update_weak_hash = [&](auto x) { using CurIndexType = decltype(x); auto & data = getPositionsData(); auto size = data.size(); for (size_t i = 0; i < size; ++i) hash_data[i] = static_cast(intHashCRC32(dict_hash_data[data[i]], hash_data[i])); }; callForType(std::move(update_weak_hash), size_of_type); } ColumnLowCardinality::Dictionary::Dictionary(MutableColumnPtr && column_unique_, bool is_shared) : column_unique(std::move(column_unique_)), shared(is_shared) { checkColumn(*column_unique); } ColumnLowCardinality::Dictionary::Dictionary(ColumnPtr column_unique_, bool is_shared) : column_unique(std::move(column_unique_)), shared(is_shared) { checkColumn(*column_unique); } void ColumnLowCardinality::Dictionary::setShared(const ColumnPtr & column_unique_) { checkColumn(*column_unique_); column_unique = column_unique_; shared = true; } void ColumnLowCardinality::Dictionary::compact(ColumnPtr & positions) { auto new_column_unique = column_unique->cloneEmpty(); auto & unique = getColumnUnique(); auto & new_unique = static_cast(*new_column_unique); auto indexes = mapUniqueIndex(positions->assumeMutableRef()); auto sub_keys = unique.getNestedColumn()->index(*indexes, 0); auto new_indexes = new_unique.uniqueInsertRangeFrom(*sub_keys, 0, sub_keys->size()); positions = IColumn::mutate(new_indexes->index(*positions, 0)); column_unique = std::move(new_column_unique); shared = false; } }