// MurmurHash2 was written by Austin Appleby, and is placed in the public // domain. The author hereby disclaims copyright to this source code. // Note - This code makes a few assumptions about how your machine behaves - // 1. We can read a 4-byte value from any address without crashing // 2. sizeof(int) == 4 // And it has a few limitations - // 1. It will not work incrementally. // 2. It will not produce the same results on little-endian and big-endian // machines. #include "murmurhash2.h" // Platform-specific functions and macros // Microsoft Visual Studio #if defined(_MSC_VER) #define BIG_CONSTANT(x) (x) // Other compilers #else // defined(_MSC_VER) #define BIG_CONSTANT(x) (x##LLU) #endif // !defined(_MSC_VER) uint32_t MurmurHash2(const void * key, int len, uint32_t seed) { // 'm' and 'r' are mixing constants generated offline. // They're not really 'magic', they just happen to work well. const uint32_t m = 0x5bd1e995; const int r = 24; // Initialize the hash to a 'random' value uint32_t h = seed ^ len; // Mix 4 bytes at a time into the hash const unsigned char * data = reinterpret_cast(key); while (len >= 4) { uint32_t k = *reinterpret_cast(data); k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; data += 4; len -= 4; } // Handle the last few bytes of the input array switch (len) { case 3: h ^= data[2] << 16; case 2: h ^= data[1] << 8; case 1: h ^= data[0]; h *= m; }; // Do a few final mixes of the hash to ensure the last few // bytes are well-incorporated. h ^= h >> 13; h *= m; h ^= h >> 15; return h; } // MurmurHash2, 64-bit versions, by Austin Appleby // The same caveats as 32-bit MurmurHash2 apply here - beware of alignment // and endian-ness issues if used across multiple platforms. // 64-bit hash for 64-bit platforms uint64_t MurmurHash64A(const void * key, int len, uint64_t seed) { const uint64_t m = BIG_CONSTANT(0xc6a4a7935bd1e995); const int r = 47; uint64_t h = seed ^ (len * m); const uint64_t * data = reinterpret_cast(key); const uint64_t * end = data + (len/8); while (data != end) { uint64_t k = *data++; k *= m; k ^= k >> r; k *= m; h ^= k; h *= m; } const unsigned char * data2 = reinterpret_cast(data); switch (len & 7) { case 7: h ^= static_cast(data2[6]) << 48; case 6: h ^= static_cast(data2[5]) << 40; case 5: h ^= static_cast(data2[4]) << 32; case 4: h ^= static_cast(data2[3]) << 24; case 3: h ^= static_cast(data2[2]) << 16; case 2: h ^= static_cast(data2[1]) << 8; case 1: h ^= static_cast(data2[0]); h *= m; }; h ^= h >> r; h *= m; h ^= h >> r; return h; } // 64-bit hash for 32-bit platforms uint64_t MurmurHash64B(const void * key, int len, uint64_t seed) { const uint32_t m = 0x5bd1e995; const int r = 24; uint32_t h1 = static_cast(seed) ^ len; uint32_t h2 = static_cast(seed >> 32); const uint32_t * data = reinterpret_cast(key); while (len >= 8) { uint32_t k1 = *data++; k1 *= m; k1 ^= k1 >> r; k1 *= m; h1 *= m; h1 ^= k1; len -= 4; uint32_t k2 = *data++; k2 *= m; k2 ^= k2 >> r; k2 *= m; h2 *= m; h2 ^= k2; len -= 4; } if (len >= 4) { uint32_t k1 = *data++; k1 *= m; k1 ^= k1 >> r; k1 *= m; h1 *= m; h1 ^= k1; len -= 4; } switch (len) { case 3: h2 ^= reinterpret_cast(data)[2] << 16; case 2: h2 ^= reinterpret_cast(data)[1] << 8; case 1: h2 ^= reinterpret_cast(data)[0]; h2 *= m; }; h1 ^= h2 >> 18; h1 *= m; h2 ^= h1 >> 22; h2 *= m; h1 ^= h2 >> 17; h1 *= m; h2 ^= h1 >> 19; h2 *= m; uint64_t h = h1; h = (h << 32) | h2; return h; } // MurmurHash2A, by Austin Appleby // This is a variant of MurmurHash2 modified to use the Merkle-Damgard // construction. Bulk speed should be identical to Murmur2, small-key speed // will be 10%-20% slower due to the added overhead at the end of the hash. // This variant fixes a minor issue where null keys were more likely to // collide with each other than expected, and also makes the function // more amenable to incremental implementations. #define mmix(h,k) { k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; } uint32_t MurmurHash2A(const void * key, int len, uint32_t seed) { const uint32_t m = 0x5bd1e995; const int r = 24; uint32_t l = len; const unsigned char * data = reinterpret_cast(key); uint32_t h = seed; while (len >= 4) { uint32_t k = *reinterpret_cast(data); mmix(h,k); data += 4; len -= 4; } uint32_t t = 0; switch (len) { case 3: t ^= data[2] << 16; case 2: t ^= data[1] << 8; case 1: t ^= data[0]; }; mmix(h,t); mmix(h,l); h ^= h >> 13; h *= m; h ^= h >> 15; return h; } // MurmurHashNeutral2, by Austin Appleby // Same as MurmurHash2, but endian- and alignment-neutral. // Half the speed though, alas. uint32_t MurmurHashNeutral2(const void * key, int len, uint32_t seed) { const uint32_t m = 0x5bd1e995; const int r = 24; uint32_t h = seed ^ len; const unsigned char * data = reinterpret_cast(key); while (len >= 4) { uint32_t k; k = data[0]; k |= data[1] << 8; k |= data[2] << 16; k |= data[3] << 24; k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; data += 4; len -= 4; } switch (len) { case 3: h ^= data[2] << 16; case 2: h ^= data[1] << 8; case 1: h ^= data[0]; h *= m; }; h ^= h >> 13; h *= m; h ^= h >> 15; return h; } //----------------------------------------------------------------------------- // MurmurHashAligned2, by Austin Appleby // Same algorithm as MurmurHash2, but only does aligned reads - should be safer // on certain platforms. // Performance will be lower than MurmurHash2 #define MIX(h,k,m) { k *= m; k ^= k >> r; k *= m; h *= m; h ^= k; } uint32_t MurmurHashAligned2(const void * key, int len, uint32_t seed) { const uint32_t m = 0x5bd1e995; const int r = 24; const unsigned char * data = reinterpret_cast(key); uint32_t h = seed ^ len; int align = reinterpret_cast(data) & 3; if (align && (len >= 4)) { // Pre-load the temp registers uint32_t t = 0, d = 0; switch (align) { case 1: t |= data[2] << 16; case 2: t |= data[1] << 8; case 3: t |= data[0]; } t <<= (8 * align); data += 4-align; len -= 4-align; int sl = 8 * (4-align); int sr = 8 * align; // Mix while (len >= 4) { d = *(reinterpret_cast(data)); t = (t >> sr) | (d << sl); uint32_t k = t; MIX(h,k,m); t = d; data += 4; len -= 4; } // Handle leftover data in temp registers d = 0; if (len >= align) { switch (align) { case 3: d |= data[2] << 16; case 2: d |= data[1] << 8; case 1: d |= data[0]; } uint32_t k = (t >> sr) | (d << sl); MIX(h,k,m); data += align; len -= align; //---------- // Handle tail bytes switch (len) { case 3: h ^= data[2] << 16; case 2: h ^= data[1] << 8; case 1: h ^= data[0]; h *= m; }; } else { switch (len) { case 3: d |= data[2] << 16; case 2: d |= data[1] << 8; case 1: d |= data[0]; case 0: h ^= (t >> sr) | (d << sl); h *= m; } } h ^= h >> 13; h *= m; h ^= h >> 15; return h; } else { while (len >= 4) { uint32_t k = *reinterpret_cast(data); MIX(h,k,m); data += 4; len -= 4; } // Handle tail bytes switch (len) { case 3: h ^= data[2] << 16; case 2: h ^= data[1] << 8; case 1: h ^= data[0]; h *= m; }; h ^= h >> 13; h *= m; h ^= h >> 15; return h; } }