#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include /// getSmallestColumn() #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace DB { namespace ErrorCodes { extern const int EMPTY_LIST_OF_COLUMNS_QUERIED; extern const int EMPTY_NESTED_TABLE; extern const int EXPECTED_ALL_OR_ANY; extern const int INVALID_JOIN_ON_EXPRESSION; extern const int LOGICAL_ERROR; extern const int NOT_IMPLEMENTED; extern const int NUMBER_OF_ARGUMENTS_DOESNT_MATCH; extern const int UNKNOWN_IDENTIFIER; } namespace { using LogAST = DebugASTLog; /// set to true to enable logs /// Select implementation of a function based on settings. /// Important that it is done as query rewrite. It means rewritten query /// will be sent to remote servers during distributed query execution, /// and on all remote servers, function implementation will be same. template struct CustomizeFunctionsData { using TypeToVisit = ASTFunction; const String & customized_func_name; void visit(ASTFunction & func, ASTPtr &) const { if (Poco::toLower(func.name) == func_name) { func.name = customized_func_name; } } }; char countdistinct[] = "countdistinct"; using CustomizeCountDistinctVisitor = InDepthNodeVisitor>, true>; char countifdistinct[] = "countifdistinct"; using CustomizeCountIfDistinctVisitor = InDepthNodeVisitor>, true>; char in[] = "in"; using CustomizeInVisitor = InDepthNodeVisitor>, true>; char notIn[] = "notin"; using CustomizeNotInVisitor = InDepthNodeVisitor>, true>; char globalIn[] = "globalin"; using CustomizeGlobalInVisitor = InDepthNodeVisitor>, true>; char globalNotIn[] = "globalnotin"; using CustomizeGlobalNotInVisitor = InDepthNodeVisitor>, true>; template struct CustomizeFunctionsSuffixData { using TypeToVisit = ASTFunction; const String & customized_func_suffix; void visit(ASTFunction & func, ASTPtr &) const { if (endsWith(Poco::toLower(func.name), func_suffix)) { size_t prefix_len = func.name.length() - strlen(func_suffix); func.name = func.name.substr(0, prefix_len) + customized_func_suffix; } } }; /// Swap 'if' and 'distinct' suffixes to make execution more optimal. char ifDistinct[] = "ifdistinct"; using CustomizeIfDistinctVisitor = InDepthNodeVisitor>, true>; /// Used to rewrite all aggregate functions to add -OrNull suffix to them if setting `aggregate_functions_null_for_empty` is set. struct CustomizeAggregateFunctionsSuffixData { using TypeToVisit = ASTFunction; const String & customized_func_suffix; void visit(ASTFunction & func, ASTPtr &) const { const auto & instance = AggregateFunctionFactory::instance(); if (instance.isAggregateFunctionName(func.name) && !endsWith(func.name, customized_func_suffix)) { auto properties = instance.tryGetProperties(func.name); if (properties && !properties->returns_default_when_only_null) { func.name += customized_func_suffix; } } } }; // Used to rewrite aggregate functions with -OrNull suffix in some cases, such as sumIfOrNull, we should rewrite to sumOrNullIf struct CustomizeAggregateFunctionsMoveSuffixData { using TypeToVisit = ASTFunction; const String & customized_func_suffix; String moveSuffixAhead(const String & name) const { auto prefix = name.substr(0, name.size() - customized_func_suffix.size()); auto prefix_size = prefix.size(); if (endsWith(prefix, "MergeState")) return prefix.substr(0, prefix_size - 10) + customized_func_suffix + "MergeState"; if (endsWith(prefix, "Merge")) return prefix.substr(0, prefix_size - 5) + customized_func_suffix + "Merge"; if (endsWith(prefix, "State")) return prefix.substr(0, prefix_size - 5) + customized_func_suffix + "State"; if (endsWith(prefix, "If")) return prefix.substr(0, prefix_size - 2) + customized_func_suffix + "If"; return name; } void visit(ASTFunction & func, ASTPtr &) const { const auto & instance = AggregateFunctionFactory::instance(); if (instance.isAggregateFunctionName(func.name)) { if (endsWith(func.name, customized_func_suffix)) { auto properties = instance.tryGetProperties(func.name); if (properties && !properties->returns_default_when_only_null) { func.name = moveSuffixAhead(func.name); } } } } }; struct FuseSumCountAggregates { std::vector sums {}; std::vector counts {}; std::vector avgs {}; void addFuncNode(ASTFunction * func) { if (func->name == "sum") sums.push_back(func); else if (func->name == "count") counts.push_back(func); else { assert(func->name == "avg"); avgs.push_back(func); } } bool canBeFused() const { // Need at least two different kinds of functions to fuse. if (sums.empty() && counts.empty()) return false; if (sums.empty() && avgs.empty()) return false; if (counts.empty() && avgs.empty()) return false; return true; } }; struct FuseSumCountAggregatesVisitorData { using TypeToVisit = ASTFunction; std::unordered_map fuse_map; void visit(ASTFunction & func, ASTPtr &) { if (func.name == "sum" || func.name == "avg" || func.name == "count") { if (func.arguments->children.empty()) return; // Probably we can extend it to match count() for non-nullable argument // to sum/avg with any other argument. Now we require strict match. const auto argument = func.arguments->children.at(0)->getColumnName(); auto it = fuse_map.find(argument); if (it != fuse_map.end()) { it->second.addFuncNode(&func); } else { FuseSumCountAggregates funcs{}; funcs.addFuncNode(&func); fuse_map[argument] = funcs; } } } }; using CustomizeAggregateFunctionsOrNullVisitor = InDepthNodeVisitor, true>; using CustomizeAggregateFunctionsMoveOrNullVisitor = InDepthNodeVisitor, true>; using FuseSumCountAggregatesVisitor = InDepthNodeVisitor, true>; /// Translate qualified names such as db.table.column, table.column, table_alias.column to names' normal form. /// Expand asterisks and qualified asterisks with column names. /// There would be columns in normal form & column aliases after translation. Column & column alias would be normalized in QueryNormalizer. void translateQualifiedNames(ASTPtr & query, const ASTSelectQuery & select_query, const NameSet & source_columns_set, const TablesWithColumns & tables_with_columns) { LogAST log; TranslateQualifiedNamesVisitor::Data visitor_data(source_columns_set, tables_with_columns); TranslateQualifiedNamesVisitor visitor(visitor_data, log.stream()); visitor.visit(query); /// This may happen after expansion of COLUMNS('regexp'). if (select_query.select()->children.empty()) throw Exception("Empty list of columns in SELECT query", ErrorCodes::EMPTY_LIST_OF_COLUMNS_QUERIED); } // Replaces one avg/sum/count function with an appropriate expression with // sumCount(). void replaceWithSumCount(String column_name, ASTFunction & func) { auto func_base = makeASTFunction("sumCount", std::make_shared(column_name)); auto exp_list = std::make_shared(); if (func.name == "sum" || func.name == "count") { /// Rewrite "sum" to sumCount().1, rewrite "count" to sumCount().2 UInt8 idx = (func.name == "sum" ? 1 : 2); func.name = "tupleElement"; exp_list->children.push_back(func_base); exp_list->children.push_back(std::make_shared(idx)); } else { /// Rewrite "avg" to sumCount().1 / sumCount().2 auto new_arg1 = makeASTFunction("tupleElement", func_base, std::make_shared(UInt8(1))); auto new_arg2 = makeASTFunction("tupleElement", func_base, std::make_shared(UInt8(2))); func.name = "divide"; exp_list->children.push_back(new_arg1); exp_list->children.push_back(new_arg2); } func.arguments = exp_list; func.children.push_back(func.arguments); } void fuseSumCountAggregates(std::unordered_map & fuse_map) { for (auto & it : fuse_map) { if (it.second.canBeFused()) { for (auto & func: it.second.sums) replaceWithSumCount(it.first, *func); for (auto & func: it.second.avgs) replaceWithSumCount(it.first, *func); for (auto & func: it.second.counts) replaceWithSumCount(it.first, *func); } } } bool hasArrayJoin(const ASTPtr & ast) { if (const ASTFunction * function = ast->as()) if (function->name == "arrayJoin") return true; for (const auto & child : ast->children) if (!child->as() && hasArrayJoin(child)) return true; return false; } /// Keep number of columns for 'GLOBAL IN (SELECT 1 AS a, a)' void renameDuplicatedColumns(const ASTSelectQuery * select_query) { ASTs & elements = select_query->select()->children; std::set all_column_names; std::set assigned_column_names; for (auto & expr : elements) all_column_names.insert(expr->getAliasOrColumnName()); for (auto & expr : elements) { auto name = expr->getAliasOrColumnName(); if (!assigned_column_names.insert(name).second) { size_t i = 1; while (all_column_names.end() != all_column_names.find(name + "_" + toString(i))) ++i; name = name + "_" + toString(i); expr = expr->clone(); /// Cancels fuse of the same expressions in the tree. expr->setAlias(name); all_column_names.insert(name); assigned_column_names.insert(name); } } } /// Sometimes we have to calculate more columns in SELECT clause than will be returned from query. /// This is the case when we have DISTINCT or arrayJoin: we require more columns in SELECT even if we need less columns in result. /// Also we have to remove duplicates in case of GLOBAL subqueries. Their results are placed into tables so duplicates are impossible. void removeUnneededColumnsFromSelectClause(const ASTSelectQuery * select_query, const Names & required_result_columns, bool remove_dups) { ASTs & elements = select_query->select()->children; std::map required_columns_with_duplicate_count; if (!required_result_columns.empty()) { /// Some columns may be queried multiple times, like SELECT x, y, y FROM table. for (const auto & name : required_result_columns) { if (remove_dups) required_columns_with_duplicate_count[name] = 1; else ++required_columns_with_duplicate_count[name]; } } else if (remove_dups) { /// Even if we have no requirements there could be duplicates cause of asterisks. SELECT *, t.* for (const auto & elem : elements) required_columns_with_duplicate_count.emplace(elem->getAliasOrColumnName(), 1); } else return; ASTs new_elements; new_elements.reserve(elements.size()); for (const auto & elem : elements) { String name = elem->getAliasOrColumnName(); auto it = required_columns_with_duplicate_count.find(name); if (required_columns_with_duplicate_count.end() != it && it->second) { new_elements.push_back(elem); --it->second; } else if (select_query->distinct || hasArrayJoin(elem)) { new_elements.push_back(elem); } else { ASTFunction * func = elem->as(); /// Never remove untuple. It's result column may be in required columns. /// It is not easy to analyze untuple here, because types were not calculated yes. if (func && func->name == "untuple") new_elements.push_back(elem); } } elements = std::move(new_elements); } /// Replacing scalar subqueries with constant values. void executeScalarSubqueries(ASTPtr & query, ContextPtr context, size_t subquery_depth, Scalars & scalars, bool only_analyze) { LogAST log; ExecuteScalarSubqueriesVisitor::Data visitor_data{WithContext{context}, subquery_depth, scalars, only_analyze}; ExecuteScalarSubqueriesVisitor(visitor_data, log.stream()).visit(query); } void getArrayJoinedColumns(ASTPtr & query, TreeRewriterResult & result, const ASTSelectQuery * select_query, const NamesAndTypesList & source_columns, const NameSet & source_columns_set) { if (ASTPtr array_join_expression_list = select_query->arrayJoinExpressionList()) { ArrayJoinedColumnsVisitor::Data visitor_data{result.aliases, result.array_join_name_to_alias, result.array_join_alias_to_name, result.array_join_result_to_source}; ArrayJoinedColumnsVisitor(visitor_data).visit(query); /// If the result of ARRAY JOIN is not used, it is necessary to ARRAY-JOIN any column, /// to get the correct number of rows. if (result.array_join_result_to_source.empty()) { if (select_query->arrayJoinExpressionList()->children.empty()) throw DB::Exception("ARRAY JOIN requires an argument", ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH); ASTPtr expr = select_query->arrayJoinExpressionList()->children.at(0); String source_name = expr->getColumnName(); String result_name = expr->getAliasOrColumnName(); /// This is an array. if (!expr->as() || source_columns_set.count(source_name)) { result.array_join_result_to_source[result_name] = source_name; } else /// This is a nested table. { bool found = false; for (const auto & column : source_columns) { auto split = Nested::splitName(column.name); if (split.first == source_name && !split.second.empty()) { result.array_join_result_to_source[Nested::concatenateName(result_name, split.second)] = column.name; found = true; break; } } if (!found) throw Exception("No columns in nested table " + source_name, ErrorCodes::EMPTY_NESTED_TABLE); } } } } void setJoinStrictness(ASTSelectQuery & select_query, JoinStrictness join_default_strictness, bool old_any, ASTTableJoin & out_table_join) { const ASTTablesInSelectQueryElement * node = select_query.join(); if (!node) return; auto & table_join = const_cast(node)->table_join->as(); if (table_join.strictness == ASTTableJoin::Strictness::Unspecified && table_join.kind != ASTTableJoin::Kind::Cross) { if (join_default_strictness == JoinStrictness::ANY) table_join.strictness = ASTTableJoin::Strictness::Any; else if (join_default_strictness == JoinStrictness::ALL) table_join.strictness = ASTTableJoin::Strictness::All; else throw Exception("Expected ANY or ALL in JOIN section, because setting (join_default_strictness) is empty", DB::ErrorCodes::EXPECTED_ALL_OR_ANY); } if (old_any) { if (table_join.strictness == ASTTableJoin::Strictness::Any && table_join.kind == ASTTableJoin::Kind::Inner) { table_join.strictness = ASTTableJoin::Strictness::Semi; table_join.kind = ASTTableJoin::Kind::Left; } if (table_join.strictness == ASTTableJoin::Strictness::Any) table_join.strictness = ASTTableJoin::Strictness::RightAny; } else { if (table_join.strictness == ASTTableJoin::Strictness::Any) if (table_join.kind == ASTTableJoin::Kind::Full) throw Exception("ANY FULL JOINs are not implemented.", ErrorCodes::NOT_IMPLEMENTED); } out_table_join = table_join; } /// Find the columns that are obtained by JOIN. void collectJoinedColumns(TableJoin & analyzed_join, const ASTSelectQuery & select_query, const TablesWithColumns & tables, const Aliases & aliases) { const ASTTablesInSelectQueryElement * node = select_query.join(); if (!node || tables.size() < 2) return; const auto & table_join = node->table_join->as(); if (table_join.using_expression_list) { const auto & keys = table_join.using_expression_list->as(); for (const auto & key : keys.children) analyzed_join.addUsingKey(key); /// `USING` semantic allows to have columns with changed types in result table. /// `JOIN ON` should preserve types from original table /// We can infer common type on syntax stage for `USING` because join is performed only by columns (not expressions) /// We need to know changed types in result tables because some analysis (e.g. analyzeAggregation) performed before join /// For `JOIN ON expr1 == expr2` we will infer common type later in ExpressionAnalyzer, when types of expression will be known analyzed_join.inferJoinKeyCommonType(tables[0].columns, tables[1].columns); } else if (table_join.on_expression) { bool is_asof = (table_join.strictness == ASTTableJoin::Strictness::Asof); CollectJoinOnKeysVisitor::Data data{analyzed_join, tables[0], tables[1], aliases, is_asof}; CollectJoinOnKeysVisitor(data).visit(table_join.on_expression); if (!data.has_some) throw Exception("Cannot get JOIN keys from JOIN ON section: " + queryToString(table_join.on_expression), ErrorCodes::INVALID_JOIN_ON_EXPRESSION); if (is_asof) data.asofToJoinKeys(); } } std::vector getAggregates(ASTPtr & query, const ASTSelectQuery & select_query) { /// There can not be aggregate functions inside the WHERE and PREWHERE. if (select_query.where()) assertNoAggregates(select_query.where(), "in WHERE"); if (select_query.prewhere()) assertNoAggregates(select_query.prewhere(), "in PREWHERE"); GetAggregatesVisitor::Data data; GetAggregatesVisitor(data).visit(query); /// There can not be other aggregate functions within the aggregate functions. for (const ASTFunction * node : data.aggregates) { if (node->arguments) { for (auto & arg : node->arguments->children) { assertNoAggregates(arg, "inside another aggregate function"); // We also can't have window functions inside aggregate functions, // because the window functions are calculated later. assertNoWindows(arg, "inside an aggregate function"); } } } return data.aggregates; } std::vector getWindowFunctions(ASTPtr & query, const ASTSelectQuery & select_query) { /// There can not be window functions inside the WHERE, PREWHERE and HAVING if (select_query.having()) assertNoWindows(select_query.having(), "in HAVING"); if (select_query.where()) assertNoWindows(select_query.where(), "in WHERE"); if (select_query.prewhere()) assertNoWindows(select_query.prewhere(), "in PREWHERE"); if (select_query.window()) assertNoWindows(select_query.window(), "in WINDOW"); GetAggregatesVisitor::Data data; GetAggregatesVisitor(data).visit(query); /// Window functions cannot be inside aggregates or other window functions. /// Aggregate functions can be inside window functions because they are /// calculated earlier. for (const ASTFunction * node : data.window_functions) { if (node->arguments) { for (auto & arg : node->arguments->children) { assertNoWindows(arg, "inside another window function"); } } if (node->window_definition) { assertNoWindows(node->window_definition, "inside window definition"); } } return data.window_functions; } } TreeRewriterResult::TreeRewriterResult( const NamesAndTypesList & source_columns_, ConstStoragePtr storage_, const StorageMetadataPtr & metadata_snapshot_, bool add_special) : storage(storage_) , metadata_snapshot(metadata_snapshot_) , source_columns(source_columns_) { collectSourceColumns(add_special); is_remote_storage = storage && storage->isRemote(); } /// Add columns from storage to source_columns list. Deduplicate resulted list. /// Special columns are non physical columns, for example ALIAS void TreeRewriterResult::collectSourceColumns(bool add_special) { if (storage) { const ColumnsDescription & columns = metadata_snapshot->getColumns(); NamesAndTypesList columns_from_storage; if (storage->supportsSubcolumns()) columns_from_storage = add_special ? columns.getAllWithSubcolumns() : columns.getAllPhysicalWithSubcolumns(); else columns_from_storage = add_special ? columns.getAll() : columns.getAllPhysical(); columns_from_storage = storage->expandObjectColumns(columns_from_storage, storage->supportsSubcolumns()); std::cerr << "columns_from_storage: "; for (const auto & col : columns_from_storage) std::cerr << col.dump() << "\n"; if (source_columns.empty()) source_columns.swap(columns_from_storage); else source_columns.insert(source_columns.end(), columns_from_storage.begin(), columns_from_storage.end()); } source_columns_set = removeDuplicateColumns(source_columns); } /// Calculate which columns are required to execute the expression. /// Then, delete all other columns from the list of available columns. /// After execution, columns will only contain the list of columns needed to read from the table. void TreeRewriterResult::collectUsedColumns(const ASTPtr & query, bool is_select) { /// We calculate required_source_columns with source_columns modifications and swap them on exit required_source_columns = source_columns; RequiredSourceColumnsVisitor::Data columns_context; RequiredSourceColumnsVisitor(columns_context).visit(query); NameSet source_column_names; for (const auto & column : source_columns) source_column_names.insert(column.name); NameSet required = columns_context.requiredColumns(); if (columns_context.has_table_join) { NameSet available_columns; for (const auto & name : source_columns) available_columns.insert(name.name); /// Add columns obtained by JOIN (if needed). for (const auto & joined_column : analyzed_join->columnsFromJoinedTable()) { const auto & name = joined_column.name; if (available_columns.count(name)) continue; if (required.count(name)) { /// Optimisation: do not add columns needed only in JOIN ON section. if (columns_context.nameInclusion(name) > analyzed_join->rightKeyInclusion(name)) analyzed_join->addJoinedColumn(joined_column); required.erase(name); } } } NameSet array_join_sources; if (columns_context.has_array_join) { /// Insert the columns required for the ARRAY JOIN calculation into the required columns list. for (const auto & result_source : array_join_result_to_source) array_join_sources.insert(result_source.second); for (const auto & column_name_type : source_columns) if (array_join_sources.count(column_name_type.name)) required.insert(column_name_type.name); } /// Figure out if we're able to use the trivial count optimization. has_explicit_columns = !required.empty(); if (is_select && !has_explicit_columns) { optimize_trivial_count = true; /// You need to read at least one column to find the number of rows. /// We will find a column with minimum . /// Because it is the column that is cheapest to read. struct ColumnSizeTuple { size_t compressed_size; size_t type_size; size_t uncompressed_size; String name; bool operator<(const ColumnSizeTuple & that) const { return std::tie(compressed_size, type_size, uncompressed_size) < std::tie(that.compressed_size, that.type_size, that.uncompressed_size); } }; std::vector columns; if (storage) { auto column_sizes = storage->getColumnSizes(); for (auto & source_column : source_columns) { auto c = column_sizes.find(source_column.name); if (c == column_sizes.end()) continue; size_t type_size = source_column.type->haveMaximumSizeOfValue() ? source_column.type->getMaximumSizeOfValueInMemory() : 100; columns.emplace_back(ColumnSizeTuple{c->second.data_compressed, type_size, c->second.data_uncompressed, source_column.name}); } } if (!columns.empty()) required.insert(std::min_element(columns.begin(), columns.end())->name); else /// If we have no information about columns sizes, choose a column of minimum size of its data type. required.insert(ExpressionActions::getSmallestColumn(source_columns)); } else if (is_select && metadata_snapshot && !columns_context.has_array_join) { const auto & partition_desc = metadata_snapshot->getPartitionKey(); if (partition_desc.expression) { auto partition_source_columns = partition_desc.expression->getRequiredColumns(); partition_source_columns.push_back("_part"); partition_source_columns.push_back("_partition_id"); partition_source_columns.push_back("_part_uuid"); optimize_trivial_count = true; for (const auto & required_column : required) { if (std::find(partition_source_columns.begin(), partition_source_columns.end(), required_column) == partition_source_columns.end()) { optimize_trivial_count = false; break; } } } } NameSet unknown_required_source_columns = required; for (NamesAndTypesList::iterator it = source_columns.begin(); it != source_columns.end();) { const String & column_name = it->name; unknown_required_source_columns.erase(column_name); if (!required.count(column_name)) source_columns.erase(it++); else ++it; } /// If there are virtual columns among the unknown columns. Remove them from the list of unknown and add /// in columns list, so that when further processing they are also considered. if (storage) { const auto storage_virtuals = storage->getVirtuals(); for (auto it = unknown_required_source_columns.begin(); it != unknown_required_source_columns.end();) { auto column = storage_virtuals.tryGetByName(*it); if (column) { source_columns.push_back(*column); unknown_required_source_columns.erase(it++); } else ++it; } } if (!unknown_required_source_columns.empty()) { WriteBufferFromOwnString ss; ss << "Missing columns:"; for (const auto & name : unknown_required_source_columns) ss << " '" << name << "'"; ss << " while processing query: '" << queryToString(query) << "'"; ss << ", required columns:"; for (const auto & name : columns_context.requiredColumns()) ss << " '" << name << "'"; if (storage) { std::vector hint_name{}; for (const auto & name : columns_context.requiredColumns()) { auto hints = storage->getHints(name); hint_name.insert(hint_name.end(), hints.begin(), hints.end()); } if (!hint_name.empty()) { ss << ", maybe you meant: "; ss << toString(hint_name); } } else { if (!source_column_names.empty()) for (const auto & name : columns_context.requiredColumns()) ss << " '" << name << "'"; else ss << ", no source columns"; } if (columns_context.has_table_join) { ss << ", joined columns:"; for (const auto & column : analyzed_join->columnsFromJoinedTable()) ss << " '" << column.name << "'"; } if (!array_join_sources.empty()) { ss << ", arrayJoin columns:"; for (const auto & name : array_join_sources) ss << " '" << name << "'"; } throw Exception(ss.str(), ErrorCodes::UNKNOWN_IDENTIFIER); } required_source_columns.swap(source_columns); } NameSet TreeRewriterResult::getArrayJoinSourceNameSet() const { NameSet forbidden_columns; for (const auto & elem : array_join_result_to_source) forbidden_columns.insert(elem.first); return forbidden_columns; } TreeRewriterResultPtr TreeRewriter::analyzeSelect( ASTPtr & query, TreeRewriterResult && result, const SelectQueryOptions & select_options, const std::vector & tables_with_columns, const Names & required_result_columns, std::shared_ptr table_join) const { auto * select_query = query->as(); if (!select_query) throw Exception("Select analyze for not select asts.", ErrorCodes::LOGICAL_ERROR); size_t subquery_depth = select_options.subquery_depth; bool remove_duplicates = select_options.remove_duplicates; const auto & settings = getContext()->getSettingsRef(); const NameSet & source_columns_set = result.source_columns_set; if (table_join) { result.analyzed_join = table_join; result.analyzed_join->resetCollected(); } else /// TODO: remove. For now ExpressionAnalyzer expects some not empty object here result.analyzed_join = std::make_shared(); if (remove_duplicates) renameDuplicatedColumns(select_query); if (tables_with_columns.size() > 1) { result.analyzed_join->columns_from_joined_table = tables_with_columns[1].columns; result.analyzed_join->deduplicateAndQualifyColumnNames( source_columns_set, tables_with_columns[1].table.getQualifiedNamePrefix()); } translateQualifiedNames(query, *select_query, source_columns_set, tables_with_columns); /// Optimizes logical expressions. LogicalExpressionsOptimizer(select_query, settings.optimize_min_equality_disjunction_chain_length.value).perform(); NameSet all_source_columns_set = source_columns_set; if (table_join) { for (const auto & [name, _] : table_join->columns_from_joined_table) all_source_columns_set.insert(name); } normalize(query, result.aliases, all_source_columns_set, settings); /// Remove unneeded columns according to 'required_result_columns'. /// Leave all selected columns in case of DISTINCT; columns that contain arrayJoin function inside. /// Must be after 'normalizeTree' (after expanding aliases, for aliases not get lost) /// and before 'executeScalarSubqueries', 'analyzeAggregation', etc. to avoid excessive calculations. removeUnneededColumnsFromSelectClause(select_query, required_result_columns, remove_duplicates); /// Executing scalar subqueries - replacing them with constant values. executeScalarSubqueries(query, getContext(), subquery_depth, result.scalars, select_options.only_analyze); TreeOptimizer::apply( query, result.aliases, source_columns_set, tables_with_columns, getContext(), result.metadata_snapshot, result.rewrite_subqueries); /// array_join_alias_to_name, array_join_result_to_source. getArrayJoinedColumns(query, result, select_query, result.source_columns, source_columns_set); setJoinStrictness(*select_query, settings.join_default_strictness, settings.any_join_distinct_right_table_keys, result.analyzed_join->table_join); collectJoinedColumns(*result.analyzed_join, *select_query, tables_with_columns, result.aliases); /// rewrite filters for select query, must go after getArrayJoinedColumns if (settings.optimize_respect_aliases && result.metadata_snapshot) { replaceAliasColumnsInQuery(query, result.metadata_snapshot->getColumns(), result.getArrayJoinSourceNameSet(), getContext()); } result.aggregates = getAggregates(query, *select_query); result.window_function_asts = getWindowFunctions(query, *select_query); result.collectUsedColumns(query, true); result.ast_join = select_query->join(); if (result.optimize_trivial_count) result.optimize_trivial_count = settings.optimize_trivial_count_query && !select_query->groupBy() && !select_query->having() && !select_query->sampleSize() && !select_query->sampleOffset() && !select_query->final() && (tables_with_columns.size() < 2 || isLeft(result.analyzed_join->kind())); return std::make_shared(result); } TreeRewriterResultPtr TreeRewriter::analyze( ASTPtr & query, const NamesAndTypesList & source_columns, ConstStoragePtr storage, const StorageMetadataPtr & metadata_snapshot, bool allow_aggregations) const { if (query->as()) throw Exception("Not select analyze for select asts.", ErrorCodes::LOGICAL_ERROR); const auto & settings = getContext()->getSettingsRef(); TreeRewriterResult result(source_columns, storage, metadata_snapshot, false); normalize(query, result.aliases, result.source_columns_set, settings); /// Executing scalar subqueries. Column defaults could be a scalar subquery. executeScalarSubqueries(query, getContext(), 0, result.scalars, false); TreeOptimizer::optimizeIf(query, result.aliases, settings.optimize_if_chain_to_multiif); if (allow_aggregations) { GetAggregatesVisitor::Data data; GetAggregatesVisitor(data).visit(query); /// There can not be other aggregate functions within the aggregate functions. for (const ASTFunction * node : data.aggregates) for (auto & arg : node->arguments->children) assertNoAggregates(arg, "inside another aggregate function"); result.aggregates = data.aggregates; } else assertNoAggregates(query, "in wrong place"); result.collectUsedColumns(query, false); return std::make_shared(result); } void TreeRewriter::normalize(ASTPtr & query, Aliases & aliases, const NameSet & source_columns_set, const Settings & settings) { CustomizeCountDistinctVisitor::Data data_count_distinct{settings.count_distinct_implementation}; CustomizeCountDistinctVisitor(data_count_distinct).visit(query); CustomizeCountIfDistinctVisitor::Data data_count_if_distinct{settings.count_distinct_implementation.toString() + "If"}; CustomizeCountIfDistinctVisitor(data_count_if_distinct).visit(query); CustomizeIfDistinctVisitor::Data data_distinct_if{"DistinctIf"}; CustomizeIfDistinctVisitor(data_distinct_if).visit(query); if (settings.transform_null_in) { CustomizeInVisitor::Data data_null_in{"nullIn"}; CustomizeInVisitor(data_null_in).visit(query); CustomizeNotInVisitor::Data data_not_null_in{"notNullIn"}; CustomizeNotInVisitor(data_not_null_in).visit(query); CustomizeGlobalInVisitor::Data data_global_null_in{"globalNullIn"}; CustomizeGlobalInVisitor(data_global_null_in).visit(query); CustomizeGlobalNotInVisitor::Data data_global_not_null_in{"globalNotNullIn"}; CustomizeGlobalNotInVisitor(data_global_not_null_in).visit(query); } // Try to fuse sum/avg/count with identical arguments to one sumCount call, // if we have at least two different functions. E.g. we will replace sum(x) // and count(x) with sumCount(x).1 and sumCount(x).2, and sumCount() will // be calculated only once because of CSE. if (settings.optimize_fuse_sum_count_avg) { FuseSumCountAggregatesVisitor::Data data; FuseSumCountAggregatesVisitor(data).visit(query); fuseSumCountAggregates(data.fuse_map); } /// Rewrite all aggregate functions to add -OrNull suffix to them if (settings.aggregate_functions_null_for_empty) { CustomizeAggregateFunctionsOrNullVisitor::Data data_or_null{"OrNull"}; CustomizeAggregateFunctionsOrNullVisitor(data_or_null).visit(query); } /// Move -OrNull suffix ahead, this should execute after add -OrNull suffix CustomizeAggregateFunctionsMoveOrNullVisitor::Data data_or_null{"OrNull"}; CustomizeAggregateFunctionsMoveOrNullVisitor(data_or_null).visit(query); /// Creates a dictionary `aliases`: alias -> ASTPtr QueryAliasesVisitor(aliases).visit(query); /// Mark table ASTIdentifiers with not a column marker MarkTableIdentifiersVisitor::Data identifiers_data{aliases}; MarkTableIdentifiersVisitor(identifiers_data).visit(query); /// Rewrite function names to their canonical ones. if (settings.normalize_function_names) FunctionNameNormalizer().visit(query.get()); /// Common subexpression elimination. Rewrite rules. QueryNormalizer::Data normalizer_data(aliases, source_columns_set, settings); QueryNormalizer(normalizer_data).visit(query); } }