#include #include #include #include #include #include #include #include #include namespace DB { namespace ErrorCodes { extern const int ILLEGAL_TYPE_OF_ARGUMENT; extern const int TOO_MANY_ARGUMENTS_FOR_FUNCTION; extern const int NUMBER_OF_ARGUMENTS_DOESNT_MATCH; extern const int ILLEGAL_COLUMN; } namespace { /** * The function checks if a point is in one of ellipses in set. * The number of arguments must be 2 + 4*N where N is the number of ellipses. * The arguments must be arranged as follows: (x, y, x_0, y_0, a_0, b_0, ..., x_i, y_i, a_i, b_i) * All ellipses parameters must be const values; * * The function first checks bounding box condition. * If a point is inside an ellipse's bounding box, the quadratic condition is evaluated. * * Here we assume that points in one columns are close and are likely to fit in one ellipse, * so the last success ellipse index is remembered to check this ellipse first for next point. * */ class FunctionPointInEllipses : public IFunction { public: static constexpr auto name = "pointInEllipses"; static FunctionPtr create(ContextPtr) { return std::make_shared(); } private: struct Ellipse { Float64 x; Float64 y; Float64 a; Float64 b; }; String getName() const override { return name; } bool isVariadic() const override { return true; } bool isSuitableForShortCircuitArgumentsExecution(const DataTypesWithConstInfo & /*arguments*/) const override { return true; } size_t getNumberOfArguments() const override { return 0; } DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override { if (arguments.size() < 6 || arguments.size() % 4 != 2) { throw Exception( "Incorrect number of arguments of function " + getName() + ". Must be 2 for your point plus 4 * N for ellipses (x_i, y_i, a_i, b_i).", ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH); } /// For array on stack, see below. if (arguments.size() > 10000) { throw Exception( "Number of arguments of function " + getName() + " is too large.", ErrorCodes::TOO_MANY_ARGUMENTS_FOR_FUNCTION); } for (const auto arg_idx : collections::range(0, arguments.size())) { const auto * arg = arguments[arg_idx].get(); if (!WhichDataType(arg).isFloat64()) { throw Exception( "Illegal type " + arg->getName() + " of argument " + std::to_string(arg_idx + 1) + " of function " + getName() + ". Must be Float64", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT); } } return std::make_shared(); } ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr &, size_t input_rows_count) const override { const auto size = input_rows_count; /// Prepare array of ellipses. size_t ellipses_count = (arguments.size() - 2) / 4; std::vector ellipses(ellipses_count); for (const auto ellipse_idx : collections::range(0, ellipses_count)) { Float64 ellipse_data[4]; for (const auto idx : collections::range(0, 4)) { int arg_idx = 2 + 4 * ellipse_idx + idx; const auto * column = arguments[arg_idx].column.get(); if (const auto * col = checkAndGetColumnConst>(column)) { ellipse_data[idx] = col->getValue(); } else { throw Exception( "Illegal type " + column->getName() + " of argument " + std::to_string(arg_idx + 1) + " of function " + getName() + ". Must be const Float64", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT); } } ellipses[ellipse_idx] = Ellipse{ellipse_data[0], ellipse_data[1], ellipse_data[2], ellipse_data[3]}; } int const_cnt = 0; for (const auto idx : collections::range(0, 2)) { const auto * column = arguments[idx].column.get(); if (typeid_cast (column)) { ++const_cnt; } else if (!typeid_cast *> (column)) { throw Exception("Illegal column " + column->getName() + " of argument of function " + getName(), ErrorCodes::ILLEGAL_COLUMN); } } const auto * col_x = arguments[0].column.get(); const auto * col_y = arguments[1].column.get(); if (const_cnt == 0) { const auto * col_vec_x = assert_cast *> (col_x); const auto * col_vec_y = assert_cast *> (col_y); auto dst = ColumnVector::create(); auto & dst_data = dst->getData(); dst_data.resize(size); size_t start_index = 0; for (const auto row : collections::range(0, size)) { dst_data[row] = isPointInEllipses(col_vec_x->getData()[row], col_vec_y->getData()[row], ellipses.data(), ellipses_count, start_index); } return dst; } else if (const_cnt == 2) { const auto * col_const_x = assert_cast (col_x); const auto * col_const_y = assert_cast (col_y); size_t start_index = 0; UInt8 res = isPointInEllipses(col_const_x->getValue(), col_const_y->getValue(), ellipses.data(), ellipses_count, start_index); return DataTypeUInt8().createColumnConst(size, res); } else { throw Exception( "Illegal types " + col_x->getName() + ", " + col_y->getName() + " of arguments 1, 2 of function " + getName() + ". Both must be either const or vector", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT); } } static bool isPointInEllipses(Float64 x, Float64 y, const Ellipse * ellipses, size_t ellipses_count, size_t & start_index) { size_t index = 0 + start_index; for (size_t i = 0; i < ellipses_count; ++i) { Ellipse el = ellipses[index]; double p1 = ((x - el.x) / el.a); double p2 = ((y - el.y) / el.b); if (x <= el.x + el.a && x >= el.x - el.a && y <= el.y + el.b && y >= el.y - el.b /// Bounding box check && p1 * p1 + p2 * p2 <= 1.0) /// Precise check { start_index = index; return true; } ++index; if (index == ellipses_count) { index = 0; } } return false; } }; } void registerFunctionPointInEllipses(FunctionFactory & factory) { factory.registerFunction(); } }