#pragma once #include #include #include #include #include #include #include #include #include "config.h" #include #if USE_EMBEDDED_COMPILER # include #endif /// This file contains user interface for functions. namespace llvm { class LLVMContext; class Value; class IRBuilderBase; } namespace DB { namespace ErrorCodes { extern const int NOT_IMPLEMENTED; extern const int ILLEGAL_TYPE_OF_ARGUMENT; } /// A left-closed and right-open interval representing the preimage of a function. using FieldInterval = std::pair; using OptionalFieldInterval = std::optional; /// The simplest executable object. /// Motivation: /// * Prepare something heavy once before main execution loop instead of doing it for each columns. /// * Provide const interface for IFunctionBase (later). /// * Create one executable function per thread to use caches without synchronization (later). class IExecutableFunction { public: virtual ~IExecutableFunction() = default; /// Get the main function name. virtual String getName() const = 0; ColumnPtr execute(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count, bool dry_run) const; protected: virtual ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count) const = 0; virtual ColumnPtr executeDryRunImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count) const { return executeImpl(arguments, result_type, input_rows_count); } /** Default implementation in presence of Nullable arguments or NULL constants as arguments is the following: * if some of arguments are NULL constants then return NULL constant, * if some of arguments are Nullable, then execute function as usual for columns, * where Nullable columns are substituted with nested columns (they have arbitrary values in rows corresponding to NULL value) * and wrap result in Nullable column where NULLs are in all rows where any of arguments are NULL. */ virtual bool useDefaultImplementationForNulls() const { return true; } /** Default implementation in presence of arguments with type Nothing is the following: * If some of arguments have type Nothing then default implementation is to return constant column with type Nothing */ virtual bool useDefaultImplementationForNothing() const { return true; } /** If the function have non-zero number of arguments, * and if all arguments are constant, that we could automatically provide default implementation: * arguments are converted to ordinary columns with single value, then function is executed as usual, * and then the result is converted to constant column. */ virtual bool useDefaultImplementationForConstants() const { return false; } /** If function arguments has single low cardinality column and all other arguments are constants, call function on nested column. * Otherwise, convert all low cardinality columns to ordinary columns. * Returns ColumnLowCardinality if at least one argument is ColumnLowCardinality. */ virtual bool useDefaultImplementationForLowCardinalityColumns() const { return true; } /** If function arguments has single sparse column and all other arguments are constants, call function on nested column. * Otherwise, convert all sparse columns to ordinary columns. * If default value doesn't change after function execution, returns sparse column as a result. * Otherwise, result column is converted to full. */ virtual bool useDefaultImplementationForSparseColumns() const { return true; } /** Some arguments could remain constant during this implementation. */ virtual ColumnNumbers getArgumentsThatAreAlwaysConstant() const { return {}; } /** True if function can be called on default arguments (include Nullable's) and won't throw. * Counterexample: modulo(0, 0) */ virtual bool canBeExecutedOnDefaultArguments() const { return true; } private: ColumnPtr defaultImplementationForConstantArguments( const ColumnsWithTypeAndName & args, const DataTypePtr & result_type, size_t input_rows_count, bool dry_run) const; ColumnPtr defaultImplementationForNulls( const ColumnsWithTypeAndName & args, const DataTypePtr & result_type, size_t input_rows_count, bool dry_run) const; ColumnPtr defaultImplementationForNothing( const ColumnsWithTypeAndName & args, const DataTypePtr & result_type, size_t input_rows_count) const; ColumnPtr executeWithoutLowCardinalityColumns( const ColumnsWithTypeAndName & args, const DataTypePtr & result_type, size_t input_rows_count, bool dry_run) const; ColumnPtr executeWithoutSparseColumns( const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count, bool dry_run) const; }; using ExecutableFunctionPtr = std::shared_ptr; /** Function with known arguments and return type (when the specific overload was chosen). * It is also the point where all function-specific properties are known. */ class IFunctionBase : public IResolvedFunction { public: ~IFunctionBase() override = default; virtual ColumnPtr execute( /// NOLINT const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count, bool dry_run = false) const { return prepare(arguments)->execute(arguments, result_type, input_rows_count, dry_run); } /// Get the main function name. virtual String getName() const = 0; const Array & getParameters() const final { throw Exception(ErrorCodes::NOT_IMPLEMENTED, "IFunctionBase doesn't support getParameters method"); } /// Do preparations and return executable. /// sample_columns should contain data types of arguments and values of constants, if relevant. virtual ExecutableFunctionPtr prepare(const ColumnsWithTypeAndName & arguments) const = 0; #if USE_EMBEDDED_COMPILER virtual bool isCompilable() const { return false; } /** Produce LLVM IR code that operates on scalar values. See `toNativeType` in DataTypes/Native.h * for supported value types and how they map to LLVM types. * * NOTE: the builder is actually guaranteed to be exactly `llvm::IRBuilder<>`, so you may safely * downcast it to that type. This method is specified with `IRBuilderBase` because forward-declaring * templates with default arguments is impossible and including LLVM in such a generic header * as this one is a major pain. */ virtual llvm::Value * compile(llvm::IRBuilderBase & /*builder*/, const ValuesWithType & /*arguments*/) const { throw Exception(ErrorCodes::NOT_IMPLEMENTED, "{} is not JIT-compilable", getName()); } #endif virtual bool isStateful() const { return false; } /** Should we evaluate this function while constant folding, if arguments are constants? * Usually this is true. Notable counterexample is function 'sleep'. * If we will call it during query analysis, we will sleep extra amount of time. */ virtual bool isSuitableForConstantFolding() const { return true; } /** If function isSuitableForConstantFolding then, this method will be called during query analysis * if some arguments are constants. For example logical functions (AndFunction, OrFunction) can * return they result based on some constant arguments. * Arguments are passed without modifications, useDefaultImplementationForNulls, useDefaultImplementationForNothing, * useDefaultImplementationForConstants, useDefaultImplementationForLowCardinality are not applied. */ virtual ColumnPtr getConstantResultForNonConstArguments( const ColumnsWithTypeAndName & /* arguments */, const DataTypePtr & /* result_type */) const { return nullptr; } /** Function is called "injective" if it returns different result for different values of arguments. * Example: hex, negate, tuple... * * Function could be injective with some arguments fixed to some constant values. * Examples: * plus(const, x); * multiply(const, x) where x is an integer and constant is not divisible by two; * concat(x, 'const'); * concat(x, 'const', y) where const contain at least one non-numeric character; * concat with FixedString * dictGet... functions takes name of dictionary as its argument, * and some dictionaries could be explicitly defined as injective. * * It could be used, for example, to remove useless function applications from GROUP BY. * * Sometimes, function is not really injective, but considered as injective, for purpose of query optimization. * For example, toString function is not injective for Float64 data type, * as it returns 'nan' for many different representation of NaNs. * But we assume, that it is injective. This could be documented as implementation-specific behaviour. * * sample_columns should contain data types of arguments and values of constants, if relevant. * NOTE: to check is function injective with any arguments, you can pass * empty columns as sample_columns (since most of the time function will * ignore it anyway, and creating arguments just for checking is * function injective or not is overkill). */ virtual bool isInjective(const ColumnsWithTypeAndName & /*sample_columns*/) const { return false; } /** Function is called "deterministic", if it returns same result for same values of arguments. * Most of functions are deterministic. Notable counterexample is rand(). * Sometimes, functions are "deterministic" in scope of single query * (even for distributed query), but not deterministic it general. * Example: now(). Another example: functions that work with periodically updated dictionaries. */ virtual bool isDeterministic() const { return true; } virtual bool isDeterministicInScopeOfQuery() const { return true; } /** Lets you know if the function is monotonic in a range of values. * This is used to work with the index in a sorted chunk of data. * And allows to use the index not only when it is written, for example `date >= const`, but also, for example, `toMonth(date) >= 11`. * All this is considered only for functions of one argument. */ virtual bool hasInformationAboutMonotonicity() const { return false; } /** Lets you know if the function has its definition of preimage. * This is used to work with predicate optimizations, where the comparison between * f(x) and a constant c could be converted to the comparison between x and f's preimage [b, e). */ virtual bool hasInformationAboutPreimage() const { return false; } struct ShortCircuitSettings { /// Should we enable lazy execution for the first argument of short-circuit function? /// Example: if(cond, then, else), we don't need to execute cond lazily. bool enable_lazy_execution_for_first_argument; /// Should we enable lazy execution for functions, that are common descendants of /// different short-circuit function arguments? /// Example 1: if (cond, expr1(..., expr, ...), expr2(..., expr, ...)), we don't need /// to execute expr lazily, because it's used in both branches. /// Example 2: and(expr1, expr2(..., expr, ...), expr3(..., expr, ...)), here we /// should enable lazy execution for expr, because it must be filtered by expr1. bool enable_lazy_execution_for_common_descendants_of_arguments; /// Should we enable lazy execution without checking isSuitableForShortCircuitArgumentsExecution? /// Example: toTypeName(expr), even if expr contains functions that are not suitable for /// lazy execution (because of their simplicity), we shouldn't execute them at all. bool force_enable_lazy_execution; }; /** Function is called "short-circuit" if it's arguments can be evaluated lazily * (examples: and, or, if, multiIf). If function is short circuit, it should be * able to work with lazy executed arguments, * this method will be called before function execution. * If function is short circuit, it must define all fields in settings for * appropriate preparations. Number of arguments is provided because some settings might depend on it. * Example: multiIf(cond, else, then) and multiIf(cond1, else1, cond2, else2, ...), the first * version can enable enable_lazy_execution_for_common_descendants_of_arguments setting, the second - not. */ virtual bool isShortCircuit(ShortCircuitSettings & /*settings*/, size_t /*number_of_arguments*/) const { return false; } /** Should we evaluate this function lazily in short-circuit function arguments? * If function can throw an exception or it's computationally heavy, then * it's suitable, otherwise it's not (due to the overhead of lazy execution). * Suitability may depend on function arguments. */ virtual bool isSuitableForShortCircuitArgumentsExecution(const DataTypesWithConstInfo & /*arguments*/) const = 0; /// The property of monotonicity for a certain range. struct Monotonicity { bool is_monotonic = false; /// Is the function monotonous (non-decreasing or non-increasing). bool is_positive = true; /// true if the function is non-decreasing, false if non-increasing. If is_monotonic = false, then it does not matter. bool is_always_monotonic = false; /// Is true if function is monotonic on the whole input range I bool is_strict = false; /// true if the function is strictly decreasing or increasing. }; /** Get information about monotonicity on a range of values. Call only if hasInformationAboutMonotonicity. * NULL can be passed as one of the arguments. This means that the corresponding range is unlimited on the left or on the right. */ virtual Monotonicity getMonotonicityForRange(const IDataType & /*type*/, const Field & /*left*/, const Field & /*right*/) const { throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Function {} has no information about its monotonicity", getName()); } /** Get the preimage of a function in the form of a left-closed and right-open interval. Call only if hasInformationAboutPreimage. * std::nullopt might be returned if the point (a single value) is invalid for this function. */ virtual OptionalFieldInterval getPreimage(const IDataType & /*type*/, const Field & /*point*/) const { throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Function {} has no information about its preimage", getName()); } }; using FunctionBasePtr = std::shared_ptr; /** Creates IFunctionBase from argument types list (chooses one function overload). */ class IFunctionOverloadResolver { public: virtual ~IFunctionOverloadResolver() = default; virtual FunctionBasePtr build(const ColumnsWithTypeAndName & arguments) const; void getLambdaArgumentTypes(DataTypes & arguments) const; void checkNumberOfArguments(size_t number_of_arguments) const; /// Get the main function name. virtual String getName() const = 0; /// For non-variadic functions, return number of arguments; otherwise return zero (that should be ignored). virtual size_t getNumberOfArguments() const = 0; /// TODO: This method should not be duplicated here and in IFunctionBase /// See the comment for the same method in IFunctionBase virtual bool isDeterministic() const { return true; } virtual bool isDeterministicInScopeOfQuery() const { return true; } virtual bool isInjective(const ColumnsWithTypeAndName &) const { return false; } /// Override and return true if function needs to depend on the state of the data. virtual bool isStateful() const { return false; } /// Override and return true if function could take different number of arguments. virtual bool isVariadic() const { return false; } /// For non-variadic functions, return number of arguments; otherwise return zero (that should be ignored). /// For higher-order functions (functions, that have lambda expression as at least one argument). /// You pass data types with empty DataTypeFunction for lambda arguments. /// This function will replace it with DataTypeFunction containing actual types. virtual void getLambdaArgumentTypesImpl(DataTypes & arguments [[maybe_unused]]) const { throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Function {} can't have lambda-expressions as arguments", getName()); } /// Returns indexes of arguments, that must be ColumnConst virtual ColumnNumbers getArgumentsThatAreAlwaysConstant() const { return {}; } /// Returns indexes if arguments, that can be Nullable without making result of function Nullable /// (for functions like isNull(x)) virtual ColumnNumbers getArgumentsThatDontImplyNullableReturnType(size_t number_of_arguments [[maybe_unused]]) const { return {}; } protected: virtual FunctionBasePtr buildImpl(const ColumnsWithTypeAndName & /* arguments */, const DataTypePtr & /* result_type */) const { throw Exception(ErrorCodes::NOT_IMPLEMENTED, "buildImpl is not implemented for {}", getName()); } virtual DataTypePtr getReturnTypeImpl(const DataTypes & /*arguments*/) const { throw Exception(ErrorCodes::NOT_IMPLEMENTED, "getReturnType is not implemented for {}", getName()); } /// This function will be called in default implementation. You can overload it or the previous one. virtual DataTypePtr getReturnTypeImpl(const ColumnsWithTypeAndName & arguments) const { DataTypes data_types(arguments.size()); for (size_t i = 0; i < arguments.size(); ++i) data_types[i] = arguments[i].type; return getReturnTypeImpl(data_types); } /** If useDefaultImplementationForNulls() is true, then change arguments for getReturnType() and build(): * if some of arguments are Nullable(Nothing) then don't call getReturnType(), call build() with return_type = Nullable(Nothing), * if some of arguments are Nullable, then: * - Nullable types are substituted with nested types for getReturnType() function * - wrap getReturnType() result in Nullable type and pass to build * * Otherwise build returns build(arguments, getReturnType(arguments)); */ virtual bool useDefaultImplementationForNulls() const { return true; } /** If useDefaultImplementationForNothing() is true, then change arguments for getReturnType() and build(): * if some of arguments are Nothing then don't call getReturnType(), call build() with return_type = Nothing, * Otherwise build returns build(arguments, getReturnType(arguments)); */ virtual bool useDefaultImplementationForNothing() const { return true; } /** If useDefaultImplementationForLowCardinalityColumns() is true, then change arguments for getReturnType() and build(). * If function arguments has low cardinality types, convert them to ordinary types. * getReturnType returns ColumnLowCardinality if at least one argument type is ColumnLowCardinality. */ virtual bool useDefaultImplementationForLowCardinalityColumns() const { return true; } /** If function arguments has single sparse column and all other arguments are constants, call function on nested column. * Otherwise, convert all sparse columns to ordinary columns. * If default value doesn't change after function execution, returns sparse column as a result. * Otherwise, result column is converted to full. */ virtual bool useDefaultImplementationForSparseColumns() const { return true; } /// If it isn't, will convert all ColumnLowCardinality arguments to full columns. virtual bool canBeExecutedOnLowCardinalityDictionary() const { return true; } private: DataTypePtr getReturnType(const ColumnsWithTypeAndName & arguments) const; DataTypePtr getReturnTypeWithoutLowCardinality(const ColumnsWithTypeAndName & arguments) const; }; using FunctionOverloadResolverPtr = std::shared_ptr; /// Old function interface. Check documentation in IFunction.h. /// If client do not need stateful properties it can implement this interface. class IFunction { public: virtual ~IFunction() = default; virtual String getName() const = 0; virtual ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count) const = 0; virtual ColumnPtr executeImplDryRun(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t input_rows_count) const { return executeImpl(arguments, result_type, input_rows_count); } /** Default implementation in presence of Nullable arguments or NULL constants as arguments is the following: * if some of arguments are NULL constants then return NULL constant, * if some of arguments are Nullable, then execute function as usual for columns, * where Nullable columns are substituted with nested columns (they have arbitrary values in rows corresponding to NULL value) * and wrap result in Nullable column where NULLs are in all rows where any of arguments are NULL. */ virtual bool useDefaultImplementationForNulls() const { return true; } /** Default implementation in presence of arguments with type Nothing is the following: * If some of arguments have type Nothing then default implementation is to return constant column with type Nothing */ virtual bool useDefaultImplementationForNothing() const { return true; } /** If the function have non-zero number of arguments, * and if all arguments are constant, that we could automatically provide default implementation: * arguments are converted to ordinary columns with single value, then function is executed as usual, * and then the result is converted to constant column. */ virtual bool useDefaultImplementationForConstants() const { return false; } /** Some arguments could remain constant during this implementation. */ virtual ColumnNumbers getArgumentsThatAreAlwaysConstant() const { return {}; } /** If function arguments has single low cardinality column and all other arguments are constants, call function on nested column. * Otherwise, convert all low cardinality columns to ordinary columns. * Returns ColumnLowCardinality if at least one argument is ColumnLowCardinality. */ virtual bool useDefaultImplementationForLowCardinalityColumns() const { return true; } /** If function arguments has single sparse column and all other arguments are constants, call function on nested column. * Otherwise, convert all sparse columns to ordinary columns. * If default value doesn't change after function execution, returns sparse column as a result. * Otherwise, result column is converted to full. */ virtual bool useDefaultImplementationForSparseColumns() const { return true; } /// If it isn't, will convert all ColumnLowCardinality arguments to full columns. virtual bool canBeExecutedOnLowCardinalityDictionary() const { return true; } /** True if function can be called on default arguments (include Nullable's) and won't throw. * Counterexample: modulo(0, 0) */ virtual bool canBeExecutedOnDefaultArguments() const { return true; } /// Properties from IFunctionBase (see IFunction.h) virtual bool isSuitableForConstantFolding() const { return true; } virtual ColumnPtr getConstantResultForNonConstArguments(const ColumnsWithTypeAndName & /*arguments*/, const DataTypePtr & /*result_type*/) const { return nullptr; } virtual bool isInjective(const ColumnsWithTypeAndName & /*sample_columns*/) const { return false; } virtual bool isDeterministic() const { return true; } virtual bool isDeterministicInScopeOfQuery() const { return true; } virtual bool isStateful() const { return false; } using ShortCircuitSettings = IFunctionBase::ShortCircuitSettings; virtual bool isShortCircuit(ShortCircuitSettings & /*settings*/, size_t /*number_of_arguments*/) const { return false; } virtual bool isSuitableForShortCircuitArgumentsExecution(const DataTypesWithConstInfo & /*arguments*/) const = 0; virtual bool hasInformationAboutMonotonicity() const { return false; } virtual bool hasInformationAboutPreimage() const { return false; } using Monotonicity = IFunctionBase::Monotonicity; virtual Monotonicity getMonotonicityForRange(const IDataType & /*type*/, const Field & /*left*/, const Field & /*right*/) const { throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Function {} has no information about its monotonicity", getName()); } virtual OptionalFieldInterval getPreimage(const IDataType & /*type*/, const Field & /*point*/) const { throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Function {} has no information about its preimage", getName()); } /// For non-variadic functions, return number of arguments; otherwise return zero (that should be ignored). virtual size_t getNumberOfArguments() const = 0; virtual DataTypePtr getReturnTypeImpl(const DataTypes & /*arguments*/) const { throw Exception(ErrorCodes::NOT_IMPLEMENTED, "getReturnType is not implemented for {}", getName()); } /// Get the result type by argument type. If the function does not apply to these arguments, throw an exception. virtual DataTypePtr getReturnTypeImpl(const ColumnsWithTypeAndName & arguments) const { DataTypes data_types(arguments.size()); for (size_t i = 0; i < arguments.size(); ++i) data_types[i] = arguments[i].type; return getReturnTypeImpl(data_types); } virtual bool isVariadic() const { return false; } virtual void getLambdaArgumentTypes(DataTypes & /*arguments*/) const { throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "Function {} can't have lambda-expressions as arguments", getName()); } virtual ColumnNumbers getArgumentsThatDontImplyNullableReturnType(size_t /*number_of_arguments*/) const { return {}; } #if USE_EMBEDDED_COMPILER bool isCompilable(const DataTypes & arguments, const DataTypePtr & result_type) const; llvm::Value * compile(llvm::IRBuilderBase & builder, const ValuesWithType & arguments, const DataTypePtr & result_type) const; #endif protected: #if USE_EMBEDDED_COMPILER virtual bool isCompilableImpl(const DataTypes & /*arguments*/, const DataTypePtr & /*result_type*/) const { return false; } virtual llvm::Value * compileImpl(llvm::IRBuilderBase & /*builder*/, const ValuesWithType & /*arguments*/, const DataTypePtr & /*result_type*/) const { throw Exception(ErrorCodes::NOT_IMPLEMENTED, "{} is not JIT-compilable", getName()); } #endif }; using FunctionPtr = std::shared_ptr; }