#pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace DB { namespace ErrorCodes { extern const int LOGICAL_ERROR; extern const int DECIMAL_OVERFLOW; extern const int ILLEGAL_COLUMN; extern const int ILLEGAL_TYPE_OF_ARGUMENT; extern const int NUMBER_OF_ARGUMENTS_DOESNT_MATCH; } /// Type of first argument of 'execute' function overload defines what INPUT DataType it is used for. /// Return type defines what is the OUTPUT (return) type of the CH function. /// Corresponding types: /// - UInt16 => DataTypeDate /// - UInt32 => DataTypeDateTime /// - DateTime64 => DataTypeDateTime64 /// Please note that INPUT and OUTPUT types may differ, e.g.: /// - 'AddSecondsImpl::execute(UInt32, ...) -> UInt32' is available to the ClickHouse users as 'addSeconds(DateTime, ...) -> DateTime' /// - 'AddSecondsImpl::execute(UInt16, ...) -> UInt32' is available to the ClickHouse users as 'addSeconds(Date, ...) -> DateTime' struct AddNanosecondsImpl { static constexpr auto name = "addNanoseconds"; static inline NO_SANITIZE_UNDEFINED DecimalUtils::DecimalComponents execute(DecimalUtils::DecimalComponents t, Int64 delta, const DateLUTImpl &, UInt16 scale = DataTypeDateTime64::default_scale) { Int64 multiplier = DecimalUtils::scaleMultiplier(9 - scale); auto division = std::div(t.fractional * multiplier + delta, static_cast(1000000000)); return {t.whole * multiplier + division.quot, t.fractional * multiplier + delta}; } static inline NO_SANITIZE_UNDEFINED DateTime64 execute(DateTime64 t, Int64 delta, const DateLUTImpl &, UInt16 scale = 0) { Int64 multiplier = DecimalUtils::scaleMultiplier(9 - scale); return t * multiplier + delta; } static inline NO_SANITIZE_UNDEFINED UInt32 execute(UInt32 t, Int64 delta, const DateLUTImpl &, UInt16 = 0) { Int64 multiplier = DecimalUtils::scaleMultiplier(9); return static_cast(t * multiplier + delta); } static inline NO_SANITIZE_UNDEFINED DateTime64 execute(UInt16, Int64, const DateLUTImpl &, UInt16 = 0) { throw Exception("addNanoSeconds() cannot be used with Date", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT); } static inline NO_SANITIZE_UNDEFINED DateTime64 execute(Int32, Int64, const DateLUTImpl &, UInt16 = 0) { throw Exception("addNanoSeconds() cannot be used with Date32", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT); } }; struct AddMicrosecondsImpl { static constexpr auto name = "addMicroseconds"; static inline NO_SANITIZE_UNDEFINED DecimalUtils::DecimalComponents execute(DecimalUtils::DecimalComponents t, Int64 delta, const DateLUTImpl &, UInt16 scale = 0) { Int64 multiplier = DecimalUtils::scaleMultiplier(std::abs(6 - scale)); if (scale <= 6) { auto division = std::div((t.fractional + delta), static_cast(10e6)); return {t.whole * multiplier + division.quot, division.rem}; } else { auto division = std::div((t.fractional + delta * multiplier), static_cast(10e6 * multiplier)); return {t.whole + division.quot, division.rem}; } } static inline NO_SANITIZE_UNDEFINED DateTime64 execute(DateTime64 t, Int64 delta, const DateLUTImpl &, UInt16 scale = 0) { Int64 multiplier = DecimalUtils::scaleMultiplier(std::abs(6 - scale)); return scale <= 6 ? t * multiplier + delta : t + delta * multiplier; } static inline NO_SANITIZE_UNDEFINED UInt32 execute(UInt32 t, Int64 delta, const DateLUTImpl &, UInt16 = 0) { Int64 multiplier = DecimalUtils::scaleMultiplier(6); return static_cast(t * multiplier + delta); } static inline NO_SANITIZE_UNDEFINED DateTime64 execute(UInt16, Int64, const DateLUTImpl &, UInt16 = 0) { throw Exception("addMicroSeconds() cannot be used with Date", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT); } static inline NO_SANITIZE_UNDEFINED DateTime64 execute(Int32, Int64, const DateLUTImpl &, UInt16 = 0) { throw Exception("addMicroSeconds() cannot be used with Date32", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT); } }; struct AddMillisecondsImpl { static constexpr auto name = "addMilliseconds"; static inline NO_SANITIZE_UNDEFINED DecimalUtils::DecimalComponents execute(DecimalUtils::DecimalComponents t, Int64 delta, const DateLUTImpl &, UInt16 scale = DataTypeDateTime64::default_scale) { Int64 multiplier = DecimalUtils::scaleMultiplier(std::abs(3 - scale)); if (scale <= 3) { auto division = std::div((t.fractional + delta), static_cast(1000)); return {t.whole * multiplier + division.quot, division.rem}; } else { auto division = std::div((t.fractional + delta * multiplier), static_cast(1000 * multiplier)); return {t.whole + division.quot,division.rem}; } } static inline NO_SANITIZE_UNDEFINED DateTime64 execute(DateTime64 t, Int64 delta, const DateLUTImpl &, UInt16 scale = 0) { Int64 multiplier = DecimalUtils::scaleMultiplier(std::abs(3 - scale)); return scale <= 3 ? t * multiplier + delta : t + delta * multiplier; } static inline NO_SANITIZE_UNDEFINED UInt32 execute(UInt32 t, Int64 delta, const DateLUTImpl &, UInt16 = 0) { Int64 multiplier = DecimalUtils::scaleMultiplier(3); return static_cast(t * multiplier + delta); } static inline NO_SANITIZE_UNDEFINED DateTime64 execute(UInt16, Int64, const DateLUTImpl &, UInt16 = 0) { throw Exception("addMilliSeconds() cannot be used with Date", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT); } static inline NO_SANITIZE_UNDEFINED DateTime64 execute(Int32, Int64, const DateLUTImpl &, UInt16 = 0) { throw Exception("addMilliSeconds() cannot be used with Date32", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT); } }; struct AddSecondsImpl { static constexpr auto name = "addSeconds"; static inline NO_SANITIZE_UNDEFINED DecimalUtils::DecimalComponents execute(DecimalUtils::DecimalComponents t, Int64 delta, const DateLUTImpl &, UInt16 = 0) { return {t.whole + delta, t.fractional}; } static inline NO_SANITIZE_UNDEFINED DateTime64 execute(DateTime64 t, Int64 delta, const DateLUTImpl &, UInt16 scale = 0) { return t + delta * DecimalUtils::scaleMultiplier(scale); } static inline NO_SANITIZE_UNDEFINED UInt32 execute(UInt32 t, Int64 delta, const DateLUTImpl &, UInt16 = 0) { return static_cast(t + delta); } static inline NO_SANITIZE_UNDEFINED Int64 execute(Int32 d, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0) { // use default datetime64 scale return (time_zone.fromDayNum(ExtendedDayNum(d)) + delta) * 1000; } static inline NO_SANITIZE_UNDEFINED UInt32 execute(UInt16 d, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0) { return static_cast(time_zone.fromDayNum(DayNum(d)) + delta); } }; struct AddMinutesImpl { static constexpr auto name = "addMinutes"; static inline NO_SANITIZE_UNDEFINED DecimalUtils::DecimalComponents execute(DecimalUtils::DecimalComponents t, Int64 delta, const DateLUTImpl &, UInt16 = 0) { return {t.whole + delta * 60, t.fractional}; } static inline NO_SANITIZE_UNDEFINED DateTime64 execute(DateTime64 t, Int64 delta, const DateLUTImpl &, UInt16 scale = 0) { return t + 60 * delta * DecimalUtils::scaleMultiplier(scale); } static inline NO_SANITIZE_UNDEFINED UInt32 execute(UInt32 t, Int64 delta, const DateLUTImpl &, UInt16 = 0) { return static_cast(t + delta * 60); } static inline NO_SANITIZE_UNDEFINED Int64 execute(Int32 d, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0) { // use default datetime64 scale return (time_zone.fromDayNum(ExtendedDayNum(d)) + delta * 60) * 1000; } static inline NO_SANITIZE_UNDEFINED UInt32 execute(UInt16 d, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0) { return static_cast(time_zone.fromDayNum(DayNum(d)) + delta * 60); } }; struct AddHoursImpl { static constexpr auto name = "addHours"; static inline NO_SANITIZE_UNDEFINED DecimalUtils::DecimalComponents execute(DecimalUtils::DecimalComponents t, Int64 delta, const DateLUTImpl &, UInt16 = 0) { return {t.whole + delta * 3600, t.fractional}; } static inline NO_SANITIZE_UNDEFINED DateTime64 execute(DateTime64 t, Int64 delta, const DateLUTImpl &, UInt16 scale = 0) { return t + 3600 * delta * DecimalUtils::scaleMultiplier(scale); } static inline NO_SANITIZE_UNDEFINED UInt32 execute(UInt32 t, Int64 delta, const DateLUTImpl &, UInt16 = 0) { return static_cast(t + delta * 3600); } static inline NO_SANITIZE_UNDEFINED Int64 execute(Int32 d, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0) { // use default datetime64 scale return (time_zone.fromDayNum(ExtendedDayNum(d)) + delta * 3600) * 1000; } static inline NO_SANITIZE_UNDEFINED UInt32 execute(UInt16 d, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0) { return static_cast(time_zone.fromDayNum(DayNum(d)) + delta * 3600); } }; struct AddDaysImpl { static constexpr auto name = "addDays"; static inline NO_SANITIZE_UNDEFINED DecimalUtils::DecimalComponents execute(DecimalUtils::DecimalComponents t, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0) { return {time_zone.addDays(t.whole, delta), t.fractional}; } static inline NO_SANITIZE_UNDEFINED DateTime64 execute(DateTime64 t, Int64 delta, const DateLUTImpl & time_zone, UInt16 scale = 0) { auto multiplier = DecimalUtils::scaleMultiplier(scale); auto d = std::div(t, multiplier); return time_zone.addDays(d.quot, delta) * multiplier + d.rem; } static inline NO_SANITIZE_UNDEFINED UInt32 execute(UInt32 t, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0) { return static_cast(time_zone.addDays(t, delta)); } static inline NO_SANITIZE_UNDEFINED UInt16 execute(UInt16 d, Int64 delta, const DateLUTImpl &, UInt16 = 0) { return d + delta; } static inline NO_SANITIZE_UNDEFINED Int32 execute(Int32 d, Int64 delta, const DateLUTImpl &, UInt16 = 0) { return static_cast(d + delta); } }; struct AddWeeksImpl { static constexpr auto name = "addWeeks"; static inline NO_SANITIZE_UNDEFINED DecimalUtils::DecimalComponents execute(DecimalUtils::DecimalComponents t, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0) { return {time_zone.addWeeks(t.whole, delta), t.fractional}; } static inline NO_SANITIZE_UNDEFINED DateTime64 execute(DateTime64 t, Int64 delta, const DateLUTImpl & time_zone, UInt16 scale = 0) { auto multiplier = DecimalUtils::scaleMultiplier(scale); auto d = std::div(t, multiplier); return time_zone.addDays(d.quot, delta * 7) * multiplier + d.rem; } static inline NO_SANITIZE_UNDEFINED UInt32 execute(UInt32 t, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0) { return static_cast(time_zone.addWeeks(t, delta)); } static inline NO_SANITIZE_UNDEFINED UInt16 execute(UInt16 d, Int64 delta, const DateLUTImpl &, UInt16 = 0) { return static_cast(d + delta * 7); } static inline NO_SANITIZE_UNDEFINED Int32 execute(Int32 d, Int64 delta, const DateLUTImpl &, UInt16 = 0) { return static_cast(d + delta * 7); } }; struct AddMonthsImpl { static constexpr auto name = "addMonths"; static inline NO_SANITIZE_UNDEFINED DecimalUtils::DecimalComponents execute(DecimalUtils::DecimalComponents t, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0) { return {time_zone.addMonths(t.whole, delta), t.fractional}; } static inline NO_SANITIZE_UNDEFINED DateTime64 execute(DateTime64 t, Int64 delta, const DateLUTImpl & time_zone, UInt16 scale = 0) { auto multiplier = DecimalUtils::scaleMultiplier(scale); auto d = std::div(t, multiplier); return time_zone.addMonths(d.quot, delta) * multiplier + d.rem; } static inline NO_SANITIZE_UNDEFINED UInt32 execute(UInt32 t, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0) { return static_cast(time_zone.addMonths(t, delta)); } static inline NO_SANITIZE_UNDEFINED UInt16 execute(UInt16 d, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0) { return time_zone.addMonths(DayNum(d), delta); } static inline NO_SANITIZE_UNDEFINED Int32 execute(Int32 d, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0) { return time_zone.addMonths(ExtendedDayNum(d), delta); } }; struct AddQuartersImpl { static constexpr auto name = "addQuarters"; static inline DecimalUtils::DecimalComponents execute(DecimalUtils::DecimalComponents t, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0) { return {time_zone.addQuarters(t.whole, delta), t.fractional}; } static inline NO_SANITIZE_UNDEFINED DateTime64 execute(DateTime64 t, Int64 delta, const DateLUTImpl & time_zone, UInt16 scale = 0) { auto multiplier = DecimalUtils::scaleMultiplier(scale); auto d = std::div(t, multiplier); return time_zone.addQuarters(d.quot, delta) * multiplier + d.rem; } static inline UInt32 execute(UInt32 t, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0) { return static_cast(time_zone.addQuarters(t, delta)); } static inline UInt16 execute(UInt16 d, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0) { return time_zone.addQuarters(DayNum(d), delta); } static inline Int32 execute(Int32 d, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0) { return time_zone.addQuarters(ExtendedDayNum(d), delta); } }; struct AddYearsImpl { static constexpr auto name = "addYears"; static inline NO_SANITIZE_UNDEFINED DecimalUtils::DecimalComponents execute(DecimalUtils::DecimalComponents t, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0) { return {time_zone.addYears(t.whole, delta), t.fractional}; } static inline NO_SANITIZE_UNDEFINED DateTime64 execute(DateTime64 t, Int64 delta, const DateLUTImpl & time_zone, UInt16 scale = 0) { auto multiplier = DecimalUtils::scaleMultiplier(scale); auto d = std::div(t, multiplier); return time_zone.addYears(d.quot, delta) * multiplier + d.rem; } static inline NO_SANITIZE_UNDEFINED UInt32 execute(UInt32 t, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0) { return static_cast(time_zone.addYears(t, delta)); } static inline NO_SANITIZE_UNDEFINED UInt16 execute(UInt16 d, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0) { return time_zone.addYears(DayNum(d), delta); } static inline NO_SANITIZE_UNDEFINED Int32 execute(Int32 d, Int64 delta, const DateLUTImpl & time_zone, UInt16 = 0) { return time_zone.addYears(ExtendedDayNum(d), delta); } }; template struct SubtractIntervalImpl : public Transform { using Transform::Transform; template inline NO_SANITIZE_UNDEFINED auto execute(T t, Int64 delta, const DateLUTImpl & time_zone, UInt16 scale) const { /// Signed integer overflow is Ok. return Transform::execute(t, -delta, time_zone, scale); } }; struct SubtractNanosecondsImpl : SubtractIntervalImpl { static constexpr auto name = "subtractNanoseconds"; }; struct SubtractMicrosecondsImpl : SubtractIntervalImpl { static constexpr auto name = "subtractMicroseconds"; }; struct SubtractMillisecondsImpl : SubtractIntervalImpl { static constexpr auto name = "subtractMilliseconds"; }; struct SubtractSecondsImpl : SubtractIntervalImpl { static constexpr auto name = "subtractSeconds"; }; struct SubtractMinutesImpl : SubtractIntervalImpl { static constexpr auto name = "subtractMinutes"; }; struct SubtractHoursImpl : SubtractIntervalImpl { static constexpr auto name = "subtractHours"; }; struct SubtractDaysImpl : SubtractIntervalImpl { static constexpr auto name = "subtractDays"; }; struct SubtractWeeksImpl : SubtractIntervalImpl { static constexpr auto name = "subtractWeeks"; }; struct SubtractMonthsImpl : SubtractIntervalImpl { static constexpr auto name = "subtractMonths"; }; struct SubtractQuartersImpl : SubtractIntervalImpl { static constexpr auto name = "subtractQuarters"; }; struct SubtractYearsImpl : SubtractIntervalImpl { static constexpr auto name = "subtractYears"; }; template struct Adder { const Transform transform; explicit Adder(Transform transform_) : transform(std::move(transform_)) {} template void NO_INLINE vectorConstant(const FromVectorType & vec_from, ToVectorType & vec_to, Int64 delta, const DateLUTImpl & time_zone, UInt16 scale) const { size_t size = vec_from.size(); vec_to.resize(size); for (size_t i = 0; i < size; ++i) vec_to[i] = transform.execute(vec_from[i], checkOverflow(delta), time_zone, scale); } template void vectorVector(const FromVectorType & vec_from, ToVectorType & vec_to, const IColumn & delta, const DateLUTImpl & time_zone, UInt16 scale) const { size_t size = vec_from.size(); vec_to.resize(size); castTypeToEither< ColumnUInt8, ColumnUInt16, ColumnUInt32, ColumnUInt64, ColumnInt8, ColumnInt16, ColumnInt32, ColumnInt64, ColumnFloat32, ColumnFloat64>( &delta, [&](const auto & column){ vectorVector(vec_from, vec_to, column, time_zone, scale, size); return true; }); } template void constantVector(const FromType & from, ToVectorType & vec_to, const IColumn & delta, const DateLUTImpl & time_zone, UInt16 scale) const { size_t size = delta.size(); vec_to.resize(size); castTypeToEither< ColumnUInt8, ColumnUInt16, ColumnUInt32, ColumnUInt64, ColumnInt8, ColumnInt16, ColumnInt32, ColumnInt64, ColumnFloat32, ColumnFloat64>( &delta, [&](const auto & column){ constantVector(from, vec_to, column, time_zone, scale, size); return true; }); } private: template static Int64 checkOverflow(Value val) { Int64 result; if (accurate::convertNumeric(val, result)) return result; throw DB::Exception("Numeric overflow", ErrorCodes::DECIMAL_OVERFLOW); } template NO_INLINE NO_SANITIZE_UNDEFINED void vectorVector( const FromVectorType & vec_from, ToVectorType & vec_to, const DeltaColumnType & delta, const DateLUTImpl & time_zone, UInt16 scale, size_t size) const { for (size_t i = 0; i < size; ++i) vec_to[i] = transform.execute(vec_from[i], checkOverflow(delta.getData()[i]), time_zone, scale); } template NO_INLINE NO_SANITIZE_UNDEFINED void constantVector( const FromType & from, ToVectorType & vec_to, const DeltaColumnType & delta, const DateLUTImpl & time_zone, UInt16 scale, size_t size) const { for (size_t i = 0; i < size; ++i) vec_to[i] = transform.execute(from, checkOverflow(delta.getData()[i]), time_zone, scale); } }; template struct DateTimeAddIntervalImpl { static ColumnPtr execute(Transform transform, const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, UInt16 scale = 0) { using FromValueType = typename FromDataType::FieldType; using FromColumnType = typename FromDataType::ColumnType; using ToColumnType = typename ToDataType::ColumnType; auto op = Adder{std::move(transform)}; const DateLUTImpl & time_zone = extractTimeZoneFromFunctionArguments(arguments, 2, 0); const ColumnPtr source_col = arguments[0].column; auto result_col = result_type->createColumn(); auto col_to = assert_cast(result_col.get()); const IColumn & delta_column = *arguments[1].column; if (const auto * sources = checkAndGetColumn(source_col.get())) { if (const auto * delta_const_column = typeid_cast(&delta_column)) op.vectorConstant(sources->getData(), col_to->getData(), delta_const_column->getInt(0), time_zone, scale); else op.vectorVector(sources->getData(), col_to->getData(), delta_column, time_zone, scale); } else if (const auto * sources_const = checkAndGetColumnConst(source_col.get())) { op.constantVector( sources_const->template getValue(), col_to->getData(), delta_column, time_zone, scale); } else { throw Exception(ErrorCodes::ILLEGAL_COLUMN, "Illegal column {} of first argument of function {}", arguments[0].column->getName(), Transform::name); } return result_col; } }; namespace date_and_time_type_details { // Compile-time mapping of value (DataType::FieldType) types to corresponding DataType template struct ResultDataTypeMap {}; template <> struct ResultDataTypeMap { using ResultDataType = DataTypeDate; }; template <> struct ResultDataTypeMap { using ResultDataType = DataTypeDate; }; template <> struct ResultDataTypeMap { using ResultDataType = DataTypeDateTime; }; template <> struct ResultDataTypeMap { using ResultDataType = DataTypeDate32; }; template <> struct ResultDataTypeMap { using ResultDataType = DataTypeDateTime64; }; template <> struct ResultDataTypeMap { using ResultDataType = DataTypeDateTime64; }; } template class FunctionDateOrDateTimeAddInterval : public IFunction { public: static constexpr auto name = Transform::name; static FunctionPtr create(ContextPtr) { return std::make_shared(); } String getName() const override { return name; } bool isVariadic() const override { return true; } size_t getNumberOfArguments() const override { return 0; } bool isSuitableForShortCircuitArgumentsExecution(const DataTypesWithConstInfo & /*arguments*/) const override { return false; } DataTypePtr getReturnTypeImpl(const ColumnsWithTypeAndName & arguments) const override { if (arguments.size() != 2 && arguments.size() != 3) throw Exception("Number of arguments for function " + getName() + " doesn't match: passed " + toString(arguments.size()) + ", should be 2 or 3", ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH); if (!isNativeNumber(arguments[1].type)) throw Exception("Second argument for function " + getName() + " (delta) must be a number", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT); if (arguments.size() == 2) { if (!isDate(arguments[0].type) && !isDate32(arguments[0].type) && !isDateTime(arguments[0].type) && !isDateTime64(arguments[0].type)) throw Exception{"Illegal type " + arguments[0].type->getName() + " of first argument of function " + getName() + ". Should be a date or a date with time", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT}; } else { if (!WhichDataType(arguments[0].type).isDateTime() || !WhichDataType(arguments[2].type).isString()) { throw Exception( "Function " + getName() + " supports 2 or 3 arguments. The 1st argument " "must be of type Date or DateTime. The 2nd argument must be a number. " "The 3rd argument (optional) must be " "a constant string with timezone name. The timezone argument is allowed " "only when the 1st argument has the type DateTime", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT); } } switch (arguments[0].type->getTypeId()) { case TypeIndex::Date: return resolveReturnType(arguments); case TypeIndex::Date32: return resolveReturnType(arguments); case TypeIndex::DateTime: return resolveReturnType(arguments); case TypeIndex::DateTime64: return resolveReturnType(arguments); default: { throw Exception("Invalid type of 1st argument of function " + getName() + ": " + arguments[0].type->getName() + ", expected: Date, DateTime or DateTime64.", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT); } } } /// Helper templates to deduce return type based on argument type, since some overloads may promote or denote types, /// e.g. addSeconds(Date, 1) => DateTime template using TransformExecuteReturnType = decltype(std::declval().execute(FieldType(), 0, std::declval(), 0)); // Deduces RETURN DataType from INPUT DataType, based on return type of Transform{}.execute(INPUT_TYPE, UInt64, DateLUTImpl). // e.g. for Transform-type that has execute()-overload with 'UInt16' input and 'UInt32' return, // argument type is expected to be 'Date', and result type is deduced to be 'DateTime'. template using TransformResultDataType = typename date_and_time_type_details::ResultDataTypeMap>::ResultDataType; template DataTypePtr resolveReturnType(const ColumnsWithTypeAndName & arguments) const { using ResultDataType = TransformResultDataType; if constexpr (std::is_same_v) { return std::make_shared(); } else if constexpr (std::is_same_v) { return std::make_shared(); } else if constexpr (std::is_same_v) { return std::make_shared(extractTimeZoneNameFromFunctionArguments(arguments, 2, 0)); } else if constexpr (std::is_same_v) { static constexpr auto target_scale = std::invoke( []() -> std::optional { if constexpr (std::is_base_of_v) return 9; else if constexpr (std::is_base_of_v) return 6; else if constexpr (std::is_base_of_v) return 3; return {}; }); auto timezone = extractTimeZoneNameFromFunctionArguments(arguments, 2, 0); if (const auto* datetime64_type = typeid_cast(arguments[0].type.get())) { const auto from_scale = datetime64_type->getScale(); return std::make_shared(std::max(from_scale, target_scale.value_or(from_scale)), std::move(timezone)); } return std::make_shared(target_scale.value_or(DataTypeDateTime64::default_scale), std::move(timezone)); } throw Exception(ErrorCodes::LOGICAL_ERROR, "Unexpected result type in datetime add interval function"); } bool useDefaultImplementationForConstants() const override { return true; } ColumnNumbers getArgumentsThatAreAlwaysConstant() const override { return {2}; } ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr & result_type, size_t /*input_rows_count*/) const override { const IDataType * from_type = arguments[0].type.get(); WhichDataType which(from_type); if (which.isDate()) { return DateTimeAddIntervalImpl, Transform>::execute( Transform{}, arguments, result_type); } else if (which.isDate32()) { return DateTimeAddIntervalImpl, Transform>::execute( Transform{}, arguments, result_type); } else if (which.isDateTime()) { return DateTimeAddIntervalImpl, Transform>::execute( Transform{}, arguments, result_type); } else if (const auto * datetime64_type = assert_cast(from_type)) { auto from_scale = datetime64_type->getScale(); return DateTimeAddIntervalImpl, Transform>::execute( Transform{}, arguments, result_type, from_scale); } else throw Exception("Illegal type " + arguments[0].type->getName() + " of first argument of function " + getName(), ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT); } }; }