---
slug: /ru/engines/table-engines/integrations/hdfs
sidebar_position: 6
sidebar_label: HDFS
---
# HDFS {#table_engines-hdfs}
Этот движок обеспечивает интеграцию с экосистемой [Apache Hadoop](https://ru.wikipedia.org/wiki/Hadoop), позволяя управлять данными в HDFS посредством ClickHouse. Данный движок похож на движки [File](../special/file.md#table_engines-file) и [URL](../special/url.md#table_engines-url), но предоставляет возможности, характерные для Hadoop.
## Использование движка {#usage}
``` sql
ENGINE = HDFS(URI, format)
```
**Параметры движка**
В параметр `URI` нужно передавать полный URI файла в HDFS. Часть URI с путем файла может содержать шаблоны. В этом случае таблица может использоваться только для чтения.
Параметр `format` должен быть таким, который ClickHouse может использовать и в запросах `INSERT`, и в запросах `SELECT`. Полный список поддерживаемых форматов смотрите в разделе [Форматы](../../../interfaces/formats.md#formats).
**Пример:**
**1.** Создадим на сервере таблицу `hdfs_engine_table`:
``` sql
CREATE TABLE hdfs_engine_table (name String, value UInt32) ENGINE=HDFS('hdfs://hdfs1:9000/other_storage', 'TSV')
```
**2.** Заполним файл:
``` sql
INSERT INTO hdfs_engine_table VALUES ('one', 1), ('two', 2), ('three', 3)
```
**3.** Запросим данные:
``` sql
SELECT * FROM hdfs_engine_table LIMIT 2
```
``` text
┌─name─┬─value─┐
│ one │ 1 │
│ two │ 2 │
└──────┴───────┘
```
## Детали реализации {#implementation-details}
- Поддерживается многопоточное чтение и запись.
- Поддерживается репликация без копирования данных ([zero-copy](../../../operations/storing-data.md#zero-copy)).
- Не поддерживается:
- использование операций `ALTER` и `SELECT...SAMPLE`;
- индексы.
**Шаблоны в пути**
Шаблоны могут содержаться в нескольких компонентах пути. Обрабатываются только существующие файлы, название которых целиком удовлетворяет шаблону (не только суффиксом или префиксом).
- `*` — Заменяет любое количество любых символов кроме `/`, включая отсутствие символов.
- `?` — Заменяет ровно один любой символ.
- `{some_string,another_string,yet_another_one}` — Заменяет любую из строк `'some_string', 'another_string', 'yet_another_one'`.
- `{N..M}` — Заменяет любое число в интервале от `N` до `M` включительно (может содержать ведущие нули).
Конструкция с `{}` аналогична табличной функции [remote](../../../engines/table-engines/integrations/hdfs.md).
**Пример**
1. Предположим, у нас есть несколько файлов со следующими URI в HDFS:
- 'hdfs://hdfs1:9000/some_dir/some_file_1'
- 'hdfs://hdfs1:9000/some_dir/some_file_2'
- 'hdfs://hdfs1:9000/some_dir/some_file_3'
- 'hdfs://hdfs1:9000/another_dir/some_file_1'
- 'hdfs://hdfs1:9000/another_dir/some_file_2'
- 'hdfs://hdfs1:9000/another_dir/some_file_3'
1. Есть несколько возможностей создать таблицу, состояющую из этих шести файлов:
``` sql
CREATE TABLE table_with_range (name String, value UInt32) ENGINE = HDFS('hdfs://hdfs1:9000/{some,another}_dir/some_file_{1..3}', 'TSV')
```
Другой способ:
``` sql
CREATE TABLE table_with_question_mark (name String, value UInt32) ENGINE = HDFS('hdfs://hdfs1:9000/{some,another}_dir/some_file_?', 'TSV')
```
Таблица, состоящая из всех файлов в обеих директориях (все файлы должны удовлетворять формату и схеме, указанной в запросе):
``` sql
CREATE TABLE table_with_asterisk (name String, value UInt32) ENGINE = HDFS('hdfs://hdfs1:9000/{some,another}_dir/*', 'TSV')
```
:::danger Предупреждение
Если список файлов содержит числовые интервалы с ведущими нулями, используйте конструкцию с фигурными скобочками для каждой цифры или используйте `?`.
:::
**Example**
Создадим таблицу с именами `file000`, `file001`, … , `file999`:
``` sql
CREATE TABLE big_table (name String, value UInt32) ENGINE = HDFS('hdfs://hdfs1:9000/big_dir/file{0..9}{0..9}{0..9}', 'CSV')
```
## Конфигурация {#configuration}
Похоже на GraphiteMergeTree, движок HDFS поддерживает расширенную конфигурацию с использованием файла конфигурации ClickHouse. Есть два раздела конфигурации которые вы можете использовать: глобальный (`hdfs`) и на уровне пользователя (`hdfs_*`). Глобальные настройки применяются первыми, и затем применяется конфигурация уровня пользователя (если она указана).
``` xml
/tmp/keytab/clickhouse.keytab
clickuser@TEST.CLICKHOUSE.TECH
kerberos
root@TEST.CLICKHOUSE.TECH
```
### Параметры конфигурации {#configuration-options}
#### Поддерживаемые из libhdfs3 {#supported-by-libhdfs3}
| **параметр** | **по умолчанию** |
| - | - |
| rpc\_client\_connect\_tcpnodelay | true |
| dfs\_client\_read\_shortcircuit | true |
| output\_replace-datanode-on-failure | true |
| input\_notretry-another-node | false |
| input\_localread\_mappedfile | true |
| dfs\_client\_use\_legacy\_blockreader\_local | false |
| rpc\_client\_ping\_interval | 10 * 1000 |
| rpc\_client\_connect\_timeout | 600 * 1000 |
| rpc\_client\_read\_timeout | 3600 * 1000 |
| rpc\_client\_write\_timeout | 3600 * 1000 |
| rpc\_client\_socekt\_linger\_timeout | -1 |
| rpc\_client\_connect\_retry | 10 |
| rpc\_client\_timeout | 3600 * 1000 |
| dfs\_default\_replica | 3 |
| input\_connect\_timeout | 600 * 1000 |
| input\_read\_timeout | 3600 * 1000 |
| input\_write\_timeout | 3600 * 1000 |
| input\_localread\_default\_buffersize | 1 * 1024 * 1024 |
| dfs\_prefetchsize | 10 |
| input\_read\_getblockinfo\_retry | 3 |
| input\_localread\_blockinfo\_cachesize | 1000 |
| input\_read\_max\_retry | 60 |
| output\_default\_chunksize | 512 |
| output\_default\_packetsize | 64 * 1024 |
| output\_default\_write\_retry | 10 |
| output\_connect\_timeout | 600 * 1000 |
| output\_read\_timeout | 3600 * 1000 |
| output\_write\_timeout | 3600 * 1000 |
| output\_close\_timeout | 3600 * 1000 |
| output\_packetpool\_size | 1024 |
| output\_heeartbeat\_interval | 10 * 1000 |
| dfs\_client\_failover\_max\_attempts | 15 |
| dfs\_client\_read\_shortcircuit\_streams\_cache\_size | 256 |
| dfs\_client\_socketcache\_expiryMsec | 3000 |
| dfs\_client\_socketcache\_capacity | 16 |
| dfs\_default\_blocksize | 64 * 1024 * 1024 |
| dfs\_default\_uri | "hdfs://localhost:9000" |
| hadoop\_security\_authentication | "simple" |
| hadoop\_security\_kerberos\_ticket\_cache\_path | "" |
| dfs\_client\_log\_severity | "INFO" |
| dfs\_domain\_socket\_path | "" |
[Руководство по конфигурации HDFS](https://hawq.apache.org/docs/userguide/2.3.0.0-incubating/reference/HDFSConfigurationParameterReference.html) поможет обьяснить назначения некоторых параметров.
#### Расширенные параметры для ClickHouse {#clickhouse-extras}
| **параметр** | **по умолчанию** |
| - | - |
|hadoop\_kerberos\_keytab | "" |
|hadoop\_kerberos\_principal | "" |
### Ограничения {#limitations}
* `hadoop_security_kerberos_ticket_cache_path` и `libhdfs3_conf` могут быть определены только на глобальном, а не на пользовательском уровне
## Поддержка Kerberos {#kerberos-support}
Если параметр `hadoop_security_authentication` имеет значение `kerberos`, ClickHouse аутентифицируется с помощью Kerberos.
[Расширенные параметры](#clickhouse-extras) и `hadoop_security_kerberos_ticket_cache_path` помогают сделать это.
Обратите внимание что из-за ограничений libhdfs3 поддерживается только устаревший метод аутентификации,
коммуникация с узлами данных не защищена SASL (`HADOOP_SECURE_DN_USER` надежный показатель такого
подхода к безопасности). Используйте `tests/integration/test_storage_kerberized_hdfs/hdfs_configs/bootstrap.sh` для примера настроек.
Если `hadoop_kerberos_keytab`, `hadoop_kerberos_principal` или `hadoop_security_kerberos_ticket_cache_path` указаны в настройках, будет использоваться аутентификация с помощью Kerberos. `hadoop_kerberos_keytab` и `hadoop_kerberos_principal` обязательны в этом случае.
## Виртуальные столбцы {#virtual-columns}
- `_path` — Путь к файлу.
- `_file` — Имя файла.
**См. также**
- [Виртуальные колонки](../../../engines/table-engines/index.md#table_engines-virtual_columns)