#pragma once #include #include #include #include #include #include #include #include #include #include #include namespace DB { /** A dynamic array for POD types. * Designed for a small number of large arrays (rather than a lot of small ones). * To be more precise - for use in ColumnVector. * It differs from std::vector in that it does not initialize the elements. * * Made noncopyable so that there are no accidential copies. You can copy the data using `assign` method. * * Only part of the std::vector interface is supported. * * The default constructor creates an empty object that does not allocate memory. * Then the memory is allocated at least INITIAL_SIZE bytes. * * If you insert elements with push_back, without making a `reserve`, then PODArray is about 2.5 times faster than std::vector. * * The template parameter `pad_right` - always allocate at the end of the array as many unused bytes. * Can be used to make optimistic reading, writing, copying with unaligned SIMD instructions. * * Some methods using allocator have TAllocatorParams variadic arguments. * These arguments will be passed to corresponding methods of TAllocator. * Example: pointer to Arena, that is used for allocations. * * Why Allocator is not passed through constructor, as it is done in C++ standard library? * Because sometimes we have many small objects, that share same allocator with same parameters, * and we must avoid larger object size due to storing the same parameters in each object. * This is required for states of aggregate functions. */ template , size_t pad_right_ = 0> class PODArray : private boost::noncopyable, private TAllocator /// empty base optimization { protected: /// Round padding up to an whole number of elements to simplify arithmetic. static constexpr size_t pad_right = (pad_right_ + sizeof(T) - 1) / sizeof(T) * sizeof(T); char * c_start = nullptr; char * c_end = nullptr; char * c_end_of_storage = nullptr; /// Does not include pad_right. T * t_start() { return reinterpret_cast(c_start); } T * t_end() { return reinterpret_cast(c_end); } T * t_end_of_storage() { return reinterpret_cast(c_end_of_storage); } const T * t_start() const { return reinterpret_cast(c_start); } const T * t_end() const { return reinterpret_cast(c_end); } const T * t_end_of_storage() const { return reinterpret_cast(c_end_of_storage); } /// The amount of memory occupied by the num_elements of the elements. static size_t byte_size(size_t num_elements) { return num_elements * sizeof(T); } /// Minimum amount of memory to allocate for num_elements, including padding. static size_t minimum_memory_for_elements(size_t num_elements) { return byte_size(num_elements) + pad_right; } void alloc_for_num_elements(size_t num_elements) { alloc(roundUpToPowerOfTwoOrZero(minimum_memory_for_elements(num_elements))); } template void alloc(size_t bytes, TAllocatorParams ... allocator_params) { c_start = c_end = reinterpret_cast(TAllocator::alloc(bytes, std::forward(allocator_params)...)); c_end_of_storage = c_start + bytes - pad_right; } void dealloc() { if (c_start == nullptr) return; TAllocator::free(c_start, allocated_bytes()); } template void realloc(size_t bytes, TAllocatorParams ... allocator_params) { if (c_start == nullptr) { alloc(bytes, std::forward(allocator_params)...); return; } ptrdiff_t end_diff = c_end - c_start; c_start = reinterpret_cast(TAllocator::realloc(c_start, allocated_bytes(), bytes, std::forward(allocator_params)...)); c_end = c_start + end_diff; c_end_of_storage = c_start + bytes - pad_right; } bool isInitialized() const { return (c_start != nullptr) && (c_end != nullptr) && (c_end_of_storage != nullptr); } bool isAllocatedFromStack() const { constexpr size_t stack_threshold = TAllocator::getStackThreshold(); return (stack_threshold > 0) && (allocated_bytes() <= stack_threshold); } template void reserveForNextSize(TAllocatorParams ... allocator_params) { if (size() == 0) realloc(std::max(INITIAL_SIZE, minimum_memory_for_elements(1)), std::forward(allocator_params)...); else realloc(allocated_bytes() * 2, std::forward(allocator_params)...); } public: using value_type = T; size_t allocated_bytes() const { return c_end_of_storage - c_start + pad_right; } /// You can not just use `typedef`, because there is ambiguity for the constructors and `assign` functions. struct iterator : public boost::iterator_adaptor { iterator() {} iterator(T * ptr_) : iterator::iterator_adaptor_(ptr_) {} }; struct const_iterator : public boost::iterator_adaptor { const_iterator() {} const_iterator(const T * ptr_) : const_iterator::iterator_adaptor_(ptr_) {} }; PODArray() {} PODArray(size_t n) { alloc_for_num_elements(n); c_end += byte_size(n); } PODArray(size_t n, const T & x) { alloc_for_num_elements(n); assign(n, x); } PODArray(const_iterator from_begin, const_iterator from_end) { alloc_for_num_elements(from_end - from_begin); insert(from_begin, from_end); } ~PODArray() { dealloc(); } PODArray(PODArray && other) { this->swap(other); } PODArray & operator=(PODArray && other) { this->swap(other); return *this; } T * data() { return t_start(); } const T * data() const { return t_start(); } size_t size() const { return t_end() - t_start(); } bool empty() const { return t_end() == t_start(); } size_t capacity() const { return t_end_of_storage() - t_start(); } T & operator[] (size_t n) { return t_start()[n]; } const T & operator[] (size_t n) const { return t_start()[n]; } T & front() { return t_start()[0]; } T & back() { return t_end()[-1]; } const T & front() const { return t_start()[0]; } const T & back() const { return t_end()[-1]; } iterator begin() { return t_start(); } iterator end() { return t_end(); } const_iterator begin() const { return t_start(); } const_iterator end() const { return t_end(); } const_iterator cbegin() const { return t_start(); } const_iterator cend() const { return t_end(); } template void reserve(size_t n, TAllocatorParams ... allocator_params) { if (n > capacity()) realloc(roundUpToPowerOfTwoOrZero(minimum_memory_for_elements(n)), std::forward(allocator_params)...); } template void resize(size_t n, TAllocatorParams ... allocator_params) { reserve(n, std::forward(allocator_params)...); resize_assume_reserved(n); } void resize_assume_reserved(const size_t n) { c_end = c_start + byte_size(n); } /// Same as resize, but zeroes new elements. void resize_fill(size_t n) { size_t old_size = size(); if (n > old_size) { reserve(n); memset(c_end, 0, byte_size(n - old_size)); } c_end = c_start + byte_size(n); } void resize_fill(size_t n, const T & value) { size_t old_size = size(); if (n > old_size) { reserve(n); std::fill(t_end(), t_end() + n - old_size, value); } c_end = c_start + byte_size(n); } void clear() { c_end = c_start; } template void push_back(const T & x, TAllocatorParams ... allocator_params) { if (unlikely(c_end == c_end_of_storage)) reserveForNextSize(std::forward(allocator_params)...); *t_end() = x; c_end += byte_size(1); } /** This method doesn't allow to pass parameters for Allocator, * and it couldn't be used if Allocator requires custom parameters. */ template void emplace_back(Args &&... args) { if (unlikely(c_end == c_end_of_storage)) reserveForNextSize(); new (t_end()) T(std::forward(args)...); c_end += byte_size(1); } void pop_back() { c_end -= byte_size(1); } /// Do not insert into the array a piece of itself. Because with the resize, the iterators on themselves can be invalidated. template void insert(It1 from_begin, It2 from_end, TAllocatorParams ... allocator_params) { size_t required_capacity = size() + (from_end - from_begin); if (required_capacity > capacity()) reserve(roundUpToPowerOfTwoOrZero(required_capacity), std::forward(allocator_params)...); insert_assume_reserved(from_begin, from_end); } template void insert(iterator it, It1 from_begin, It2 from_end) { size_t required_capacity = size() + (from_end - from_begin); if (required_capacity > capacity()) reserve(roundUpToPowerOfTwoOrZero(required_capacity)); size_t bytes_to_copy = byte_size(from_end - from_begin); size_t bytes_to_move = (end() - it) * sizeof(T); if (unlikely(bytes_to_move)) memcpy(c_end + bytes_to_copy - bytes_to_move, c_end - bytes_to_move, bytes_to_move); memcpy(c_end - bytes_to_move, reinterpret_cast(&*from_begin), bytes_to_copy); c_end += bytes_to_copy; } template void insert_assume_reserved(It1 from_begin, It2 from_end) { size_t bytes_to_copy = byte_size(from_end - from_begin); memcpy(c_end, reinterpret_cast(&*from_begin), bytes_to_copy); c_end += bytes_to_copy; } void swap(PODArray & rhs) { /// Swap two PODArray objects, arr1 and arr2, that satisfy the following conditions: /// - The elements of arr1 are stored on stack. /// - The elements of arr2 are stored on heap. auto swap_stack_heap = [](PODArray & arr1, PODArray & arr2) { size_t stack_size = arr1.size(); size_t stack_allocated = arr1.allocated_bytes(); size_t heap_size = arr2.size(); size_t heap_allocated = arr2.allocated_bytes(); /// Keep track of the stack content we have to copy. char * stack_c_start = arr1.c_start; /// arr1 takes ownership of the heap memory of arr2. arr1.c_start = arr2.c_start; arr1.c_end_of_storage = arr1.c_start + heap_allocated - arr1.pad_right; arr1.c_end = arr1.c_start + byte_size(heap_size); /// Allocate stack space for arr2. arr2.alloc(stack_allocated); /// Copy the stack content. memcpy(arr2.c_start, stack_c_start, byte_size(stack_size)); arr2.c_end = arr2.c_start + byte_size(stack_size); }; auto do_move = [](PODArray & src, PODArray & dest) { if (src.isAllocatedFromStack()) { dest.dealloc(); dest.alloc(src.allocated_bytes()); memcpy(dest.c_start, src.c_start, byte_size(src.size())); dest.c_end = dest.c_start + (src.c_end - src.c_start); src.c_start = nullptr; src.c_end = nullptr; src.c_end_of_storage = nullptr; } else { std::swap(dest.c_start, src.c_start); std::swap(dest.c_end, src.c_end); std::swap(dest.c_end_of_storage, src.c_end_of_storage); } }; if (!isInitialized() && !rhs.isInitialized()) return; else if (!isInitialized() && rhs.isInitialized()) { do_move(rhs, *this); return; } else if (isInitialized() && !rhs.isInitialized()) { do_move(*this, rhs); return; } if (isAllocatedFromStack() && rhs.isAllocatedFromStack()) { size_t min_size = std::min(size(), rhs.size()); size_t max_size = std::max(size(), rhs.size()); for (size_t i = 0; i < min_size; ++i) std::swap(this->operator[](i), rhs[i]); if (size() == max_size) { for (size_t i = min_size; i < max_size; ++i) rhs[i] = this->operator[](i); } else { for (size_t i = min_size; i < max_size; ++i) this->operator[](i) = rhs[i]; } size_t lhs_size = size(); size_t lhs_allocated = allocated_bytes(); size_t rhs_size = rhs.size(); size_t rhs_allocated = rhs.allocated_bytes(); c_end_of_storage = c_start + rhs_allocated - pad_right; rhs.c_end_of_storage = rhs.c_start + lhs_allocated - pad_right; c_end = c_start + byte_size(rhs_size); rhs.c_end = rhs.c_start + byte_size(lhs_size); } else if (isAllocatedFromStack() && !rhs.isAllocatedFromStack()) swap_stack_heap(*this, rhs); else if (!isAllocatedFromStack() && rhs.isAllocatedFromStack()) swap_stack_heap(rhs, *this); else { std::swap(c_start, rhs.c_start); std::swap(c_end, rhs.c_end); std::swap(c_end_of_storage, rhs.c_end_of_storage); } } void assign(size_t n, const T & x) { resize(n); std::fill(begin(), end(), x); } template void assign(It1 from_begin, It2 from_end) { size_t required_capacity = from_end - from_begin; if (required_capacity > capacity()) reserve(roundUpToPowerOfTwoOrZero(required_capacity)); size_t bytes_to_copy = byte_size(required_capacity); memcpy(c_start, reinterpret_cast(&*from_begin), bytes_to_copy); c_end = c_start + bytes_to_copy; } void assign(const PODArray & from) { assign(from.begin(), from.end()); } bool operator== (const PODArray & other) const { if (size() != other.size()) return false; const_iterator this_it = begin(); const_iterator that_it = other.begin(); while (this_it != end()) { if (*this_it != *that_it) return false; ++this_it; ++that_it; } return true; } bool operator!= (const PODArray & other) const { return !operator==(other); } }; template void swap(PODArray & lhs, PODArray & rhs) { lhs.swap(rhs); } /** For columns. Padding is enough to read and write xmm-register at the address of the last element. */ template > using PaddedPODArray = PODArray; inline constexpr size_t integerRound(size_t value, size_t dividend) { return ((value + dividend - 1) / dividend) * dividend; } template using PODArrayWithStackMemory = PODArray, integerRound(stack_size_in_bytes, sizeof(T))>>; }