--- slug: /en/sql-reference/aggregate-functions/reference/quantiles sidebar_position: 201 --- # quantiles Functions ## quantiles Syntax: `quantiles(level1, level2, …)(x)` All the quantile functions also have corresponding quantiles functions: `quantiles`, `quantilesDeterministic`, `quantilesTiming`, `quantilesTimingWeighted`, `quantilesExact`, `quantilesExactWeighted`, `quantileInterpolatedWeighted`, `quantilesTDigest`, `quantilesBFloat16`. These functions calculate all the quantiles of the listed levels in one pass, and return an array of the resulting values. ## quantilesExactExclusive Exactly computes the [quantiles](https://en.wikipedia.org/wiki/Quantile) of a numeric data sequence. To get exact value, all the passed values ​​are combined into an array, which is then partially sorted. Therefore, the function consumes `O(n)` memory, where `n` is a number of values that were passed. However, for a small number of values, the function is very effective. This function is equivalent to [PERCENTILE.EXC](https://support.microsoft.com/en-us/office/percentile-exc-function-bbaa7204-e9e1-4010-85bf-c31dc5dce4ba) Excel function, ([type R6](https://en.wikipedia.org/wiki/Quantile#Estimating_quantiles_from_a_sample)). Works more efficiently with sets of levels than [quantileExactExclusive](../../../sql-reference/aggregate-functions/reference/quantileexact.md#quantileexactexclusive). **Syntax** ``` sql quantilesExactExclusive(level1, level2, ...)(expr) ``` **Arguments** - `expr` — Expression over the column values resulting in numeric [data types](../../../sql-reference/data-types/index.md#data_types), [Date](../../../sql-reference/data-types/date.md) or [DateTime](../../../sql-reference/data-types/datetime.md). **Parameters** - `level` — Levels of quantiles. Possible values: (0, 1) — bounds not included. [Float](../../../sql-reference/data-types/float.md). **Returned value** - [Array](../../../sql-reference/data-types/array.md) of quantiles of the specified levels. Type of array values: - [Float64](../../../sql-reference/data-types/float.md) for numeric data type input. - [Date](../../../sql-reference/data-types/date.md) if input values have the `Date` type. - [DateTime](../../../sql-reference/data-types/datetime.md) if input values have the `DateTime` type. **Example** Query: ``` sql CREATE TABLE num AS numbers(1000); SELECT quantilesExactExclusive(0.25, 0.5, 0.75, 0.9, 0.95, 0.99, 0.999)(x) FROM (SELECT number AS x FROM num); ``` Result: ``` text ┌─quantilesExactExclusive(0.25, 0.5, 0.75, 0.9, 0.95, 0.99, 0.999)(x)─┐ │ [249.25,499.5,749.75,899.9,949.9499999999999,989.99,998.999] │ └─────────────────────────────────────────────────────────────────────┘ ``` ## quantilesExactInclusive Exactly computes the [quantiles](https://en.wikipedia.org/wiki/Quantile) of a numeric data sequence. To get exact value, all the passed values ​​are combined into an array, which is then partially sorted. Therefore, the function consumes `O(n)` memory, where `n` is a number of values that were passed. However, for a small number of values, the function is very effective. This function is equivalent to [PERCENTILE.INC](https://support.microsoft.com/en-us/office/percentile-inc-function-680f9539-45eb-410b-9a5e-c1355e5fe2ed) Excel function, ([type R7](https://en.wikipedia.org/wiki/Quantile#Estimating_quantiles_from_a_sample)). Works more efficiently with sets of levels than [quantileExactInclusive](../../../sql-reference/aggregate-functions/reference/quantileexact.md#quantileexactinclusive). **Syntax** ``` sql quantilesExactInclusive(level1, level2, ...)(expr) ``` **Arguments** - `expr` — Expression over the column values resulting in numeric [data types](../../../sql-reference/data-types/index.md#data_types), [Date](../../../sql-reference/data-types/date.md) or [DateTime](../../../sql-reference/data-types/datetime.md). **Parameters** - `level` — Levels of quantiles. Possible values: [0, 1] — bounds included. [Float](../../../sql-reference/data-types/float.md). **Returned value** - [Array](../../../sql-reference/data-types/array.md) of quantiles of the specified levels. Type of array values: - [Float64](../../../sql-reference/data-types/float.md) for numeric data type input. - [Date](../../../sql-reference/data-types/date.md) if input values have the `Date` type. - [DateTime](../../../sql-reference/data-types/datetime.md) if input values have the `DateTime` type. **Example** Query: ``` sql CREATE TABLE num AS numbers(1000); SELECT quantilesExactInclusive(0.25, 0.5, 0.75, 0.9, 0.95, 0.99, 0.999)(x) FROM (SELECT number AS x FROM num); ``` Result: ``` text ┌─quantilesExactInclusive(0.25, 0.5, 0.75, 0.9, 0.95, 0.99, 0.999)(x)─┐ │ [249.75,499.5,749.25,899.1,949.05,989.01,998.001] │ └─────────────────────────────────────────────────────────────────────┘ ``` ## quantilesApprox `quantilesApprox` works similarly with `quantileApprox` but allows us to calculate quantities at different levels simultaneously and returns an array. **Syntax** ``` sql quantilesApprox(accuracy, level1, level2, ...)(expr) ``` **Returned value** - [Array](../../../sql-reference/data-types/array.md) of quantiles of the specified levels. Type of array values: - [Float64](../../../sql-reference/data-types/float.md) for numeric data type input. - [Date](../../../sql-reference/data-types/date.md) if input values have the `Date` type. - [DateTime](../../../sql-reference/data-types/datetime.md) if input values have the `DateTime` type. **Example** Query: ``` sql SELECT quantilesApprox(1, 0.25, 0.5, 0.75)(number + 1) FROM numbers(1000) ┌─quantilesApprox(1, 0.25, 0.5, 0.75)(plus(number, 1))─┐ │ [1,1,1] │ └──────────────────────────────────────────────────────┘ SELECT quantilesApprox(10, 0.25, 0.5, 0.75)(number + 1) FROM numbers(1000) ┌─quantilesApprox(10, 0.25, 0.5, 0.75)(plus(number, 1))─┐ │ [156,413,659] │ └───────────────────────────────────────────────────────┘ SELECT quantilesApprox(100, 0.25, 0.5, 0.75)(number + 1) FROM numbers(1000) ┌─quantilesApprox(100, 0.25, 0.5, 0.75)(plus(number, 1))─┐ │ [251,498,741] │ └────────────────────────────────────────────────────────┘ SELECT quantilesApprox(1000, 0.25, 0.5, 0.75)(number + 1) FROM numbers(1000) ┌─quantilesApprox(1000, 0.25, 0.5, 0.75)(plus(number, 1))─┐ │ [249,499,749] │ └─────────────────────────────────────────────────────────┘ ```