#include #include #include #include #include #include #include #include #include #include #include namespace DB { namespace ErrorCodes { extern const int ARGUMENT_OUT_OF_BOUND; extern const int ILLEGAL_COLUMN; extern const int LOGICAL_ERROR; } static const double PI = 3.14159265358979323846; static const double TO_RAD = PI / 180.0; static const double TO_RAD2 = PI / 360.0; static const double TO_DEG = 180.0 / PI; static const float TO_RADF = static_cast(PI / 180.0); static const float TO_RADF2 = static_cast(PI / 360.0); static const float TO_DEGF = static_cast(180.0 / PI); const int GEODIST_TABLE_COS = 1024; // maxerr 0.00063% const int GEODIST_TABLE_ASIN = 512; const int GEODIST_TABLE_K = 1024; static float g_GeoCos[GEODIST_TABLE_COS + 1]; ///< cos(x) table static float g_GeoAsin[GEODIST_TABLE_ASIN + 1]; ///< asin(sqrt(x)) table static float g_GeoFlatK[GEODIST_TABLE_K + 1][2]; ///< GeodistAdaptive() flat ellipsoid method k1,k2 coeffs table inline double sqr(double v) { return v*v; } inline float fsqr(float v) { return v*v; } void GeodistInit() { for (int i = 0; i <= GEODIST_TABLE_COS; i++) g_GeoCos[i] = (float) cos(2 * PI * i / GEODIST_TABLE_COS); // [0, 2pi] -> [0, COSTABLE] for (int i = 0; i <= GEODIST_TABLE_ASIN; i++) g_GeoAsin[i] = (float) asin(sqrt(double(i) / GEODIST_TABLE_ASIN)); // [0, 1] -> [0, ASINTABLE] for (int i = 0; i <= GEODIST_TABLE_K; i++) { double x = PI * i / GEODIST_TABLE_K - PI * 0.5; // [-pi/2, pi/2] -> [0, KTABLE] g_GeoFlatK[i][0] = (float) sqr(111132.09 - 566.05 * cos(2 * x) + 1.20 * cos(4 * x)); g_GeoFlatK[i][1] = (float) sqr(111415.13 * cos(x) - 94.55 * cos(3 * x) + 0.12 * cos(5 * x)); } } static inline float GeodistDegDiff(float f) { f = (float) fabs(f); while (f > 360) f -= 360; if (f > 180) f = 360 - f; return f; } static inline float GeodistFastCos(float x) { float y = (float) (fabs(x) * GEODIST_TABLE_COS / PI / 2); int i = int(y); y -= i; i &= (GEODIST_TABLE_COS - 1); return g_GeoCos[i] + (g_GeoCos[i + 1] - g_GeoCos[i]) * y; } static inline float GeodistFastSin(float x) { float y = float(fabs(x) * GEODIST_TABLE_COS / PI / 2); int i = int(y); y -= i; i = (i - GEODIST_TABLE_COS / 4) & (GEODIST_TABLE_COS - 1); // cos(x-pi/2)=sin(x), costable/4=pi/2 return g_GeoCos[i] + (g_GeoCos[i + 1] - g_GeoCos[i]) * y; } /// fast implementation of asin(sqrt(x)) /// max error in floats 0.00369%, in doubles 0.00072% static inline float GeodistFastAsinSqrt(float x) { if (x < 0.122) { // distance under 4546km, Taylor error under 0.00072% float y = (float) sqrt(x); return y + x * y * 0.166666666666666f + x * x * y * 0.075f + x * x * x * y * 0.044642857142857f; } if (x < 0.948) { // distance under 17083km, 512-entry LUT error under 0.00072% x *= GEODIST_TABLE_ASIN; int i = int(x); return g_GeoAsin[i] + (g_GeoAsin[i + 1] - g_GeoAsin[i]) * (x - i); } return (float) asin(sqrt(x)); // distance over 17083km, just compute honestly } /** * The function calculates distance in meters between two points on Earth specified by longitude and latitude in degrees. * The function uses great circle distance formula https://en.wikipedia.org/wiki/Great-circle_distance. * Throws exception when one or several input values are not within reasonable bounds. * Latitude must be in [-90, 90], longitude must be [-180, 180] * */ class FunctionGreatCircleDistance : public IFunction { public: static constexpr auto name = "greatCircleDistance"; static FunctionPtr create(const Context &) { GeodistInit(); return std::make_shared(); } private: enum class instr_type : uint8_t { get_float_64, get_const_float_64 }; using instr_t = std::pair; using instrs_t = std::array; String getName() const override { return name; } size_t getNumberOfArguments() const override { return 4; } DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override { for (const auto arg_idx : ext::range(0, arguments.size())) { const auto arg = arguments[arg_idx].get(); if (!WhichDataType(arg).isFloat64()) throw Exception( "Illegal type " + arg->getName() + " of argument " + std::to_string(arg_idx + 1) + " of function " + getName() + ". Must be Float64", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT); } return std::make_shared(); } instrs_t getInstructions(const Block & block, const ColumnNumbers & arguments, bool & out_const) { instrs_t result; out_const = true; for (const auto arg_idx : ext::range(0, arguments.size())) { const auto column = block.getByPosition(arguments[arg_idx]).column.get(); if (const auto col = checkAndGetColumn>(column)) { out_const = false; result[arg_idx] = instr_t{instr_type::get_float_64, col}; } else if (const auto col_const = checkAndGetColumnConst>(column)) { result[arg_idx] = instr_t{instr_type::get_const_float_64, col_const}; } else throw Exception("Illegal column " + column->getName() + " of argument of function " + getName(), ErrorCodes::ILLEGAL_COLUMN); } return result; } /// https://en.wikipedia.org/wiki/Great-circle_distance Float64 greatCircleDistance(Float64 lon1Deg, Float64 lat1Deg, Float64 lon2Deg, Float64 lat2Deg) { if (lon1Deg < -180 || lon1Deg > 180 || lon2Deg < -180 || lon2Deg > 180 || lat1Deg < -90 || lat1Deg > 90 || lat2Deg < -90 || lat2Deg > 90) { throw Exception("Arguments values out of bounds for function " + getName(), ErrorCodes::ARGUMENT_OUT_OF_BOUND); } float dlat = GeodistDegDiff(lat1Deg - lat2Deg); float dlon = GeodistDegDiff(lon1Deg - lon2Deg); if (dlon < 13) { // points are close enough; use flat ellipsoid model // interpolate sqr(k1), sqr(k2) coefficients using latitudes midpoint float m = (lat1Deg + lat2Deg + 180) * GEODIST_TABLE_K / 360; // [-90, 90] degrees -> [0, KTABLE] indexes int i = int(m); i &= (GEODIST_TABLE_K - 1); float kk1 = g_GeoFlatK[i][0] + (g_GeoFlatK[i + 1][0] - g_GeoFlatK[i][0]) * (m - i); float kk2 = g_GeoFlatK[i][1] + (g_GeoFlatK[i + 1][1] - g_GeoFlatK[i][1]) * (m - i); return (float) sqrt(kk1 * dlat * dlat + kk2 * dlon * dlon); } // points too far away; use haversine static const float D = 2 * 6371000; float a = fsqr(GeodistFastSin(dlat * TO_RADF2)) + GeodistFastCos(lat1Deg * TO_RADF) * GeodistFastCos(lat2Deg * TO_RADF) * fsqr(GeodistFastSin(dlon * TO_RADF2)); return (float) (D * GeodistFastAsinSqrt(a)); } void executeImpl(Block & block, const ColumnNumbers & arguments, size_t result, size_t input_rows_count) override { const auto size = input_rows_count; bool result_is_const{}; auto instrs = getInstructions(block, arguments, result_is_const); if (result_is_const) { const auto & colLon1 = assert_cast(block.getByPosition(arguments[0]).column.get())->getValue(); const auto & colLat1 = assert_cast(block.getByPosition(arguments[1]).column.get())->getValue(); const auto & colLon2 = assert_cast(block.getByPosition(arguments[2]).column.get())->getValue(); const auto & colLat2 = assert_cast(block.getByPosition(arguments[3]).column.get())->getValue(); Float64 res = greatCircleDistance(colLon1, colLat1, colLon2, colLat2); block.getByPosition(result).column = block.getByPosition(result).type->createColumnConst(size, res); } else { auto dst = ColumnVector::create(); auto & dst_data = dst->getData(); dst_data.resize(size); Float64 vals[instrs.size()]; for (const auto row : ext::range(0, size)) { for (const auto idx : ext::range(0, instrs.size())) { if (instr_type::get_float_64 == instrs[idx].first) vals[idx] = assert_cast *>(instrs[idx].second)->getData()[row]; else if (instr_type::get_const_float_64 == instrs[idx].first) vals[idx] = assert_cast(instrs[idx].second)->getValue(); else throw Exception{"Unknown instruction type in implementation of greatCircleDistance function", ErrorCodes::LOGICAL_ERROR}; } dst_data[row] = greatCircleDistance(vals[0], vals[1], vals[2], vals[3]); } block.getByPosition(result).column = std::move(dst); } } }; void registerFunctionGreatCircleDistance(FunctionFactory & factory) { factory.registerFunction(); } }