--- slug: /en/sql-reference/aggregate-functions/reference/summapwithoverflow sidebar_position: 141 --- # sumMapWithOverflow Totals a `value` array according to the keys specified in the `key` array. Returns a tuple of two arrays: keys in sorted order, and values ​​summed for the corresponding keys. It differs from the [sumMap](../reference/summap.md) function in that it does summation with overflow - i.e. returns the same data type for the summation as the argument data type. **Syntax** - `sumMapWithOverflow(key , value )` [Array type](../../data-types/array.md). - `sumMapWithOverflow(Tuple(key , value ))` [Tuple type](../../data-types/tuple.md). **Arguments** - `key`: [Array](../../data-types/array.md) of keys. - `value`: [Array](../../data-types/array.md) of values. Passing a tuple of key and value arrays is a synonym to passing seperately an array of keys and an array of values. :::note The number of elements in `key` and `value` must be the same for each row that is totaled. ::: **Returned Value** - Returns a tuple of two arrays: keys in sorted order, and values ​​summed for the corresponding keys. **Example** First we create a table called `sum_map`, and insert some data into it. Arrays of keys and values are stored separately as a column called `statusMap` of [Nested](../../data-types/nested-data-structures/index.md) type, and together as a column called `statusMapTuple` of [tuple](../../data-types/tuple.md) type to illustrate the use of the two different syntaxes of this function described above. Query: ``` sql CREATE TABLE sum_map( date Date, timeslot DateTime, statusMap Nested( status UInt8, requests UInt8 ), statusMapTuple Tuple(Array(Int8), Array(Int8)) ) ENGINE = Log; ``` ```sql INSERT INTO sum_map VALUES ('2000-01-01', '2000-01-01 00:00:00', [1, 2, 3], [10, 10, 10], ([1, 2, 3], [10, 10, 10])), ('2000-01-01', '2000-01-01 00:00:00', [3, 4, 5], [10, 10, 10], ([3, 4, 5], [10, 10, 10])), ('2000-01-01', '2000-01-01 00:01:00', [4, 5, 6], [10, 10, 10], ([4, 5, 6], [10, 10, 10])), ('2000-01-01', '2000-01-01 00:01:00', [6, 7, 8], [10, 10, 10], ([6, 7, 8], [10, 10, 10])); ``` If we query the table using the `sumMap`, `sumMapWithOverflow` with the array type syntax, and `toTypeName` functions then we can see that for the `sumMapWithOverflow` function, the data type of the summed values array is the same as the argument type, both `UInt8` (i.e. summation was done with overflow). For `sumMap` the data type of the summed values arrays has changed from `UInt8` to `UInt64` such that overflow does not occur. Query: ``` sql SELECT timeslot, toTypeName(sumMap(statusMap.status, statusMap.requests)), toTypeName(sumMapWithOverflow(statusMap.status, statusMap.requests)), FROM sum_map GROUP BY timeslot ``` Equivalently we could have used the tuple syntax with for the same result. ``` sql SELECT timeslot, toTypeName(sumMap(statusMapTuple)), toTypeName(sumMapWithOverflow(statusMapTuple)), FROM sum_map GROUP BY timeslot ``` Result: ``` text ┌────────────timeslot─┬─toTypeName(sumMap(statusMap.status, statusMap.requests))─┬─toTypeName(sumMapWithOverflow(statusMap.status, statusMap.requests))─┐ 1. │ 2000-01-01 00:01:00 │ Tuple(Array(UInt8), Array(UInt64)) │ Tuple(Array(UInt8), Array(UInt8)) │ 2. │ 2000-01-01 00:00:00 │ Tuple(Array(UInt8), Array(UInt64)) │ Tuple(Array(UInt8), Array(UInt8)) │ └─────────────────────┴──────────────────────────────────────────────────────────┴──────────────────────────────────────────────────────────────────────┘ ``` **See Also** - [sumMap](../reference/summap.md)