#include #include #include #include #include #include #include #include #include #include #include #include #include namespace ProfileEvents { extern const Event DictCacheKeysRequested; extern const Event DictCacheKeysRequestedMiss; extern const Event DictCacheKeysRequestedFound; extern const Event DictCacheKeysExpired; extern const Event DictCacheKeysNotFound; extern const Event DictCacheKeysHit; extern const Event DictCacheRequestTimeNs; extern const Event DictCacheRequests; extern const Event DictCacheLockWriteNs; extern const Event DictCacheLockReadNs; } namespace CurrentMetrics { extern const Metric DictCacheRequests; } namespace DB { namespace ErrorCodes { extern const int TYPE_MISMATCH; extern const int BAD_ARGUMENTS; extern const int UNSUPPORTED_METHOD; } inline UInt64 CacheDictionary::getCellIdx(const Key id) const { const auto hash = intHash64(id); const auto idx = hash & size_overlap_mask; return idx; } CacheDictionary::CacheDictionary(const std::string & name, const DictionaryStructure & dict_struct, DictionarySourcePtr source_ptr, const DictionaryLifetime dict_lifetime, const std::size_t size) : name{name}, dict_struct(dict_struct), source_ptr{std::move(source_ptr)}, dict_lifetime(dict_lifetime), size{roundUpToPowerOfTwoOrZero(std::max(size, size_t(max_collision_length)))}, size_overlap_mask{this->size - 1}, cells{this->size}, rnd_engine{randomSeed()} { if (!this->source_ptr->supportsSelectiveLoad()) throw Exception{ name + ": source cannot be used with CacheDictionary", ErrorCodes::UNSUPPORTED_METHOD}; createAttributes(); } CacheDictionary::CacheDictionary(const CacheDictionary & other) : CacheDictionary{other.name, other.dict_struct, other.source_ptr->clone(), other.dict_lifetime, other.size} {} void CacheDictionary::toParent(const PaddedPODArray & ids, PaddedPODArray & out) const { const auto null_value = std::get(hierarchical_attribute->null_values); getItemsNumber(*hierarchical_attribute, ids, out, [&] (const std::size_t) { return null_value; }); } /// Allow to use single value in same way as array. static inline CacheDictionary::Key getAt(const PaddedPODArray & arr, const size_t idx) { return arr[idx]; } static inline CacheDictionary::Key getAt(const CacheDictionary::Key & value, const size_t idx) { return value; } template void CacheDictionary::isInImpl( const PaddedPODArray & child_ids, const AncestorType & ancestor_ids, PaddedPODArray & out) const { /// Transform all children to parents until ancestor id or null_value will be reached. size_t size = out.size(); memset(out.data(), 0xFF, size); /// 0xFF means "not calculated" const auto null_value = std::get(hierarchical_attribute->null_values); PaddedPODArray children(size); PaddedPODArray parents(child_ids.begin(), child_ids.end()); while (true) { size_t out_idx = 0; size_t parents_idx = 0; size_t new_children_idx = 0; while (out_idx < size) { /// Already calculated if (out[out_idx] != 0xFF) { ++out_idx; continue; } /// No parent if (parents[parents_idx] == null_value) { out[out_idx] = 0; } /// Found ancestor else if (parents[parents_idx] == getAt(ancestor_ids, parents_idx)) { out[out_idx] = 1; } /// Found intermediate parent, add this value to search at next loop iteration else { children[new_children_idx] = parents[parents_idx]; ++new_children_idx; } ++out_idx; ++parents_idx; } if (new_children_idx == 0) break; /// Transform all children to its parents. children.resize(new_children_idx); parents.resize(new_children_idx); toParent(children, parents); } } void CacheDictionary::isInVectorVector( const PaddedPODArray & child_ids, const PaddedPODArray & ancestor_ids, PaddedPODArray & out) const { isInImpl(child_ids, ancestor_ids, out); } void CacheDictionary::isInVectorConstant( const PaddedPODArray & child_ids, const Key ancestor_id, PaddedPODArray & out) const { isInImpl(child_ids, ancestor_id, out); } void CacheDictionary::isInConstantVector( const Key child_id, const PaddedPODArray & ancestor_ids, PaddedPODArray & out) const { /// Special case with single child value. const auto null_value = std::get(hierarchical_attribute->null_values); PaddedPODArray child(1, child_id); PaddedPODArray parent(1); std::vector ancestors(1, child_id); /// Iteratively find all ancestors for child. while (true) { toParent(child, parent); if (parent[0] == null_value) break; child[0] = parent[0]; ancestors.push_back(parent[0]); } /// Assuming short hierarchy, so linear search is Ok. for (size_t i = 0, size = out.size(); i < size; ++i) out[i] = std::find(ancestors.begin(), ancestors.end(), ancestor_ids[i]) != ancestors.end(); } #define DECLARE(TYPE)\ void CacheDictionary::get##TYPE(const std::string & attribute_name, const PaddedPODArray & ids, PaddedPODArray & out) const\ {\ auto & attribute = getAttribute(attribute_name);\ if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::TYPE))\ throw Exception{\ name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),\ ErrorCodes::TYPE_MISMATCH};\ \ const auto null_value = std::get(attribute.null_values);\ \ getItemsNumber(attribute, ids, out, [&] (const std::size_t) { return null_value; });\ } DECLARE(UInt8) DECLARE(UInt16) DECLARE(UInt32) DECLARE(UInt64) DECLARE(Int8) DECLARE(Int16) DECLARE(Int32) DECLARE(Int64) DECLARE(Float32) DECLARE(Float64) #undef DECLARE void CacheDictionary::getString(const std::string & attribute_name, const PaddedPODArray & ids, ColumnString * out) const { auto & attribute = getAttribute(attribute_name); if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::String)) throw Exception{ name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type), ErrorCodes::TYPE_MISMATCH}; const auto null_value = StringRef{std::get(attribute.null_values)}; getItemsString(attribute, ids, out, [&] (const std::size_t) { return null_value; }); } #define DECLARE(TYPE)\ void CacheDictionary::get##TYPE(\ const std::string & attribute_name, const PaddedPODArray & ids, const PaddedPODArray & def,\ PaddedPODArray & out) const\ {\ auto & attribute = getAttribute(attribute_name);\ if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::TYPE))\ throw Exception{\ name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),\ ErrorCodes::TYPE_MISMATCH};\ \ getItemsNumber(attribute, ids, out, [&] (const std::size_t row) { return def[row]; });\ } DECLARE(UInt8) DECLARE(UInt16) DECLARE(UInt32) DECLARE(UInt64) DECLARE(Int8) DECLARE(Int16) DECLARE(Int32) DECLARE(Int64) DECLARE(Float32) DECLARE(Float64) #undef DECLARE void CacheDictionary::getString( const std::string & attribute_name, const PaddedPODArray & ids, const ColumnString * const def, ColumnString * const out) const { auto & attribute = getAttribute(attribute_name); if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::String)) throw Exception{ name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type), ErrorCodes::TYPE_MISMATCH}; getItemsString(attribute, ids, out, [&] (const std::size_t row) { return def->getDataAt(row); }); } #define DECLARE(TYPE)\ void CacheDictionary::get##TYPE(\ const std::string & attribute_name, const PaddedPODArray & ids, const TYPE def, PaddedPODArray & out) const\ {\ auto & attribute = getAttribute(attribute_name);\ if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::TYPE))\ throw Exception{\ name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),\ ErrorCodes::TYPE_MISMATCH};\ \ getItemsNumber(attribute, ids, out, [&] (const std::size_t) { return def; });\ } DECLARE(UInt8) DECLARE(UInt16) DECLARE(UInt32) DECLARE(UInt64) DECLARE(Int8) DECLARE(Int16) DECLARE(Int32) DECLARE(Int64) DECLARE(Float32) DECLARE(Float64) #undef DECLARE void CacheDictionary::getString( const std::string & attribute_name, const PaddedPODArray & ids, const String & def, ColumnString * const out) const { auto & attribute = getAttribute(attribute_name); if (!isAttributeTypeConvertibleTo(attribute.type, AttributeUnderlyingType::String)) throw Exception{ name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type), ErrorCodes::TYPE_MISMATCH}; getItemsString(attribute, ids, out, [&] (const std::size_t) { return StringRef{def}; }); } /// returns cell_idx (always valid for replacing), 'cell is valid' flag, 'cell is outdated' flag /// true false found and valid /// false true not found (something outdated, maybe our cell) /// false false not found (other id stored with valid data) /// true true impossible /// /// todo: split this func to two: find_for_get and find_for_set CacheDictionary::FindResult CacheDictionary::findCellIdx(const Key & id, const CellMetadata::time_point_t now) const { auto pos = getCellIdx(id); auto oldest_id = pos; auto oldest_time = CellMetadata::time_point_t::max(); const auto stop = pos + max_collision_length; for (; pos < stop; ++pos) { const auto cell_idx = pos & size_overlap_mask; const auto & cell = cells[cell_idx]; if (cell.id != id) { /// maybe we already found nearest expired cell (try minimize collision_length on insert) if (oldest_time > now && oldest_time > cell.expiresAt()) { oldest_time = cell.expiresAt(); oldest_id = cell_idx; } continue; } if (cell.expiresAt() < now) { return {cell_idx, false, true}; } return {cell_idx, true, false}; } return {oldest_id, false, false}; } void CacheDictionary::has(const PaddedPODArray & ids, PaddedPODArray & out) const { /// Mapping: -> { all indices `i` of `ids` such that `ids[i]` = } std::unordered_map> outdated_ids; size_t cache_expired = 0, cache_not_found = 0, cache_hit = 0; const auto rows = ext::size(ids); { const ProfilingScopedReadRWLock read_lock{rw_lock, ProfileEvents::DictCacheLockReadNs}; const auto now = std::chrono::system_clock::now(); /// fetch up-to-date values, decide which ones require update for (const auto row : ext::range(0, rows)) { const auto id = ids[row]; const auto find_result = findCellIdx(id, now); const auto & cell_idx = find_result.cell_idx; if (!find_result.valid) { outdated_ids[id].push_back(row); if (find_result.outdated) ++cache_expired; else ++cache_not_found; } else { ++cache_hit; const auto & cell = cells[cell_idx]; out[row] = !cell.isDefault(); } } } ProfileEvents::increment(ProfileEvents::DictCacheKeysExpired, cache_expired); ProfileEvents::increment(ProfileEvents::DictCacheKeysNotFound, cache_not_found); ProfileEvents::increment(ProfileEvents::DictCacheKeysHit, cache_hit); query_count.fetch_add(rows, std::memory_order_relaxed); hit_count.fetch_add(rows - outdated_ids.size(), std::memory_order_release); if (outdated_ids.empty()) return; std::vector required_ids(outdated_ids.size()); std::transform(std::begin(outdated_ids), std::end(outdated_ids), std::begin(required_ids), [] (auto & pair) { return pair.first; }); /// request new values update(required_ids, [&] (const auto id, const auto) { for (const auto row : outdated_ids[id]) out[row] = true; }, [&] (const auto id, const auto) { for (const auto row : outdated_ids[id]) out[row] = false; }); } void CacheDictionary::createAttributes() { const auto size = dict_struct.attributes.size(); attributes.reserve(size); bytes_allocated += size * sizeof(CellMetadata); bytes_allocated += size * sizeof(attributes.front()); for (const auto & attribute : dict_struct.attributes) { attribute_index_by_name.emplace(attribute.name, attributes.size()); attributes.push_back(createAttributeWithType(attribute.underlying_type, attribute.null_value)); if (attribute.hierarchical) { hierarchical_attribute = &attributes.back(); if (hierarchical_attribute->type != AttributeUnderlyingType::UInt64) throw Exception{ name + ": hierarchical attribute must be UInt64.", ErrorCodes::TYPE_MISMATCH}; } } } CacheDictionary::Attribute CacheDictionary::createAttributeWithType(const AttributeUnderlyingType type, const Field & null_value) { Attribute attr{type}; switch (type) { case AttributeUnderlyingType::UInt8: std::get(attr.null_values) = null_value.get(); std::get>(attr.arrays) = std::make_unique>(size); bytes_allocated += size * sizeof(UInt8); break; case AttributeUnderlyingType::UInt16: std::get(attr.null_values) = null_value.get(); std::get>(attr.arrays) = std::make_unique>(size); bytes_allocated += size * sizeof(UInt16); break; case AttributeUnderlyingType::UInt32: std::get(attr.null_values) = null_value.get(); std::get>(attr.arrays) = std::make_unique>(size); bytes_allocated += size * sizeof(UInt32); break; case AttributeUnderlyingType::UInt64: std::get(attr.null_values) = null_value.get(); std::get>(attr.arrays) = std::make_unique>(size); bytes_allocated += size * sizeof(UInt64); break; case AttributeUnderlyingType::Int8: std::get(attr.null_values) = null_value.get(); std::get>(attr.arrays) = std::make_unique>(size); bytes_allocated += size * sizeof(Int8); break; case AttributeUnderlyingType::Int16: std::get(attr.null_values) = null_value.get(); std::get>(attr.arrays) = std::make_unique>(size); bytes_allocated += size * sizeof(Int16); break; case AttributeUnderlyingType::Int32: std::get(attr.null_values) = null_value.get(); std::get>(attr.arrays) = std::make_unique>(size); bytes_allocated += size * sizeof(Int32); break; case AttributeUnderlyingType::Int64: std::get(attr.null_values) = null_value.get(); std::get>(attr.arrays) = std::make_unique>(size); bytes_allocated += size * sizeof(Int64); break; case AttributeUnderlyingType::Float32: std::get(attr.null_values) = null_value.get(); std::get>(attr.arrays) = std::make_unique>(size); bytes_allocated += size * sizeof(Float32); break; case AttributeUnderlyingType::Float64: std::get(attr.null_values) = null_value.get(); std::get>(attr.arrays) = std::make_unique>(size); bytes_allocated += size * sizeof(Float64); break; case AttributeUnderlyingType::String: std::get(attr.null_values) = null_value.get(); std::get>(attr.arrays) = std::make_unique>(size); bytes_allocated += size * sizeof(StringRef); if (!string_arena) string_arena = std::make_unique(); break; } return attr; } template void CacheDictionary::getItemsNumber( Attribute & attribute, const PaddedPODArray & ids, PaddedPODArray & out, DefaultGetter && get_default) const { if (false) {} #define DISPATCH(TYPE) \ else if (attribute.type == AttributeUnderlyingType::TYPE) \ getItemsNumberImpl(attribute, ids, out, std::forward(get_default)); DISPATCH(UInt8) DISPATCH(UInt16) DISPATCH(UInt32) DISPATCH(UInt64) DISPATCH(Int8) DISPATCH(Int16) DISPATCH(Int32) DISPATCH(Int64) DISPATCH(Float32) DISPATCH(Float64) #undef DISPATCH else throw Exception("Unexpected type of attribute: " + toString(attribute.type), ErrorCodes::LOGICAL_ERROR); } template void CacheDictionary::getItemsNumberImpl( Attribute & attribute, const PaddedPODArray & ids, PaddedPODArray & out, DefaultGetter && get_default) const { /// Mapping: -> { all indices `i` of `ids` such that `ids[i]` = } std::unordered_map> outdated_ids; auto & attribute_array = std::get>(attribute.arrays); const auto rows = ext::size(ids); size_t cache_expired = 0, cache_not_found = 0, cache_hit = 0; { const ProfilingScopedReadRWLock read_lock{rw_lock, ProfileEvents::DictCacheLockReadNs}; const auto now = std::chrono::system_clock::now(); /// fetch up-to-date values, decide which ones require update for (const auto row : ext::range(0, rows)) { const auto id = ids[row]; /** cell should be updated if either: * 1. ids do not match, * 2. cell has expired, * 3. explicit defaults were specified and cell was set default. */ const auto find_result = findCellIdx(id, now); if (!find_result.valid) { outdated_ids[id].push_back(row); if (find_result.outdated) ++cache_expired; else ++cache_not_found; } else { ++cache_hit; const auto & cell_idx = find_result.cell_idx; const auto & cell = cells[cell_idx]; out[row] = cell.isDefault() ? get_default(row) : attribute_array[cell_idx]; } } } ProfileEvents::increment(ProfileEvents::DictCacheKeysExpired, cache_expired); ProfileEvents::increment(ProfileEvents::DictCacheKeysNotFound, cache_not_found); ProfileEvents::increment(ProfileEvents::DictCacheKeysHit, cache_hit); query_count.fetch_add(rows, std::memory_order_relaxed); hit_count.fetch_add(rows - outdated_ids.size(), std::memory_order_release); if (outdated_ids.empty()) return; std::vector required_ids(outdated_ids.size()); std::transform(std::begin(outdated_ids), std::end(outdated_ids), std::begin(required_ids), [] (auto & pair) { return pair.first; }); /// request new values update(required_ids, [&] (const auto id, const auto cell_idx) { const auto attribute_value = attribute_array[cell_idx]; for (const auto row : outdated_ids[id]) out[row] = attribute_value; }, [&] (const auto id, const auto cell_idx) { for (const auto row : outdated_ids[id]) out[row] = get_default(row); }); } template void CacheDictionary::getItemsString( Attribute & attribute, const PaddedPODArray & ids, ColumnString * out, DefaultGetter && get_default) const { const auto rows = ext::size(ids); /// save on some allocations out->getOffsets().reserve(rows); auto & attribute_array = std::get>(attribute.arrays); auto found_outdated_values = false; /// perform optimistic version, fallback to pessimistic if failed { const ProfilingScopedReadRWLock read_lock{rw_lock, ProfileEvents::DictCacheLockReadNs}; const auto now = std::chrono::system_clock::now(); /// fetch up-to-date values, discard on fail for (const auto row : ext::range(0, rows)) { const auto id = ids[row]; const auto find_result = findCellIdx(id, now); if (!find_result.valid) { found_outdated_values = true; break; } else { const auto & cell_idx = find_result.cell_idx; const auto & cell = cells[cell_idx]; const auto string_ref = cell.isDefault() ? get_default(row) : attribute_array[cell_idx]; out->insertData(string_ref.data, string_ref.size); } } } /// optimistic code completed successfully if (!found_outdated_values) { query_count.fetch_add(rows, std::memory_order_relaxed); hit_count.fetch_add(rows, std::memory_order_release); return; } /// now onto the pessimistic one, discard possible partial results from the optimistic path out->getChars().resize_assume_reserved(0); out->getOffsets().resize_assume_reserved(0); /// Mapping: -> { all indices `i` of `ids` such that `ids[i]` = } std::unordered_map> outdated_ids; /// we are going to store every string separately std::unordered_map map; std::size_t total_length = 0; size_t cache_expired = 0, cache_not_found = 0, cache_hit = 0; { const ProfilingScopedReadRWLock read_lock{rw_lock, ProfileEvents::DictCacheLockReadNs}; const auto now = std::chrono::system_clock::now(); for (const auto row : ext::range(0, ids.size())) { const auto id = ids[row]; const auto find_result = findCellIdx(id, now); if (!find_result.valid) { outdated_ids[id].push_back(row); if (find_result.outdated) ++cache_expired; else ++cache_not_found; } else { ++cache_hit; const auto & cell_idx = find_result.cell_idx; const auto & cell = cells[cell_idx]; const auto string_ref = cell.isDefault() ? get_default(row) : attribute_array[cell_idx]; if (!cell.isDefault()) map[id] = String{string_ref}; total_length += string_ref.size + 1; } } } ProfileEvents::increment(ProfileEvents::DictCacheKeysExpired, cache_expired); ProfileEvents::increment(ProfileEvents::DictCacheKeysNotFound, cache_not_found); ProfileEvents::increment(ProfileEvents::DictCacheKeysHit, cache_hit); query_count.fetch_add(rows, std::memory_order_relaxed); hit_count.fetch_add(rows - outdated_ids.size(), std::memory_order_release); /// request new values if (!outdated_ids.empty()) { std::vector required_ids(outdated_ids.size()); std::transform(std::begin(outdated_ids), std::end(outdated_ids), std::begin(required_ids), [] (auto & pair) { return pair.first; }); update(required_ids, [&] (const auto id, const auto cell_idx) { const auto attribute_value = attribute_array[cell_idx]; map[id] = String{attribute_value}; total_length += (attribute_value.size + 1) * outdated_ids[id].size(); }, [&] (const auto id, const auto cell_idx) { for (const auto row : outdated_ids[id]) total_length += get_default(row).size + 1; }); } out->getChars().reserve(total_length); for (const auto row : ext::range(0, ext::size(ids))) { const auto id = ids[row]; const auto it = map.find(id); const auto string_ref = it != std::end(map) ? StringRef{it->second} : get_default(row); out->insertData(string_ref.data, string_ref.size); } } template void CacheDictionary::update( const std::vector & requested_ids, PresentIdHandler && on_cell_updated, AbsentIdHandler && on_id_not_found) const { std::unordered_map remaining_ids{requested_ids.size()}; for (const auto id : requested_ids) remaining_ids.insert({ id, 0 }); std::uniform_int_distribution distribution{ dict_lifetime.min_sec, dict_lifetime.max_sec }; const ProfilingScopedWriteRWLock write_lock{rw_lock, ProfileEvents::DictCacheLockWriteNs}; { CurrentMetrics::Increment metric_increment{CurrentMetrics::DictCacheRequests}; Stopwatch watch; auto stream = source_ptr->loadIds(requested_ids); stream->readPrefix(); const auto now = std::chrono::system_clock::now(); while (const auto block = stream->read()) { const auto id_column = typeid_cast(block.safeGetByPosition(0).column.get()); if (!id_column) throw Exception{ name + ": id column has type different from UInt64.", ErrorCodes::TYPE_MISMATCH}; const auto & ids = id_column->getData(); /// cache column pointers const auto column_ptrs = ext::map(ext::range(0, attributes.size()), [&block] (size_t i) { return block.safeGetByPosition(i + 1).column.get(); }); for (const auto i : ext::range(0, ids.size())) { const auto id = ids[i]; const auto find_result = findCellIdx(id, now); const auto & cell_idx = find_result.cell_idx; auto & cell = cells[cell_idx]; for (const auto attribute_idx : ext::range(0, attributes.size())) { const auto & attribute_column = *column_ptrs[attribute_idx]; auto & attribute = attributes[attribute_idx]; setAttributeValue(attribute, cell_idx, attribute_column[i]); } /// if cell id is zero and zero does not map to this cell, then the cell is unused if (cell.id == 0 && cell_idx != zero_cell_idx) element_count.fetch_add(1, std::memory_order_relaxed); cell.id = id; if (dict_lifetime.min_sec != 0 && dict_lifetime.max_sec != 0) cell.setExpiresAt(std::chrono::system_clock::now() + std::chrono::seconds{distribution(rnd_engine)}); else cell.setExpiresAt(std::chrono::time_point::max()); /// inform caller on_cell_updated(id, cell_idx); /// mark corresponding id as found remaining_ids[id] = 1; } } stream->readSuffix(); ProfileEvents::increment(ProfileEvents::DictCacheKeysRequested, requested_ids.size()); ProfileEvents::increment(ProfileEvents::DictCacheRequestTimeNs, watch.elapsed()); } size_t not_found_num = 0, found_num = 0; const auto now = std::chrono::system_clock::now(); /// Check which ids have not been found and require setting null_value for (const auto id_found_pair : remaining_ids) { if (id_found_pair.second) { ++found_num; continue; } ++not_found_num; const auto id = id_found_pair.first; const auto find_result = findCellIdx(id, now); const auto & cell_idx = find_result.cell_idx; auto & cell = cells[cell_idx]; /// Set null_value for each attribute for (auto & attribute : attributes) setDefaultAttributeValue(attribute, cell_idx); /// Check if cell had not been occupied before and increment element counter if it hadn't if (cell.id == 0 && cell_idx != zero_cell_idx) element_count.fetch_add(1, std::memory_order_relaxed); cell.id = id; if (dict_lifetime.min_sec != 0 && dict_lifetime.max_sec != 0) cell.setExpiresAt(std::chrono::system_clock::now() + std::chrono::seconds{distribution(rnd_engine)}); else cell.setExpiresAt(std::chrono::time_point::max()); cell.setDefault(); /// inform caller that the cell has not been found on_id_not_found(id, cell_idx); } ProfileEvents::increment(ProfileEvents::DictCacheKeysRequestedMiss, not_found_num); ProfileEvents::increment(ProfileEvents::DictCacheKeysRequestedFound, found_num); ProfileEvents::increment(ProfileEvents::DictCacheRequests); } void CacheDictionary::setDefaultAttributeValue(Attribute & attribute, const Key idx) const { switch (attribute.type) { case AttributeUnderlyingType::UInt8: std::get>(attribute.arrays)[idx] = std::get(attribute.null_values); break; case AttributeUnderlyingType::UInt16: std::get>(attribute.arrays)[idx] = std::get(attribute.null_values); break; case AttributeUnderlyingType::UInt32: std::get>(attribute.arrays)[idx] = std::get(attribute.null_values); break; case AttributeUnderlyingType::UInt64: std::get>(attribute.arrays)[idx] = std::get(attribute.null_values); break; case AttributeUnderlyingType::Int8: std::get>(attribute.arrays)[idx] = std::get(attribute.null_values); break; case AttributeUnderlyingType::Int16: std::get>(attribute.arrays)[idx] = std::get(attribute.null_values); break; case AttributeUnderlyingType::Int32: std::get>(attribute.arrays)[idx] = std::get(attribute.null_values); break; case AttributeUnderlyingType::Int64: std::get>(attribute.arrays)[idx] = std::get(attribute.null_values); break; case AttributeUnderlyingType::Float32: std::get>(attribute.arrays)[idx] = std::get(attribute.null_values); break; case AttributeUnderlyingType::Float64: std::get>(attribute.arrays)[idx] = std::get(attribute.null_values); break; case AttributeUnderlyingType::String: { const auto & null_value_ref = std::get(attribute.null_values); auto & string_ref = std::get>(attribute.arrays)[idx]; if (string_ref.data != null_value_ref.data()) { if (string_ref.data) string_arena->free(const_cast(string_ref.data), string_ref.size); string_ref = StringRef{null_value_ref}; } break; } } } void CacheDictionary::setAttributeValue(Attribute & attribute, const Key idx, const Field & value) const { switch (attribute.type) { case AttributeUnderlyingType::UInt8: std::get>(attribute.arrays)[idx] = value.get(); break; case AttributeUnderlyingType::UInt16: std::get>(attribute.arrays)[idx] = value.get(); break; case AttributeUnderlyingType::UInt32: std::get>(attribute.arrays)[idx] = value.get(); break; case AttributeUnderlyingType::UInt64: std::get>(attribute.arrays)[idx] = value.get(); break; case AttributeUnderlyingType::Int8: std::get>(attribute.arrays)[idx] = value.get(); break; case AttributeUnderlyingType::Int16: std::get>(attribute.arrays)[idx] = value.get(); break; case AttributeUnderlyingType::Int32: std::get>(attribute.arrays)[idx] = value.get(); break; case AttributeUnderlyingType::Int64: std::get>(attribute.arrays)[idx] = value.get(); break; case AttributeUnderlyingType::Float32: std::get>(attribute.arrays)[idx] = value.get(); break; case AttributeUnderlyingType::Float64: std::get>(attribute.arrays)[idx] = value.get(); break; case AttributeUnderlyingType::String: { const auto & string = value.get(); auto & string_ref = std::get>(attribute.arrays)[idx]; const auto & null_value_ref = std::get(attribute.null_values); /// free memory unless it points to a null_value if (string_ref.data && string_ref.data != null_value_ref.data()) string_arena->free(const_cast(string_ref.data), string_ref.size); const auto size = string.size(); if (size != 0) { auto string_ptr = string_arena->alloc(size + 1); std::copy(string.data(), string.data() + size + 1, string_ptr); string_ref = StringRef{string_ptr, size}; } else string_ref = {}; break; } } } CacheDictionary::Attribute & CacheDictionary::getAttribute(const std::string & attribute_name) const { const auto it = attribute_index_by_name.find(attribute_name); if (it == std::end(attribute_index_by_name)) throw Exception{ name + ": no such attribute '" + attribute_name + "'", ErrorCodes::BAD_ARGUMENTS }; return attributes[it->second]; } }