#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include // memcpy namespace DB { namespace ErrorCodes { extern const int NOT_IMPLEMENTED; extern const int BAD_ARGUMENTS; extern const int PARAMETER_OUT_OF_BOUND; extern const int SIZES_OF_COLUMNS_DOESNT_MATCH; extern const int LOGICAL_ERROR; extern const int TOO_LARGE_ARRAY_SIZE; } /** Obtaining array as Field can be slow for large arrays and consume vast amount of memory. * Just don't allow to do it. * You can increase the limit if the following query: * SELECT range(10000000) * will take less than 500ms on your machine. */ static constexpr size_t max_array_size_as_field = 1000000; ColumnArray::ColumnArray(MutableColumnPtr && nested_column, MutableColumnPtr && offsets_column) : data(std::move(nested_column)), offsets(std::move(offsets_column)) { const ColumnOffsets * offsets_concrete = typeid_cast(offsets.get()); if (!offsets_concrete) throw Exception(ErrorCodes::LOGICAL_ERROR, "offsets_column must be a ColumnUInt64"); if (!offsets_concrete->empty() && data && !data->empty()) { Offset last_offset = offsets_concrete->getData().back(); /// This will also prevent possible overflow in offset. if (data->size() != last_offset) throw Exception(ErrorCodes::LOGICAL_ERROR, "offsets_column has data inconsistent with nested_column. Data size: {}, last offset: {}", data->size(), last_offset); } /** NOTE * Arrays with constant value are possible and used in implementation of higher order functions (see FunctionReplicate). * But in most cases, arrays with constant value are unexpected and code will work wrong. Use with caution. */ } ColumnArray::ColumnArray(MutableColumnPtr && nested_column) : data(std::move(nested_column)) { if (!data->empty()) throw Exception(ErrorCodes::LOGICAL_ERROR, "Not empty data passed to ColumnArray, but no offsets passed"); offsets = ColumnOffsets::create(); } std::string ColumnArray::getName() const { return "Array(" + getData().getName() + ")"; } MutableColumnPtr ColumnArray::cloneResized(size_t to_size) const { auto res = ColumnArray::create(getData().cloneEmpty()); if (to_size == 0) return res; size_t from_size = size(); if (to_size <= from_size) { /// Just cut column. res->getOffsets().assign(getOffsets().begin(), getOffsets().begin() + to_size); res->getData().insertRangeFrom(getData(), 0, getOffsets()[to_size - 1]); } else { /// Copy column and append empty arrays for extra elements. Offset offset = 0; if (from_size > 0) { res->getOffsets().assign(getOffsets().begin(), getOffsets().end()); res->getData().insertRangeFrom(getData(), 0, getData().size()); offset = getOffsets().back(); } res->getOffsets().resize(to_size); for (size_t i = from_size; i < to_size; ++i) res->getOffsets()[i] = offset; } return res; } size_t ColumnArray::size() const { return getOffsets().size(); } Field ColumnArray::operator[](size_t n) const { Field res; get(n, res); return res; } void ColumnArray::get(size_t n, Field & res) const { size_t offset = offsetAt(n); size_t size = sizeAt(n); if (size > max_array_size_as_field) throw Exception(ErrorCodes::TOO_LARGE_ARRAY_SIZE, "Array of size {} is too large to be manipulated as single field, maximum size {}", size, max_array_size_as_field); res = Array(); Array & res_arr = res.get(); res_arr.reserve(size); for (size_t i = 0; i < size; ++i) res_arr.push_back(getData()[offset + i]); } StringRef ColumnArray::getDataAt(size_t n) const { assert(n < size()); /** Returns the range of memory that covers all elements of the array. * Works for arrays of fixed length values. */ /// We are using pointer arithmetic on the addresses of the array elements. if (!data->isFixedAndContiguous()) throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Method getDataAt is not supported for {}", getName()); size_t array_size = sizeAt(n); if (array_size == 0) return StringRef(nullptr, 0); size_t offset_of_first_elem = offsetAt(n); StringRef first = getData().getDataAt(offset_of_first_elem); return StringRef(first.data, first.size * array_size); } bool ColumnArray::isDefaultAt(size_t n) const { const auto & offsets_data = getOffsets(); return offsets_data[n] == offsets_data[static_cast(n) - 1]; } void ColumnArray::insertData(const char * pos, size_t length) { /** Similarly - only for arrays of fixed length values. */ if (!data->isFixedAndContiguous()) throw Exception(ErrorCodes::NOT_IMPLEMENTED, "Method insertData is not supported for {}", getName()); size_t field_size = data->sizeOfValueIfFixed(); size_t elems = 0; if (length) { const char * end = pos + length; for (; pos + field_size <= end; pos += field_size, ++elems) data->insertData(pos, field_size); if (pos != end) throw Exception(ErrorCodes::BAD_ARGUMENTS, "Incorrect length argument for method ColumnArray::insertData"); } getOffsets().push_back(getOffsets().back() + elems); } StringRef ColumnArray::serializeValueIntoArena(size_t n, Arena & arena, char const *& begin) const { size_t array_size = sizeAt(n); size_t offset = offsetAt(n); char * pos = arena.allocContinue(sizeof(array_size), begin); memcpy(pos, &array_size, sizeof(array_size)); StringRef res(pos, sizeof(array_size)); for (size_t i = 0; i < array_size; ++i) { auto value_ref = getData().serializeValueIntoArena(offset + i, arena, begin); res.data = value_ref.data - res.size; res.size += value_ref.size; } return res; } const char * ColumnArray::deserializeAndInsertFromArena(const char * pos) { size_t array_size = unalignedLoad(pos); pos += sizeof(array_size); for (size_t i = 0; i < array_size; ++i) pos = getData().deserializeAndInsertFromArena(pos); getOffsets().push_back(getOffsets().back() + array_size); return pos; } const char * ColumnArray::skipSerializedInArena(const char * pos) const { size_t array_size = unalignedLoad(pos); pos += sizeof(array_size); for (size_t i = 0; i < array_size; ++i) pos = getData().skipSerializedInArena(pos); return pos; } void ColumnArray::updateHashWithValue(size_t n, SipHash & hash) const { size_t array_size = sizeAt(n); size_t offset = offsetAt(n); hash.update(array_size); for (size_t i = 0; i < array_size; ++i) getData().updateHashWithValue(offset + i, hash); } void ColumnArray::updateWeakHash32(WeakHash32 & hash) const { auto s = offsets->size(); if (hash.getData().size() != s) throw Exception(ErrorCodes::LOGICAL_ERROR, "Size of WeakHash32 does not match size of column: " "column size is {}, hash size is {}", s, hash.getData().size()); WeakHash32 internal_hash(data->size()); data->updateWeakHash32(internal_hash); Offset prev_offset = 0; const auto & offsets_data = getOffsets(); auto & hash_data = hash.getData(); auto & internal_hash_data = internal_hash.getData(); for (size_t i = 0; i < s; ++i) { /// This row improves hash a little bit according to integration tests. /// It is the same as to use previous hash value as the first element of array. hash_data[i] = static_cast(intHashCRC32(hash_data[i])); for (size_t row = prev_offset; row < offsets_data[i]; ++row) /// It is probably not the best way to combine hashes. /// But much better then xor which lead to similar hash for arrays like [1], [1, 1, 1], [1, 1, 1, 1, 1], ... /// Much better implementation - to add offsets as an optional argument to updateWeakHash32. hash_data[i] = static_cast(intHashCRC32(internal_hash_data[row], hash_data[i])); prev_offset = offsets_data[i]; } } void ColumnArray::updateHashFast(SipHash & hash) const { offsets->updateHashFast(hash); data->updateHashFast(hash); } void ColumnArray::insert(const Field & x) { const Array & array = x.get(); size_t size = array.size(); for (size_t i = 0; i < size; ++i) getData().insert(array[i]); getOffsets().push_back(getOffsets().back() + size); } void ColumnArray::insertFrom(const IColumn & src_, size_t n) { const ColumnArray & src = assert_cast(src_); size_t size = src.sizeAt(n); size_t offset = src.offsetAt(n); getData().insertRangeFrom(src.getData(), offset, size); getOffsets().push_back(getOffsets().back() + size); } void ColumnArray::insertDefault() { /// NOTE 1: We can use back() even if the array is empty (due to zero -1th element in PODArray). /// NOTE 2: We cannot use reference in push_back, because reference get invalidated if array is reallocated. auto last_offset = getOffsets().back(); getOffsets().push_back(last_offset); } void ColumnArray::popBack(size_t n) { auto & offsets_data = getOffsets(); size_t nested_n = offsets_data.back() - offsetAt(offsets_data.size() - n); if (nested_n) getData().popBack(nested_n); offsets_data.resize_assume_reserved(offsets_data.size() - n); } int ColumnArray::compareAtImpl(size_t n, size_t m, const IColumn & rhs_, int nan_direction_hint, const Collator * collator) const { const ColumnArray & rhs = assert_cast(rhs_); /// Suboptimal size_t lhs_size = sizeAt(n); size_t rhs_size = rhs.sizeAt(m); size_t min_size = std::min(lhs_size, rhs_size); for (size_t i = 0; i < min_size; ++i) { int res; if (collator) res = getData().compareAtWithCollation(offsetAt(n) + i, rhs.offsetAt(m) + i, *rhs.data.get(), nan_direction_hint, *collator); else res = getData().compareAt(offsetAt(n) + i, rhs.offsetAt(m) + i, *rhs.data.get(), nan_direction_hint); if (res) return res; } return lhs_size < rhs_size ? -1 : (lhs_size == rhs_size ? 0 : 1); } int ColumnArray::compareAt(size_t n, size_t m, const IColumn & rhs_, int nan_direction_hint) const { return compareAtImpl(n, m, rhs_, nan_direction_hint); } int ColumnArray::compareAtWithCollation(size_t n, size_t m, const IColumn & rhs_, int nan_direction_hint, const Collator & collator) const { return compareAtImpl(n, m, rhs_, nan_direction_hint, &collator); } void ColumnArray::compareColumn(const IColumn & rhs, size_t rhs_row_num, PaddedPODArray * row_indexes, PaddedPODArray & compare_results, int direction, int nan_direction_hint) const { return doCompareColumn(assert_cast(rhs), rhs_row_num, row_indexes, compare_results, direction, nan_direction_hint); } bool ColumnArray::hasEqualValues() const { return hasEqualValuesImpl(); } struct ColumnArray::ComparatorBase { const ColumnArray & parent; int nan_direction_hint; ComparatorBase(const ColumnArray & parent_, int nan_direction_hint_) : parent(parent_), nan_direction_hint(nan_direction_hint_) { } ALWAYS_INLINE int compare(size_t lhs, size_t rhs) const { int res = parent.compareAt(lhs, rhs, parent, nan_direction_hint); return res; } }; struct ColumnArray::ComparatorCollationBase { const ColumnArray & parent; int nan_direction_hint; const Collator * collator; ComparatorCollationBase(const ColumnArray & parent_, int nan_direction_hint_, const Collator * collator_) : parent(parent_), nan_direction_hint(nan_direction_hint_), collator(collator_) { } ALWAYS_INLINE int compare(size_t lhs, size_t rhs) const { int res = parent.compareAtWithCollation(lhs, rhs, parent, nan_direction_hint, *collator); return res; } }; void ColumnArray::reserve(size_t n) { getOffsets().reserve(n); getData().reserve(n); /// The average size of arrays is not taken into account here. Or it is considered to be no more than 1. } void ColumnArray::ensureOwnership() { getData().ensureOwnership(); } size_t ColumnArray::byteSize() const { return getData().byteSize() + getOffsets().size() * sizeof(getOffsets()[0]); } size_t ColumnArray::byteSizeAt(size_t n) const { const auto & offsets_data = getOffsets(); size_t pos = offsets_data[n - 1]; size_t end = offsets_data[n]; size_t res = sizeof(offsets_data[0]); for (; pos < end; ++pos) res += getData().byteSizeAt(pos); return res; } size_t ColumnArray::allocatedBytes() const { return getData().allocatedBytes() + getOffsets().allocated_bytes(); } void ColumnArray::protect() { getData().protect(); getOffsets().protect(); } bool ColumnArray::hasEqualOffsets(const ColumnArray & other) const { if (offsets == other.offsets) return true; const Offsets & offsets1 = getOffsets(); const Offsets & offsets2 = other.getOffsets(); return offsets1.size() == offsets2.size() && (offsets1.empty() || 0 == memcmp(offsets1.data(), offsets2.data(), sizeof(offsets1[0]) * offsets1.size())); } ColumnPtr ColumnArray::convertToFullColumnIfConst() const { /// It is possible to have an array with constant data and non-constant offsets. /// Example is the result of expression: replicate('hello', [1]) return ColumnArray::create(data->convertToFullColumnIfConst(), offsets); } void ColumnArray::getExtremes(Field & min, Field & max) const { min = Array(); max = Array(); size_t col_size = size(); if (col_size == 0) return; size_t min_idx = 0; size_t max_idx = 0; for (size_t i = 1; i < col_size; ++i) { if (compareAt(i, min_idx, *this, /* nan_direction_hint = */ 1) < 0) min_idx = i; else if (compareAt(i, max_idx, *this, /* nan_direction_hint = */ -1) > 0) max_idx = i; } get(min_idx, min); get(max_idx, max); } void ColumnArray::insertRangeFrom(const IColumn & src, size_t start, size_t length) { if (length == 0) return; const ColumnArray & src_concrete = assert_cast(src); if (start + length > src_concrete.getOffsets().size()) throw Exception(ErrorCodes::PARAMETER_OUT_OF_BOUND, "Parameter out of bound in ColumnArray::insertRangeFrom method. " "[start({}) + length({}) > offsets.size({})]", start, length, src_concrete.getOffsets().size()); size_t nested_offset = src_concrete.offsetAt(start); size_t nested_length = src_concrete.getOffsets()[start + length - 1] - nested_offset; Offsets & cur_offsets = getOffsets(); /// Reserve offsets before to make it more exception safe (in case of MEMORY_LIMIT_EXCEEDED) cur_offsets.reserve(cur_offsets.size() + length); getData().insertRangeFrom(src_concrete.getData(), nested_offset, nested_length); const Offsets & src_offsets = src_concrete.getOffsets(); if (start == 0 && cur_offsets.empty()) { cur_offsets.assign(src_offsets.begin(), src_offsets.begin() + length); } else { size_t old_size = cur_offsets.size(); size_t prev_max_offset = old_size ? cur_offsets.back() : 0; cur_offsets.resize(old_size + length); for (size_t i = 0; i < length; ++i) cur_offsets[old_size + i] = src_offsets[start + i] - nested_offset + prev_max_offset; } } ColumnPtr ColumnArray::filter(const Filter & filt, ssize_t result_size_hint) const { if (typeid_cast(data.get())) return filterNumber(filt, result_size_hint); if (typeid_cast(data.get())) return filterNumber(filt, result_size_hint); if (typeid_cast(data.get())) return filterNumber(filt, result_size_hint); if (typeid_cast(data.get())) return filterNumber(filt, result_size_hint); if (typeid_cast(data.get())) return filterNumber(filt, result_size_hint); if (typeid_cast(data.get())) return filterNumber(filt, result_size_hint); if (typeid_cast(data.get())) return filterNumber(filt, result_size_hint); if (typeid_cast(data.get())) return filterNumber(filt, result_size_hint); if (typeid_cast(data.get())) return filterNumber(filt, result_size_hint); if (typeid_cast(data.get())) return filterNumber(filt, result_size_hint); if (typeid_cast(data.get())) return filterNumber(filt, result_size_hint); if (typeid_cast(data.get())) return filterNumber(filt, result_size_hint); if (typeid_cast(data.get())) return filterNumber(filt, result_size_hint); if (typeid_cast(data.get())) return filterNumber(filt, result_size_hint); if (typeid_cast *>(data.get())) return filterNumber(filt, result_size_hint); if (typeid_cast *>(data.get())) return filterNumber(filt, result_size_hint); if (typeid_cast *>(data.get())) return filterNumber(filt, result_size_hint); if (typeid_cast *>(data.get())) return filterNumber(filt, result_size_hint); if (typeid_cast(data.get())) return filterString(filt, result_size_hint); if (typeid_cast(data.get())) return filterTuple(filt, result_size_hint); if (typeid_cast(data.get())) return filterNullable(filt, result_size_hint); return filterGeneric(filt, result_size_hint); } void ColumnArray::expand(const IColumn::Filter & mask, bool inverted) { auto & offsets_data = getOffsets(); if (mask.size() < offsets_data.size()) throw Exception(ErrorCodes::LOGICAL_ERROR, "Mask size should be no less than data size."); ssize_t index = mask.size() - 1; ssize_t from = offsets_data.size() - 1; offsets_data.resize(mask.size()); UInt64 last_offset = offsets_data[from]; while (index >= 0) { offsets_data[index] = last_offset; if (!!mask[index] ^ inverted) { if (from < 0) throw Exception(ErrorCodes::LOGICAL_ERROR, "Too many bytes in mask"); --from; last_offset = offsets_data[from]; } --index; } if (from != -1) throw Exception(ErrorCodes::LOGICAL_ERROR, "Not enough bytes in mask"); } template ColumnPtr ColumnArray::filterNumber(const Filter & filt, ssize_t result_size_hint) const { using ColVecType = ColumnVectorOrDecimal; if (getOffsets().empty()) return ColumnArray::create(data); auto res = ColumnArray::create(data->cloneEmpty()); auto & res_elems = assert_cast(res->getData()).getData(); Offsets & res_offsets = res->getOffsets(); filterArraysImpl(assert_cast(*data).getData(), getOffsets(), res_elems, res_offsets, filt, result_size_hint); return res; } ColumnPtr ColumnArray::filterString(const Filter & filt, ssize_t result_size_hint) const { size_t col_size = getOffsets().size(); if (col_size != filt.size()) throw Exception(ErrorCodes::SIZES_OF_COLUMNS_DOESNT_MATCH, "Size of filter ({}) doesn't match size of column ({})", filt.size(), col_size); if (0 == col_size) return ColumnArray::create(data); auto res = ColumnArray::create(data->cloneEmpty()); const ColumnString & src_string = typeid_cast(*data); const ColumnString::Chars & src_chars = src_string.getChars(); const Offsets & src_string_offsets = src_string.getOffsets(); const Offsets & src_offsets = getOffsets(); ColumnString::Chars & res_chars = typeid_cast(res->getData()).getChars(); Offsets & res_string_offsets = typeid_cast(res->getData()).getOffsets(); Offsets & res_offsets = res->getOffsets(); if (result_size_hint < 0) /// Other cases are not considered. { res_chars.reserve(src_chars.size()); res_string_offsets.reserve(src_string_offsets.size()); res_offsets.reserve(col_size); } Offset prev_src_offset = 0; Offset prev_src_string_offset = 0; Offset prev_res_offset = 0; Offset prev_res_string_offset = 0; for (size_t i = 0; i < col_size; ++i) { /// Number of rows in the array. size_t array_size = src_offsets[i] - prev_src_offset; if (filt[i]) { /// If the array is not empty - copy content. if (array_size) { size_t chars_to_copy = src_string_offsets[array_size + prev_src_offset - 1] - prev_src_string_offset; size_t res_chars_prev_size = res_chars.size(); res_chars.resize(res_chars_prev_size + chars_to_copy); memcpy(&res_chars[res_chars_prev_size], &src_chars[prev_src_string_offset], chars_to_copy); for (size_t j = 0; j < array_size; ++j) res_string_offsets.push_back(src_string_offsets[j + prev_src_offset] + prev_res_string_offset - prev_src_string_offset); prev_res_string_offset = res_string_offsets.back(); } prev_res_offset += array_size; res_offsets.push_back(prev_res_offset); } if (array_size) { prev_src_offset += array_size; prev_src_string_offset = src_string_offsets[prev_src_offset - 1]; } } return res; } ColumnPtr ColumnArray::filterGeneric(const Filter & filt, ssize_t result_size_hint) const { size_t size = getOffsets().size(); if (size != filt.size()) throw Exception(ErrorCodes::SIZES_OF_COLUMNS_DOESNT_MATCH, "Size of filter ({}) doesn't match size of column ({})", filt.size(), size); if (size == 0) return ColumnArray::create(data); Filter nested_filt(getOffsets().back()); for (size_t i = 0; i < size; ++i) { if (filt[i]) memset(&nested_filt[offsetAt(i)], 1, sizeAt(i)); else memset(&nested_filt[offsetAt(i)], 0, sizeAt(i)); } auto res = ColumnArray::create(data->cloneEmpty()); ssize_t nested_result_size_hint = 0; if (result_size_hint < 0) nested_result_size_hint = result_size_hint; else if (result_size_hint && result_size_hint < 1000000000 && data->size() < 1000000000) /// Avoid overflow. nested_result_size_hint = result_size_hint * data->size() / size; res->data = data->filter(nested_filt, nested_result_size_hint); Offsets & res_offsets = res->getOffsets(); if (result_size_hint) res_offsets.reserve(result_size_hint > 0 ? result_size_hint : size); size_t current_offset = 0; for (size_t i = 0; i < size; ++i) { if (filt[i]) { current_offset += sizeAt(i); res_offsets.push_back(current_offset); } } return res; } ColumnPtr ColumnArray::filterNullable(const Filter & filt, ssize_t result_size_hint) const { if (getOffsets().empty()) return ColumnArray::create(data); const ColumnNullable & nullable_elems = assert_cast(*data); auto array_of_nested = ColumnArray::create(nullable_elems.getNestedColumnPtr(), offsets); auto filtered_array_of_nested_owner = array_of_nested->filter(filt, result_size_hint); const auto & filtered_array_of_nested = assert_cast(*filtered_array_of_nested_owner); const auto & filtered_offsets = filtered_array_of_nested.getOffsetsPtr(); auto res_null_map = ColumnUInt8::create(); filterArraysImplOnlyData(nullable_elems.getNullMapData(), getOffsets(), res_null_map->getData(), filt, result_size_hint); return ColumnArray::create( ColumnNullable::create( filtered_array_of_nested.getDataPtr(), std::move(res_null_map)), filtered_offsets); } ColumnPtr ColumnArray::filterTuple(const Filter & filt, ssize_t result_size_hint) const { if (getOffsets().empty()) return ColumnArray::create(data); const ColumnTuple & tuple = assert_cast(*data); /// Make temporary arrays for each components of Tuple, then filter and collect back. size_t tuple_size = tuple.tupleSize(); if (tuple_size == 0) throw Exception(ErrorCodes::LOGICAL_ERROR, "Logical error: empty tuple"); Columns temporary_arrays(tuple_size); for (size_t i = 0; i < tuple_size; ++i) temporary_arrays[i] = ColumnArray(tuple.getColumns()[i]->assumeMutable(), getOffsetsPtr()->assumeMutable()) .filter(filt, result_size_hint); Columns tuple_columns(tuple_size); for (size_t i = 0; i < tuple_size; ++i) tuple_columns[i] = assert_cast(*temporary_arrays[i]).getDataPtr(); return ColumnArray::create( ColumnTuple::create(tuple_columns), assert_cast(*temporary_arrays.front()).getOffsetsPtr()); } ColumnPtr ColumnArray::permute(const Permutation & perm, size_t limit) const { return permuteImpl(*this, perm, limit); } ColumnPtr ColumnArray::index(const IColumn & indexes, size_t limit) const { return selectIndexImpl(*this, indexes, limit); } template ColumnPtr ColumnArray::indexImpl(const PaddedPODArray & indexes, size_t limit) const { assert(limit <= indexes.size()); if (limit == 0) return ColumnArray::create(data->cloneEmpty()); /// Convert indexes to UInt64 in case of overflow. auto nested_indexes_column = ColumnUInt64::create(); PaddedPODArray & nested_indexes = nested_indexes_column->getData(); nested_indexes.reserve(getOffsets().back()); auto res = ColumnArray::create(data->cloneEmpty()); Offsets & res_offsets = res->getOffsets(); res_offsets.resize(limit); size_t current_offset = 0; for (size_t i = 0; i < limit; ++i) { for (size_t j = 0; j < sizeAt(indexes[i]); ++j) nested_indexes.push_back(offsetAt(indexes[i]) + j); current_offset += sizeAt(indexes[i]); res_offsets[i] = current_offset; } if (current_offset != 0) res->data = data->index(*nested_indexes_column, current_offset); return res; } INSTANTIATE_INDEX_IMPL(ColumnArray) void ColumnArray::getPermutation(PermutationSortDirection direction, PermutationSortStability stability, size_t limit, int nan_direction_hint, Permutation & res) const { if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Unstable) getPermutationImpl(limit, res, ComparatorAscendingUnstable(*this, nan_direction_hint), DefaultSort(), DefaultPartialSort()); else if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Stable) getPermutationImpl(limit, res, ComparatorAscendingStable(*this, nan_direction_hint), DefaultSort(), DefaultPartialSort()); else if (direction == IColumn::PermutationSortDirection::Descending && stability == IColumn::PermutationSortStability::Unstable) getPermutationImpl(limit, res, ComparatorDescendingUnstable(*this, nan_direction_hint), DefaultSort(), DefaultPartialSort()); else if (direction == IColumn::PermutationSortDirection::Descending && stability == IColumn::PermutationSortStability::Stable) getPermutationImpl(limit, res, ComparatorDescendingStable(*this, nan_direction_hint), DefaultSort(), DefaultPartialSort()); } void ColumnArray::updatePermutation(PermutationSortDirection direction, PermutationSortStability stability, size_t limit, int nan_direction_hint, Permutation & res, EqualRanges & equal_ranges) const { auto comparator_equal = ComparatorEqual(*this, nan_direction_hint); if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Unstable) updatePermutationImpl(limit, res, equal_ranges, ComparatorAscendingUnstable(*this, nan_direction_hint), comparator_equal, DefaultSort(), DefaultPartialSort()); else if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Stable) updatePermutationImpl(limit, res, equal_ranges, ComparatorAscendingStable(*this, nan_direction_hint), comparator_equal, DefaultSort(), DefaultPartialSort()); else if (direction == IColumn::PermutationSortDirection::Descending && stability == IColumn::PermutationSortStability::Unstable) updatePermutationImpl(limit, res, equal_ranges, ComparatorDescendingUnstable(*this, nan_direction_hint), comparator_equal, DefaultSort(), DefaultPartialSort()); else if (direction == IColumn::PermutationSortDirection::Descending && stability == IColumn::PermutationSortStability::Stable) updatePermutationImpl(limit, res, equal_ranges, ComparatorDescendingStable(*this, nan_direction_hint), comparator_equal, DefaultSort(), DefaultPartialSort()); } void ColumnArray::getPermutationWithCollation(const Collator & collator, PermutationSortDirection direction, PermutationSortStability stability, size_t limit, int nan_direction_hint, Permutation & res) const { if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Unstable) getPermutationImpl(limit, res, ComparatorCollationAscendingUnstable(*this, nan_direction_hint, &collator), DefaultSort(), DefaultPartialSort()); else if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Stable) getPermutationImpl(limit, res, ComparatorCollationAscendingStable(*this, nan_direction_hint, &collator), DefaultSort(), DefaultPartialSort()); else if (direction == IColumn::PermutationSortDirection::Descending && stability == IColumn::PermutationSortStability::Unstable) getPermutationImpl(limit, res, ComparatorCollationDescendingUnstable(*this, nan_direction_hint, &collator), DefaultSort(), DefaultPartialSort()); else if (direction == IColumn::PermutationSortDirection::Descending && stability == IColumn::PermutationSortStability::Stable) getPermutationImpl(limit, res, ComparatorCollationDescendingStable(*this, nan_direction_hint, &collator), DefaultSort(), DefaultPartialSort()); } void ColumnArray::updatePermutationWithCollation(const Collator & collator, PermutationSortDirection direction, PermutationSortStability stability, size_t limit, int nan_direction_hint, Permutation & res, EqualRanges & equal_ranges) const { auto comparator_equal = ComparatorCollationEqual(*this, nan_direction_hint, &collator); if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Unstable) updatePermutationImpl( limit, res, equal_ranges, ComparatorCollationAscendingUnstable(*this, nan_direction_hint, &collator), comparator_equal, DefaultSort(), DefaultPartialSort()); else if (direction == IColumn::PermutationSortDirection::Ascending && stability == IColumn::PermutationSortStability::Stable) updatePermutationImpl( limit, res, equal_ranges, ComparatorCollationAscendingStable(*this, nan_direction_hint, &collator), comparator_equal, DefaultSort(), DefaultPartialSort()); else if (direction == IColumn::PermutationSortDirection::Descending && stability == IColumn::PermutationSortStability::Unstable) updatePermutationImpl( limit, res, equal_ranges, ComparatorCollationDescendingUnstable(*this, nan_direction_hint, &collator), comparator_equal, DefaultSort(), DefaultPartialSort()); else if (direction == IColumn::PermutationSortDirection::Descending && stability == IColumn::PermutationSortStability::Stable) updatePermutationImpl( limit, res, equal_ranges, ComparatorCollationDescendingStable(*this, nan_direction_hint, &collator), comparator_equal, DefaultSort(), DefaultPartialSort()); } ColumnPtr ColumnArray::compress() const { ColumnPtr data_compressed = data->compress(); ColumnPtr offsets_compressed = offsets->compress(); size_t byte_size = data_compressed->byteSize() + offsets_compressed->byteSize(); return ColumnCompressed::create(size(), byte_size, [my_data_compressed = std::move(data_compressed), my_offsets_compressed = std::move(offsets_compressed)] { return ColumnArray::create(my_data_compressed->decompress(), my_offsets_compressed->decompress()); }); } double ColumnArray::getRatioOfDefaultRows(double sample_ratio) const { return getRatioOfDefaultRowsImpl(sample_ratio); } UInt64 ColumnArray::getNumberOfDefaultRows() const { return getNumberOfDefaultRowsImpl(); } void ColumnArray::getIndicesOfNonDefaultRows(Offsets & indices, size_t from, size_t limit) const { return getIndicesOfNonDefaultRowsImpl(indices, from, limit); } ColumnPtr ColumnArray::replicate(const Offsets & replicate_offsets) const { if (replicate_offsets.empty()) return cloneEmpty(); if (typeid_cast(data.get())) return replicateNumber(replicate_offsets); if (typeid_cast(data.get())) return replicateNumber(replicate_offsets); if (typeid_cast(data.get())) return replicateNumber(replicate_offsets); if (typeid_cast(data.get())) return replicateNumber(replicate_offsets); if (typeid_cast(data.get())) return replicateNumber(replicate_offsets); if (typeid_cast(data.get())) return replicateNumber(replicate_offsets); if (typeid_cast(data.get())) return replicateNumber(replicate_offsets); if (typeid_cast(data.get())) return replicateNumber(replicate_offsets); if (typeid_cast(data.get())) return replicateNumber(replicate_offsets); if (typeid_cast(data.get())) return replicateNumber(replicate_offsets); if (typeid_cast(data.get())) return replicateNumber(replicate_offsets); if (typeid_cast(data.get())) return replicateNumber(replicate_offsets); if (typeid_cast(data.get())) return replicateNumber(replicate_offsets); if (typeid_cast(data.get())) return replicateNumber(replicate_offsets); if (typeid_cast *>(data.get())) return replicateNumber(replicate_offsets); if (typeid_cast *>(data.get())) return replicateNumber(replicate_offsets); if (typeid_cast *>(data.get())) return replicateNumber(replicate_offsets); if (typeid_cast *>(data.get())) return replicateNumber(replicate_offsets); if (typeid_cast(data.get())) return replicateString(replicate_offsets); if (typeid_cast(data.get())) return replicateConst(replicate_offsets); if (typeid_cast(data.get())) return replicateNullable(replicate_offsets); if (typeid_cast(data.get())) return replicateTuple(replicate_offsets); return replicateGeneric(replicate_offsets); } template ColumnPtr ColumnArray::replicateNumber(const Offsets & replicate_offsets) const { using ColVecType = ColumnVectorOrDecimal; size_t col_size = size(); if (col_size != replicate_offsets.size()) throw Exception(ErrorCodes::SIZES_OF_COLUMNS_DOESNT_MATCH, "Size of offsets doesn't match size of column."); MutableColumnPtr res = cloneEmpty(); if (0 == col_size) return res; ColumnArray & res_arr = typeid_cast(*res); const typename ColVecType::Container & src_data = typeid_cast(*data).getData(); const Offsets & src_offsets = getOffsets(); typename ColVecType::Container & res_data = typeid_cast(res_arr.getData()).getData(); Offsets & res_offsets = res_arr.getOffsets(); res_data.reserve(data->size() / col_size * replicate_offsets.back()); res_offsets.reserve(replicate_offsets.back()); Offset prev_replicate_offset = 0; Offset prev_data_offset = 0; Offset current_new_offset = 0; for (size_t i = 0; i < col_size; ++i) { size_t size_to_replicate = replicate_offsets[i] - prev_replicate_offset; size_t value_size = src_offsets[i] - prev_data_offset; for (size_t j = 0; j < size_to_replicate; ++j) { current_new_offset += value_size; res_offsets.push_back(current_new_offset); if (value_size) { res_data.resize(res_data.size() + value_size); memcpy(&res_data[res_data.size() - value_size], &src_data[prev_data_offset], value_size * sizeof(T)); } } prev_replicate_offset = replicate_offsets[i]; prev_data_offset = src_offsets[i]; } return res; } ColumnPtr ColumnArray::replicateString(const Offsets & replicate_offsets) const { size_t col_size = size(); if (col_size != replicate_offsets.size()) throw Exception(ErrorCodes::SIZES_OF_COLUMNS_DOESNT_MATCH, "Size of offsets doesn't match size of column."); MutableColumnPtr res = cloneEmpty(); if (0 == col_size) return res; ColumnArray & res_arr = assert_cast(*res); const ColumnString & src_string = typeid_cast(*data); const ColumnString::Chars & src_chars = src_string.getChars(); const Offsets & src_string_offsets = src_string.getOffsets(); const Offsets & src_offsets = getOffsets(); ColumnString::Chars & res_chars = typeid_cast(res_arr.getData()).getChars(); Offsets & res_string_offsets = typeid_cast(res_arr.getData()).getOffsets(); Offsets & res_offsets = res_arr.getOffsets(); res_chars.reserve(src_chars.size() / col_size * replicate_offsets.back()); res_string_offsets.reserve(src_string_offsets.size() / col_size * replicate_offsets.back()); res_offsets.reserve(replicate_offsets.back()); Offset prev_replicate_offset = 0; Offset prev_src_offset = 0; Offset prev_src_string_offset = 0; Offset current_res_offset = 0; Offset current_res_string_offset = 0; for (size_t i = 0; i < col_size; ++i) { /// How many times to replicate the array. size_t size_to_replicate = replicate_offsets[i] - prev_replicate_offset; /// The number of strings in the array. size_t value_size = src_offsets[i] - prev_src_offset; /// Number of characters in strings of the array, including zero bytes. size_t sum_chars_size = src_string_offsets[prev_src_offset + value_size - 1] - prev_src_string_offset; /// -1th index is Ok, see PaddedPODArray. for (size_t j = 0; j < size_to_replicate; ++j) { current_res_offset += value_size; res_offsets.push_back(current_res_offset); size_t prev_src_string_offset_local = prev_src_string_offset; for (size_t k = 0; k < value_size; ++k) { /// Size of single string. size_t chars_size = src_string_offsets[k + prev_src_offset] - prev_src_string_offset_local; current_res_string_offset += chars_size; res_string_offsets.push_back(current_res_string_offset); prev_src_string_offset_local += chars_size; } if (sum_chars_size) { /// Copies the characters of the array of strings. res_chars.resize(res_chars.size() + sum_chars_size); memcpySmallAllowReadWriteOverflow15( &res_chars[res_chars.size() - sum_chars_size], &src_chars[prev_src_string_offset], sum_chars_size); } } prev_replicate_offset = replicate_offsets[i]; prev_src_offset = src_offsets[i]; prev_src_string_offset += sum_chars_size; } return res; } ColumnPtr ColumnArray::replicateConst(const Offsets & replicate_offsets) const { size_t col_size = size(); if (col_size != replicate_offsets.size()) throw Exception(ErrorCodes::SIZES_OF_COLUMNS_DOESNT_MATCH, "Size of offsets doesn't match size of column."); if (0 == col_size) return cloneEmpty(); const Offsets & src_offsets = getOffsets(); auto res_column_offsets = ColumnOffsets::create(); Offsets & res_offsets = res_column_offsets->getData(); res_offsets.reserve(replicate_offsets.back()); Offset prev_replicate_offset = 0; Offset prev_data_offset = 0; Offset current_new_offset = 0; for (size_t i = 0; i < col_size; ++i) { size_t size_to_replicate = replicate_offsets[i] - prev_replicate_offset; size_t value_size = src_offsets[i] - prev_data_offset; for (size_t j = 0; j < size_to_replicate; ++j) { current_new_offset += value_size; res_offsets.push_back(current_new_offset); } prev_replicate_offset = replicate_offsets[i]; prev_data_offset = src_offsets[i]; } return ColumnArray::create(getData().cloneResized(current_new_offset), std::move(res_column_offsets)); } ColumnPtr ColumnArray::replicateGeneric(const Offsets & replicate_offsets) const { size_t col_size = size(); if (col_size != replicate_offsets.size()) throw Exception(ErrorCodes::SIZES_OF_COLUMNS_DOESNT_MATCH, "Size of offsets doesn't match size of column."); MutableColumnPtr res = cloneEmpty(); ColumnArray & res_concrete = assert_cast(*res); if (0 == col_size) return res; IColumn::Offset prev_offset = 0; for (size_t i = 0; i < col_size; ++i) { size_t size_to_replicate = replicate_offsets[i] - prev_offset; prev_offset = replicate_offsets[i]; for (size_t j = 0; j < size_to_replicate; ++j) res_concrete.insertFrom(*this, i); } return res; } ColumnPtr ColumnArray::replicateNullable(const Offsets & replicate_offsets) const { const ColumnNullable & nullable = assert_cast(*data); /// Make temporary arrays for each components of Nullable. Then replicate them independently and collect back to result. /// NOTE Offsets are calculated twice and it is redundant. auto array_of_nested = ColumnArray(nullable.getNestedColumnPtr()->assumeMutable(), getOffsetsPtr()->assumeMutable()) .replicate(replicate_offsets); auto array_of_null_map = ColumnArray(nullable.getNullMapColumnPtr()->assumeMutable(), getOffsetsPtr()->assumeMutable()) .replicate(replicate_offsets); return ColumnArray::create( ColumnNullable::create( assert_cast(*array_of_nested).getDataPtr(), assert_cast(*array_of_null_map).getDataPtr()), assert_cast(*array_of_nested).getOffsetsPtr()); } ColumnPtr ColumnArray::replicateTuple(const Offsets & replicate_offsets) const { const ColumnTuple & tuple = assert_cast(*data); /// Make temporary arrays for each components of Tuple. In the same way as for Nullable. size_t tuple_size = tuple.tupleSize(); if (tuple_size == 0) throw Exception(ErrorCodes::LOGICAL_ERROR, "Logical error: empty tuple"); Columns temporary_arrays(tuple_size); for (size_t i = 0; i < tuple_size; ++i) temporary_arrays[i] = ColumnArray(tuple.getColumns()[i]->assumeMutable(), getOffsetsPtr()->assumeMutable()) .replicate(replicate_offsets); Columns tuple_columns(tuple_size); for (size_t i = 0; i < tuple_size; ++i) tuple_columns[i] = assert_cast(*temporary_arrays[i]).getDataPtr(); return ColumnArray::create( ColumnTuple::create(tuple_columns), assert_cast(*temporary_arrays.front()).getOffsetsPtr()); } void ColumnArray::gather(ColumnGathererStream & gatherer) { gatherer.gather(*this); } size_t ColumnArray::getNumberOfDimensions() const { const auto * nested_array = checkAndGetColumn(*data); if (!nested_array) return 1; return 1 + nested_array->getNumberOfDimensions(); /// Every modern C++ compiler optimizes tail recursion. } }