#include #include #include #include #include #include #include #include #include #include #include #include namespace DB { namespace { constexpr auto DATA_FILE_EXTENSION = ".bin"; constexpr auto MARKS_FILE_EXTENSION = ".mrk"; constexpr auto NULL_MAP_EXTENSION = ".null.bin"; constexpr auto NULL_MARKS_FILE_EXTENSION = ".null.mrk"; } /// Implementation of IMergedBlockOutputStream. IMergedBlockOutputStream::IMergedBlockOutputStream( MergeTreeData & storage_, size_t min_compress_block_size_, size_t max_compress_block_size_, CompressionMethod compression_method_, size_t aio_threshold_) : storage(storage_), min_compress_block_size(min_compress_block_size_), max_compress_block_size(max_compress_block_size_), aio_threshold(aio_threshold_), compression_method(compression_method_) { } void IMergedBlockOutputStream::addStream( const String & path, const String & name, const IDataType & type, size_t estimated_size, size_t level, const String & filename, bool skip_offsets) { String escaped_column_name; if (filename.size()) escaped_column_name = escapeForFileName(filename); else escaped_column_name = escapeForFileName(name); if (type.isNullable()) { /// First create the stream that handles the null map of the given column. const DataTypeNullable & nullable_type = static_cast(type); const IDataType & nested_type = *nullable_type.getNestedType(); std::string null_map_name = name + NULL_MAP_EXTENSION; column_streams[null_map_name] = std::make_unique( escaped_column_name, path + escaped_column_name, NULL_MAP_EXTENSION, path + escaped_column_name, NULL_MARKS_FILE_EXTENSION, max_compress_block_size, compression_method, estimated_size, aio_threshold); /// Then create the stream that handles the data of the given column. addStream(path, name, nested_type, estimated_size, level, filename, false); } else if (const DataTypeArray * type_arr = typeid_cast(&type)) { if (!skip_offsets) { /// For arrays, separate files are used for sizes. String size_name = DataTypeNested::extractNestedTableName(name) + ARRAY_SIZES_COLUMN_NAME_SUFFIX + toString(level); String escaped_size_name = escapeForFileName(DataTypeNested::extractNestedTableName(name)) + ARRAY_SIZES_COLUMN_NAME_SUFFIX + toString(level); column_streams[size_name] = std::make_unique( escaped_size_name, path + escaped_size_name, DATA_FILE_EXTENSION, path + escaped_size_name, MARKS_FILE_EXTENSION, max_compress_block_size, compression_method, estimated_size, aio_threshold); } addStream(path, name, *type_arr->getNestedType(), estimated_size, level + 1, "", false); } else { column_streams[name] = std::make_unique( escaped_column_name, path + escaped_column_name, DATA_FILE_EXTENSION, path + escaped_column_name, MARKS_FILE_EXTENSION, max_compress_block_size, compression_method, estimated_size, aio_threshold); } } void IMergedBlockOutputStream::writeData( const String & name, const IDataType & type, const IColumn & column, OffsetColumns & offset_columns, size_t level, bool skip_offsets) { writeDataImpl(name, type, column, offset_columns, level, false, skip_offsets); } void IMergedBlockOutputStream::writeDataImpl( const String & name, const IDataType & type, const IColumn & column, OffsetColumns & offset_columns, size_t level, bool write_array_data, bool skip_offsets) { /// NOTE: the parameter write_array_data indicates whether we call this method /// to write the contents of an array. This is to cope with the fact that /// serialization of arrays for the MergeTree engine slightly differs from /// what the other engines do. size_t size = column.size(); const DataTypeArray * type_arr = nullptr; if (type.isNullable()) { /// First write to the null map. const DataTypeNullable & nullable_type = static_cast(type); const IDataType & nested_type = *(nullable_type.getNestedType()); const ColumnNullable & nullable_col = static_cast(column); const IColumn & nested_col = *(nullable_col.getNestedColumn()); std::string filename = name + NULL_MAP_EXTENSION; ColumnStream & stream = *column_streams[filename]; size_t prev_mark = 0; while (prev_mark < size) { size_t limit = 0; /// If there is `index_offset`, then the first mark goes not immediately, but after this number of rows. if (prev_mark == 0 && index_offset != 0) limit = index_offset; else { limit = storage.index_granularity; /// There could already be enough data to compress into the new block. if (stream.compressed.offset() >= min_compress_block_size) stream.compressed.next(); writeIntBinary(stream.plain_hashing.count(), stream.marks); writeIntBinary(stream.compressed.offset(), stream.marks); } DataTypeUInt8{}.serializeBinaryBulk(nullable_col.getNullMapConcreteColumn(), stream.compressed, prev_mark, limit); /// This way that instead of the marks pointing to the end of the compressed block, there were marks pointing to the beginning of the next one. stream.compressed.nextIfAtEnd(); prev_mark += limit; } /// Then write data. writeDataImpl(name, nested_type, nested_col, offset_columns, level, write_array_data, false); } else if (!write_array_data && ((type_arr = typeid_cast(&type)) != nullptr)) { /// For arrays, you first need to serialize dimensions, and then values. String size_name = DataTypeNested::extractNestedTableName(name) + ARRAY_SIZES_COLUMN_NAME_SUFFIX + toString(level); if (!skip_offsets && offset_columns.count(size_name) == 0) { offset_columns.insert(size_name); ColumnStream & stream = *column_streams[size_name]; size_t prev_mark = 0; while (prev_mark < size) { size_t limit = 0; /// If there is `index_offset`, the first mark goes not immediately, but after this number of rows. if (prev_mark == 0 && index_offset != 0) limit = index_offset; else { limit = storage.index_granularity; /// There could already be enough data to compress into the new block. if (stream.compressed.offset() >= min_compress_block_size) stream.compressed.next(); writeIntBinary(stream.plain_hashing.count(), stream.marks); writeIntBinary(stream.compressed.offset(), stream.marks); } type_arr->serializeOffsets(column, stream.compressed, prev_mark, limit); /// This way that instead of the marks pointing to the end of the compressed block, there were marks pointing to the beginning of the next one. stream.compressed.nextIfAtEnd(); prev_mark += limit; } } if (type_arr->getNestedType()->isNullable()) writeDataImpl(name, *type_arr->getNestedType(), typeid_cast(column).getData(), offset_columns, level + 1, true, false); else writeDataImpl(name, type, column, offset_columns, level + 1, true, false); } else { ColumnStream & stream = *column_streams[name]; size_t prev_mark = 0; while (prev_mark < size) { size_t limit = 0; /// If there is `index_offset`, then the first mark goes not immediately, but after this number of rows. if (prev_mark == 0 && index_offset != 0) limit = index_offset; else { limit = storage.index_granularity; /// There could already be enough data to compress into the new block. if (stream.compressed.offset() >= min_compress_block_size) stream.compressed.next(); writeIntBinary(stream.plain_hashing.count(), stream.marks); writeIntBinary(stream.compressed.offset(), stream.marks); } type.serializeBinaryBulk(column, stream.compressed, prev_mark, limit); /// So that instead of the marks pointing to the end of the compressed block, there were marks pointing to the beginning of the next one. stream.compressed.nextIfAtEnd(); prev_mark += limit; } } } /// Implementation of IMergedBlockOutputStream::ColumnStream. IMergedBlockOutputStream::ColumnStream::ColumnStream( const String & escaped_column_name_, const String & data_path, const std::string & data_file_extension_, const std::string & marks_path, const std::string & marks_file_extension_, size_t max_compress_block_size, CompressionMethod compression_method, size_t estimated_size, size_t aio_threshold) : escaped_column_name(escaped_column_name_), data_file_extension{data_file_extension_}, marks_file_extension{marks_file_extension_}, plain_file(createWriteBufferFromFileBase(data_path + data_file_extension, estimated_size, aio_threshold, max_compress_block_size)), plain_hashing(*plain_file), compressed_buf(plain_hashing, compression_method), compressed(compressed_buf), marks_file(marks_path + marks_file_extension, 4096, O_TRUNC | O_CREAT | O_WRONLY), marks(marks_file) { } void IMergedBlockOutputStream::ColumnStream::finalize() { compressed.next(); plain_file->next(); marks.next(); } void IMergedBlockOutputStream::ColumnStream::sync() { plain_file->sync(); marks_file.sync(); } void IMergedBlockOutputStream::ColumnStream::addToChecksums(MergeTreeData::DataPart::Checksums & checksums) { String name = escaped_column_name; checksums.files[name + data_file_extension].is_compressed = true; checksums.files[name + data_file_extension].uncompressed_size = compressed.count(); checksums.files[name + data_file_extension].uncompressed_hash = compressed.getHash(); checksums.files[name + data_file_extension].file_size = plain_hashing.count(); checksums.files[name + data_file_extension].file_hash = plain_hashing.getHash(); checksums.files[name + marks_file_extension].file_size = marks.count(); checksums.files[name + marks_file_extension].file_hash = marks.getHash(); } /// Implementation of MergedBlockOutputStream. MergedBlockOutputStream::MergedBlockOutputStream( MergeTreeData & storage_, String part_path_, const NamesAndTypesList & columns_list_, CompressionMethod compression_method) : IMergedBlockOutputStream( storage_, storage_.context.getSettings().min_compress_block_size, storage_.context.getSettings().max_compress_block_size, compression_method, storage_.context.getSettings().min_bytes_to_use_direct_io), columns_list(columns_list_), part_path(part_path_) { init(); for (const auto & it : columns_list) addStream(part_path, it.name, *it.type, 0, 0, "", false); } MergedBlockOutputStream::MergedBlockOutputStream( MergeTreeData & storage_, String part_path_, const NamesAndTypesList & columns_list_, CompressionMethod compression_method, const MergeTreeData::DataPart::ColumnToSize & merged_column_to_size_, size_t aio_threshold_) : IMergedBlockOutputStream( storage_, storage_.context.getSettings().min_compress_block_size, storage_.context.getSettings().max_compress_block_size, compression_method, aio_threshold_), columns_list(columns_list_), part_path(part_path_) { init(); for (const auto & it : columns_list) { size_t estimated_size = 0; if (aio_threshold > 0) { auto it2 = merged_column_to_size_.find(it.name); if (it2 != merged_column_to_size_.end()) estimated_size = it2->second; } addStream(part_path, it.name, *it.type, estimated_size, 0, "", false); } } std::string MergedBlockOutputStream::getPartPath() const { return part_path; } /// If data is pre-sorted. void MergedBlockOutputStream::write(const Block & block) { writeImpl(block, nullptr); } /** If the data is not sorted, but we pre-calculated the permutation, after which they will be sorted. * This method is used to save RAM, since you do not need to keep two blocks at once - the source and the sorted. */ void MergedBlockOutputStream::writeWithPermutation(const Block & block, const IColumn::Permutation * permutation) { writeImpl(block, permutation); } void MergedBlockOutputStream::writeSuffix() { throw Exception("Method writeSuffix is not supported by MergedBlockOutputStream", ErrorCodes::NOT_IMPLEMENTED); } MergeTreeData::DataPart::Checksums MergedBlockOutputStream::writeSuffixAndGetChecksums( const NamesAndTypesList & total_column_list, MergeTreeData::DataPart::Checksums * additional_column_checksums) { /// Finish write and get checksums. MergeTreeData::DataPart::Checksums checksums; if (additional_column_checksums) checksums = std::move(*additional_column_checksums); if (storage.merging_params.mode != MergeTreeData::MergingParams::Unsorted) { index_stream->next(); checksums.files["primary.idx"].file_size = index_stream->count(); checksums.files["primary.idx"].file_hash = index_stream->getHash(); index_stream = nullptr; } for (ColumnStreams::iterator it = column_streams.begin(); it != column_streams.end(); ++it) { it->second->finalize(); it->second->addToChecksums(checksums); } column_streams.clear(); if (marks_count == 0) { /// A part is empty - all records are deleted. Poco::File(part_path).remove(true); checksums.files.clear(); return checksums; } { /// Write a file with a description of columns. WriteBufferFromFile out(part_path + "columns.txt", 4096); total_column_list.writeText(out); } { /// Write file with checksums. WriteBufferFromFile out(part_path + "checksums.txt", 4096); checksums.write(out); } return checksums; } MergeTreeData::DataPart::Checksums MergedBlockOutputStream::writeSuffixAndGetChecksums() { return writeSuffixAndGetChecksums(columns_list, nullptr); } MergeTreeData::DataPart::Index & MergedBlockOutputStream::getIndex() { return index_columns; } size_t MergedBlockOutputStream::marksCount() { return marks_count; } void MergedBlockOutputStream::init() { Poco::File(part_path).createDirectories(); if (storage.merging_params.mode != MergeTreeData::MergingParams::Unsorted) { index_file_stream = std::make_unique( part_path + "primary.idx", DBMS_DEFAULT_BUFFER_SIZE, O_TRUNC | O_CREAT | O_WRONLY); index_stream = std::make_unique(*index_file_stream); } } void MergedBlockOutputStream::writeImpl(const Block & block, const IColumn::Permutation * permutation) { block.checkNumberOfRows(); size_t rows = block.rows(); /// The set of written offset columns so that you do not write mutual to nested structures columns several times OffsetColumns offset_columns; auto sort_description = storage.getSortDescription(); /// Here we will add the columns related to the Primary Key, then write the index. std::vector primary_columns(sort_description.size()); std::map primary_columns_name_to_position; for (size_t i = 0, size = sort_description.size(); i < size; ++i) { const auto & descr = sort_description[i]; String name = !descr.column_name.empty() ? descr.column_name : block.safeGetByPosition(descr.column_number).name; if (!primary_columns_name_to_position.emplace(name, i).second) throw Exception("Primary key contains duplicate columns", ErrorCodes::BAD_ARGUMENTS); primary_columns[i] = !descr.column_name.empty() ? block.getByName(descr.column_name) : block.safeGetByPosition(descr.column_number); /// Reorder primary key columns in advance and add them to `primary_columns`. if (permutation) primary_columns[i].column = primary_columns[i].column->permute(*permutation, 0); } if (index_columns.empty()) { index_columns.resize(sort_description.size()); for (size_t i = 0, size = sort_description.size(); i < size; ++i) index_columns[i] = primary_columns[i].column.get()->cloneEmpty(); } /// Now write the data. for (const auto & it : columns_list) { const ColumnWithTypeAndName & column = block.getByName(it.name); if (permutation) { auto primary_column_it = primary_columns_name_to_position.find(it.name); if (primary_columns_name_to_position.end() != primary_column_it) { writeData(column.name, *column.type, *primary_columns[primary_column_it->second].column, offset_columns, 0, false); } else { /// We rearrange the columns that are not included in the primary key here; Then the result is released - to save RAM. ColumnPtr permutted_column = column.column->permute(*permutation, 0); writeData(column.name, *column.type, *permutted_column, offset_columns, 0, false); } } else { writeData(column.name, *column.type, *column.column, offset_columns, 0, false); } } { /** While filling index (index_columns), disable memory tracker. * Because memory is allocated here (maybe in context of INSERT query), * but then freed in completely different place (while merging parts), where query memory_tracker is not available. * And otherwise it will look like excessively growing memory consumption in context of query. * (observed in long INSERT SELECTs) */ TemporarilyDisableMemoryTracker temporarily_disable_memory_tracker; /// Write index. The index contains Primary Key value for each `index_granularity` row. for (size_t i = index_offset; i < rows; i += storage.index_granularity) { if (storage.merging_params.mode != MergeTreeData::MergingParams::Unsorted) { for (size_t j = 0, size = primary_columns.size(); j < size; ++j) { const IColumn & primary_column = *primary_columns[j].column.get(); index_columns[j].get()->insertFrom(primary_column, i); primary_columns[j].type.get()->serializeBinary(primary_column, i, *index_stream); } } ++marks_count; } } size_t written_for_last_mark = (storage.index_granularity - index_offset + rows) % storage.index_granularity; index_offset = (storage.index_granularity - written_for_last_mark) % storage.index_granularity; } /// Implementation of MergedColumnOnlyOutputStream. MergedColumnOnlyOutputStream::MergedColumnOnlyOutputStream( MergeTreeData & storage_, String part_path_, bool sync_, CompressionMethod compression_method, bool skip_offsets_) : IMergedBlockOutputStream( storage_, storage_.context.getSettings().min_compress_block_size, storage_.context.getSettings().max_compress_block_size, compression_method, storage_.context.getSettings().min_bytes_to_use_direct_io), part_path(part_path_), sync(sync_), skip_offsets(skip_offsets_) { } void MergedColumnOnlyOutputStream::write(const Block & block) { if (!initialized) { column_streams.clear(); for (size_t i = 0; i < block.columns(); ++i) { addStream(part_path, block.safeGetByPosition(i).name, *block.safeGetByPosition(i).type, 0, 0, block.safeGetByPosition(i).name, skip_offsets); } initialized = true; } size_t rows = block.rows(); OffsetColumns offset_columns; for (size_t i = 0; i < block.columns(); ++i) { const ColumnWithTypeAndName & column = block.safeGetByPosition(i); writeData(column.name, *column.type, *column.column, offset_columns, 0, skip_offsets); } size_t written_for_last_mark = (storage.index_granularity - index_offset + rows) % storage.index_granularity; index_offset = (storage.index_granularity - written_for_last_mark) % storage.index_granularity; } void MergedColumnOnlyOutputStream::writeSuffix() { throw Exception("Method writeSuffix is not supported by MergedColumnOnlyOutputStream", ErrorCodes::NOT_IMPLEMENTED); } MergeTreeData::DataPart::Checksums MergedColumnOnlyOutputStream::writeSuffixAndGetChecksums() { MergeTreeData::DataPart::Checksums checksums; for (auto & column_stream : column_streams) { column_stream.second->finalize(); if (sync) column_stream.second->sync(); column_stream.second->addToChecksums(checksums); } column_streams.clear(); initialized = false; return checksums; } }