#include "ColumnVector.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef __SSE2__ #include #endif namespace DB { namespace ErrorCodes { extern const int PARAMETER_OUT_OF_BOUND; extern const int SIZES_OF_COLUMNS_DOESNT_MATCH; } template StringRef ColumnVector::serializeValueIntoArena(size_t n, Arena & arena, char const *& begin) const { auto pos = arena.allocContinue(sizeof(T), begin); unalignedStore(pos, data[n]); return StringRef(pos, sizeof(T)); } template const char * ColumnVector::deserializeAndInsertFromArena(const char * pos) { data.push_back(unalignedLoad(pos)); return pos + sizeof(T); } template void ColumnVector::updateHashWithValue(size_t n, SipHash & hash) const { hash.update(data[n]); } template void ColumnVector::updateWeakHash32(WeakHash32 & hash) const { auto s = data.size(); if (hash.getData().size() != s) throw Exception("Size of WeakHash32 does not match size of column: column size is " + std::to_string(s) + ", hash size is " + std::to_string(hash.getData().size()), ErrorCodes::LOGICAL_ERROR); const T * begin = &data[0]; const T * end = begin + s; UInt32 * hash_data = &hash.getData()[0]; while (begin < end) { if constexpr (sizeof(T) <= sizeof(UInt64)) { *hash_data = intHashCRC32(*begin, *hash_data); } else { auto * begin64 = reinterpret_cast(begin); for (size_t i = 0; i < sizeof(T); i += sizeof(UInt64)) { *hash_data = intHashCRC32(*begin64, *hash_data); ++begin64; } } ++begin; ++hash_data; } } template struct ColumnVector::less { const Self & parent; int nan_direction_hint; less(const Self & parent_, int nan_direction_hint_) : parent(parent_), nan_direction_hint(nan_direction_hint_) {} bool operator()(size_t lhs, size_t rhs) const { return CompareHelper::less(parent.data[lhs], parent.data[rhs], nan_direction_hint); } }; template struct ColumnVector::greater { const Self & parent; int nan_direction_hint; greater(const Self & parent_, int nan_direction_hint_) : parent(parent_), nan_direction_hint(nan_direction_hint_) {} bool operator()(size_t lhs, size_t rhs) const { return CompareHelper::greater(parent.data[lhs], parent.data[rhs], nan_direction_hint); } }; namespace { template struct ValueWithIndex { T value; UInt32 index; }; template struct RadixSortTraits : RadixSortNumTraits { using Element = ValueWithIndex; static T & extractKey(Element & elem) { return elem.value; } }; } template void ColumnVector::getPermutation(bool reverse, size_t limit, int nan_direction_hint, IColumn::Permutation & res) const { size_t s = data.size(); res.resize(s); if (s == 0) return; if (limit >= s) limit = 0; if (limit) { for (size_t i = 0; i < s; ++i) res[i] = i; if (reverse) std::partial_sort(res.begin(), res.begin() + limit, res.end(), greater(*this, nan_direction_hint)); else std::partial_sort(res.begin(), res.begin() + limit, res.end(), less(*this, nan_direction_hint)); } else { /// A case for radix sort if constexpr (is_arithmetic_v && !std::is_same_v) { /// Thresholds on size. Lower threshold is arbitrary. Upper threshold is chosen by the type for histogram counters. if (s >= 256 && s <= std::numeric_limits::max()) { PaddedPODArray> pairs(s); for (UInt32 i = 0; i < s; ++i) pairs[i] = {data[i], i}; RadixSort>::executeLSD(pairs.data(), s); /// Radix sort treats all NaNs to be greater than all numbers. /// If the user needs the opposite, we must move them accordingly. size_t nans_to_move = 0; if (std::is_floating_point_v && nan_direction_hint < 0) { for (ssize_t i = s - 1; i >= 0; --i) { if (isNaN(pairs[i].value)) ++nans_to_move; else break; } } if (reverse) { if (nans_to_move) { for (size_t i = 0; i < s - nans_to_move; ++i) res[i] = pairs[s - nans_to_move - 1 - i].index; for (size_t i = s - nans_to_move; i < s; ++i) res[i] = pairs[s - 1 - (i - (s - nans_to_move))].index; } else { for (size_t i = 0; i < s; ++i) res[s - 1 - i] = pairs[i].index; } } else { if (nans_to_move) { for (size_t i = 0; i < nans_to_move; ++i) res[i] = pairs[i + s - nans_to_move].index; for (size_t i = nans_to_move; i < s; ++i) res[i] = pairs[i - nans_to_move].index; } else { for (size_t i = 0; i < s; ++i) res[i] = pairs[i].index; } } return; } } /// Default sorting algorithm. for (size_t i = 0; i < s; ++i) res[i] = i; if (reverse) pdqsort(res.begin(), res.end(), greater(*this, nan_direction_hint)); else pdqsort(res.begin(), res.end(), less(*this, nan_direction_hint)); } } template const char * ColumnVector::getFamilyName() const { return TypeName::get(); } template MutableColumnPtr ColumnVector::cloneResized(size_t size) const { auto res = this->create(); if (size > 0) { auto & new_col = static_cast(*res); new_col.data.resize(size); size_t count = std::min(this->size(), size); memcpy(new_col.data.data(), data.data(), count * sizeof(data[0])); if (size > count) memset(static_cast(&new_col.data[count]), static_cast(ValueType()), (size - count) * sizeof(ValueType)); } return res; } template UInt64 ColumnVector::get64(size_t n) const { return ext::bit_cast(data[n]); } template inline Float64 ColumnVector::getFloat64(size_t n) const { return static_cast(data[n]); } template Float32 ColumnVector::getFloat32(size_t n) const { return static_cast(data[n]); } template void ColumnVector::insertRangeFrom(const IColumn & src, size_t start, size_t length) { const ColumnVector & src_vec = assert_cast(src); if (start + length > src_vec.data.size()) throw Exception("Parameters start = " + toString(start) + ", length = " + toString(length) + " are out of bound in ColumnVector::insertRangeFrom method" " (data.size() = " + toString(src_vec.data.size()) + ").", ErrorCodes::PARAMETER_OUT_OF_BOUND); size_t old_size = data.size(); data.resize(old_size + length); memcpy(data.data() + old_size, &src_vec.data[start], length * sizeof(data[0])); } template ColumnPtr ColumnVector::filter(const IColumn::Filter & filt, ssize_t result_size_hint) const { size_t size = data.size(); if (size != filt.size()) throw Exception("Size of filter doesn't match size of column.", ErrorCodes::SIZES_OF_COLUMNS_DOESNT_MATCH); auto res = this->create(); Container & res_data = res->getData(); if (result_size_hint) res_data.reserve(result_size_hint > 0 ? result_size_hint : size); const UInt8 * filt_pos = filt.data(); const UInt8 * filt_end = filt_pos + size; const T * data_pos = data.data(); #ifdef __SSE2__ /** A slightly more optimized version. * Based on the assumption that often pieces of consecutive values * completely pass or do not pass the filter. * Therefore, we will optimistically check the parts of `SIMD_BYTES` values. */ static constexpr size_t SIMD_BYTES = 16; const __m128i zero16 = _mm_setzero_si128(); const UInt8 * filt_end_sse = filt_pos + size / SIMD_BYTES * SIMD_BYTES; while (filt_pos < filt_end_sse) { int mask = _mm_movemask_epi8(_mm_cmpgt_epi8(_mm_loadu_si128(reinterpret_cast(filt_pos)), zero16)); if (0 == mask) { /// Nothing is inserted. } else if (0xFFFF == mask) { res_data.insert(data_pos, data_pos + SIMD_BYTES); } else { for (size_t i = 0; i < SIMD_BYTES; ++i) if (filt_pos[i]) res_data.push_back(data_pos[i]); } filt_pos += SIMD_BYTES; data_pos += SIMD_BYTES; } #endif while (filt_pos < filt_end) { if (*filt_pos) res_data.push_back(*data_pos); ++filt_pos; ++data_pos; } return res; } template ColumnPtr ColumnVector::permute(const IColumn::Permutation & perm, size_t limit) const { size_t size = data.size(); if (limit == 0) limit = size; else limit = std::min(size, limit); if (perm.size() < limit) throw Exception("Size of permutation is less than required.", ErrorCodes::SIZES_OF_COLUMNS_DOESNT_MATCH); auto res = this->create(limit); typename Self::Container & res_data = res->getData(); for (size_t i = 0; i < limit; ++i) res_data[i] = data[perm[i]]; return res; } template ColumnPtr ColumnVector::index(const IColumn & indexes, size_t limit) const { return selectIndexImpl(*this, indexes, limit); } template ColumnPtr ColumnVector::replicate(const IColumn::Offsets & offsets) const { const size_t size = data.size(); if (size != offsets.size()) throw Exception("Size of offsets doesn't match size of column.", ErrorCodes::SIZES_OF_COLUMNS_DOESNT_MATCH); if (0 == size) return this->create(); auto res = this->create(offsets.back()); auto it = res->getData().begin(); for (size_t i = 0; i < size; ++i) { const auto span_end = res->getData().begin() + offsets[i]; for (; it != span_end; ++it) *it = data[i]; } return res; } template void ColumnVector::gather(ColumnGathererStream & gatherer) { gatherer.gather(*this); } template void ColumnVector::getExtremes(Field & min, Field & max) const { size_t size = data.size(); if (size == 0) { min = T(0); max = T(0); return; } bool has_value = false; /** Skip all NaNs in extremes calculation. * If all values are NaNs, then return NaN. * NOTE: There exist many different NaNs. * Different NaN could be returned: not bit-exact value as one of NaNs from column. */ T cur_min = NaNOrZero(); T cur_max = NaNOrZero(); for (const T x : data) { if (isNaN(x)) continue; if (!has_value) { cur_min = x; cur_max = x; has_value = true; continue; } if (x < cur_min) cur_min = x; else if (x > cur_max) cur_max = x; } min = NearestFieldType(cur_min); max = NearestFieldType(cur_max); } /// Explicit template instantiations - to avoid code bloat in headers. template class ColumnVector; template class ColumnVector; template class ColumnVector; template class ColumnVector; template class ColumnVector; template class ColumnVector; template class ColumnVector; template class ColumnVector; template class ColumnVector; template class ColumnVector; template class ColumnVector; template class ColumnVector; }