#pragma once #include #include #include #include #include #include #include #include #include #include #include namespace DB { class ComplexKeyHashedDictionary final : public IDictionaryBase { public: ComplexKeyHashedDictionary( const std::string & name, const DictionaryStructure & dict_struct, DictionarySourcePtr source_ptr, const DictionaryLifetime dict_lifetime, bool require_nonempty) : name{name}, dict_struct(dict_struct), source_ptr{std::move(source_ptr)}, dict_lifetime(dict_lifetime), require_nonempty(require_nonempty) { createAttributes(); try { loadData(); calculateBytesAllocated(); } catch (...) { creation_exception = std::current_exception(); } creation_time = std::chrono::system_clock::now(); } ComplexKeyHashedDictionary(const ComplexKeyHashedDictionary & other) : ComplexKeyHashedDictionary{other.name, other.dict_struct, other.source_ptr->clone(), other.dict_lifetime, other.require_nonempty} {} std::string getKeyDescription() const { return key_description; }; std::exception_ptr getCreationException() const override { return creation_exception; } std::string getName() const override { return name; } std::string getTypeName() const override { return "ComplexKeyHashed"; } std::size_t getBytesAllocated() const override { return bytes_allocated; } std::size_t getQueryCount() const override { return query_count.load(std::memory_order_relaxed); } double getHitRate() const override { return 1.0; } std::size_t getElementCount() const override { return element_count; } double getLoadFactor() const override { return static_cast(element_count) / bucket_count; } bool isCached() const override { return false; } DictionaryPtr clone() const override { return std::make_unique(*this); } const IDictionarySource * getSource() const override { return source_ptr.get(); } const DictionaryLifetime & getLifetime() const override { return dict_lifetime; } const DictionaryStructure & getStructure() const override { return dict_struct; } std::chrono::time_point getCreationTime() const override { return creation_time; } bool isInjective(const std::string & attribute_name) const override { return dict_struct.attributes[&getAttribute(attribute_name) - attributes.data()].injective; } #define DECLARE(TYPE)\ void get##TYPE(\ const std::string & attribute_name, const ConstColumnPlainPtrs & key_columns, const DataTypes & key_types,\ PODArray & out) const\ {\ dict_struct.validateKeyTypes(key_types);\ \ const auto & attribute = getAttribute(attribute_name);\ if (attribute.type != AttributeUnderlyingType::TYPE)\ throw Exception{\ name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),\ ErrorCodes::TYPE_MISMATCH\ };\ \ const auto null_value = std::get(attribute.null_values);\ \ getItems(attribute, key_columns,\ [&] (const std::size_t row, const auto value) { out[row] = value; },\ [&] (const std::size_t) { return null_value; });\ } DECLARE(UInt8) DECLARE(UInt16) DECLARE(UInt32) DECLARE(UInt64) DECLARE(Int8) DECLARE(Int16) DECLARE(Int32) DECLARE(Int64) DECLARE(Float32) DECLARE(Float64) #undef DECLARE void getString( const std::string & attribute_name, const ConstColumnPlainPtrs & key_columns, const DataTypes & key_types, ColumnString * out) const { dict_struct.validateKeyTypes(key_types); const auto & attribute = getAttribute(attribute_name); if (attribute.type != AttributeUnderlyingType::String) throw Exception{ name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type), ErrorCodes::TYPE_MISMATCH }; const auto & null_value = StringRef{std::get(attribute.null_values)}; getItems(attribute, key_columns, [&] (const std::size_t row, const StringRef value) { out->insertData(value.data, value.size); }, [&] (const std::size_t) { return null_value; }); } #define DECLARE(TYPE)\ void get##TYPE(\ const std::string & attribute_name, const ConstColumnPlainPtrs & key_columns, const DataTypes & key_types,\ const PODArray & def, PODArray & out) const\ {\ dict_struct.validateKeyTypes(key_types);\ \ const auto & attribute = getAttribute(attribute_name);\ if (attribute.type != AttributeUnderlyingType::TYPE)\ throw Exception{\ name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),\ ErrorCodes::TYPE_MISMATCH\ };\ \ getItems(attribute, key_columns,\ [&] (const std::size_t row, const auto value) { out[row] = value; },\ [&] (const std::size_t row) { return def[row]; });\ } DECLARE(UInt8) DECLARE(UInt16) DECLARE(UInt32) DECLARE(UInt64) DECLARE(Int8) DECLARE(Int16) DECLARE(Int32) DECLARE(Int64) DECLARE(Float32) DECLARE(Float64) #undef DECLARE void getString( const std::string & attribute_name, const ConstColumnPlainPtrs & key_columns, const DataTypes & key_types, const ColumnString * const def, ColumnString * const out) const { dict_struct.validateKeyTypes(key_types); const auto & attribute = getAttribute(attribute_name); if (attribute.type != AttributeUnderlyingType::String) throw Exception{ name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type), ErrorCodes::TYPE_MISMATCH }; getItems(attribute, key_columns, [&] (const std::size_t row, const StringRef value) { out->insertData(value.data, value.size); }, [&] (const std::size_t row) { return def->getDataAt(row); }); } #define DECLARE(TYPE)\ void get##TYPE(\ const std::string & attribute_name, const ConstColumnPlainPtrs & key_columns, const DataTypes & key_types,\ const TYPE def, PODArray & out) const\ {\ dict_struct.validateKeyTypes(key_types);\ \ const auto & attribute = getAttribute(attribute_name);\ if (attribute.type != AttributeUnderlyingType::TYPE)\ throw Exception{\ name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type),\ ErrorCodes::TYPE_MISMATCH\ };\ \ getItems(attribute, key_columns,\ [&] (const std::size_t row, const auto value) { out[row] = value; },\ [&] (const std::size_t) { return def; });\ } DECLARE(UInt8) DECLARE(UInt16) DECLARE(UInt32) DECLARE(UInt64) DECLARE(Int8) DECLARE(Int16) DECLARE(Int32) DECLARE(Int64) DECLARE(Float32) DECLARE(Float64) #undef DECLARE void getString( const std::string & attribute_name, const ConstColumnPlainPtrs & key_columns, const DataTypes & key_types, const String & def, ColumnString * const out) const { dict_struct.validateKeyTypes(key_types); const auto & attribute = getAttribute(attribute_name); if (attribute.type != AttributeUnderlyingType::String) throw Exception{ name + ": type mismatch: attribute " + attribute_name + " has type " + toString(attribute.type), ErrorCodes::TYPE_MISMATCH }; getItems(attribute, key_columns, [&] (const std::size_t row, const StringRef value) { out->insertData(value.data, value.size); }, [&] (const std::size_t) { return StringRef{def}; }); } void has(const ConstColumnPlainPtrs & key_columns, const DataTypes & key_types, PODArray & out) const { dict_struct.validateKeyTypes(key_types); const auto & attribute = attributes.front(); switch (attribute.type) { case AttributeUnderlyingType::UInt8: has(attribute, key_columns, out); break; case AttributeUnderlyingType::UInt16: has(attribute, key_columns, out); break; case AttributeUnderlyingType::UInt32: has(attribute, key_columns, out); break; case AttributeUnderlyingType::UInt64: has(attribute, key_columns, out); break; case AttributeUnderlyingType::Int8: has(attribute, key_columns, out); break; case AttributeUnderlyingType::Int16: has(attribute, key_columns, out); break; case AttributeUnderlyingType::Int32: has(attribute, key_columns, out); break; case AttributeUnderlyingType::Int64: has(attribute, key_columns, out); break; case AttributeUnderlyingType::Float32: has(attribute, key_columns, out); break; case AttributeUnderlyingType::Float64: has(attribute, key_columns, out); break; case AttributeUnderlyingType::String: has(attribute, key_columns, out); break; } } private: template using ContainerType = HashMapWithSavedHash; template using ContainerPtrType = std::unique_ptr>; struct attribute_t final { AttributeUnderlyingType type; std::tuple< UInt8, UInt16, UInt32, UInt64, Int8, Int16, Int32, Int64, Float32, Float64, String> null_values; std::tuple< ContainerPtrType, ContainerPtrType, ContainerPtrType, ContainerPtrType, ContainerPtrType, ContainerPtrType, ContainerPtrType, ContainerPtrType, ContainerPtrType, ContainerPtrType, ContainerPtrType> maps; std::unique_ptr string_arena; }; void createAttributes() { const auto size = dict_struct.attributes.size(); attributes.reserve(size); for (const auto & attribute : dict_struct.attributes) { attribute_index_by_name.emplace(attribute.name, attributes.size()); attributes.push_back(createAttributeWithType(attribute.underlying_type, attribute.null_value)); if (attribute.hierarchical) throw Exception{ name + ": hierarchical attributes not supported for dictionary of type " + getTypeName(), ErrorCodes::TYPE_MISMATCH }; } } void loadData() { auto stream = source_ptr->loadAll(); stream->readPrefix(); /// created upfront to avoid excess allocations const auto keys_size = dict_struct.key->size(); StringRefs keys(keys_size); const auto attributes_size = attributes.size(); while (const auto block = stream->read()) { const auto rows = block.rowsInFirstColumn(); element_count += rows; const auto key_column_ptrs = ext::map(ext::range(0, keys_size), [&] (const std::size_t attribute_idx) { return block.getByPosition(attribute_idx).column.get(); }); const auto attribute_column_ptrs = ext::map(ext::range(0, attributes_size), [&] (const std::size_t attribute_idx) { return block.getByPosition(keys_size + attribute_idx).column.get(); }); for (const auto row_idx : ext::range(0, rows)) { /// calculate key once per row const auto key = placeKeysInPool(row_idx, key_column_ptrs, keys, keys_pool); auto should_rollback = false; for (const auto attribute_idx : ext::range(0, attributes_size)) { const auto & attribute_column = *attribute_column_ptrs[attribute_idx]; auto & attribute = attributes[attribute_idx]; const auto inserted = setAttributeValue(attribute, key, attribute_column[row_idx]); if (!inserted) should_rollback = true; } /// @note on multiple equal keys the mapped value for the first one is stored if (should_rollback) keys_pool.rollback(key.size); } } stream->readSuffix(); if (require_nonempty && 0 == element_count) throw Exception{ name + ": dictionary source is empty and 'require_nonempty' property is set.", ErrorCodes::DICTIONARY_IS_EMPTY }; } template void addAttributeSize(const attribute_t & attribute) { const auto & map_ref = std::get>(attribute.maps); bytes_allocated += sizeof(ContainerType) + map_ref->getBufferSizeInBytes(); bucket_count = map_ref->getBufferSizeInCells(); } void calculateBytesAllocated() { bytes_allocated += attributes.size() * sizeof(attributes.front()); for (const auto & attribute : attributes) { switch (attribute.type) { case AttributeUnderlyingType::UInt8: addAttributeSize(attribute); break; case AttributeUnderlyingType::UInt16: addAttributeSize(attribute); break; case AttributeUnderlyingType::UInt32: addAttributeSize(attribute); break; case AttributeUnderlyingType::UInt64: addAttributeSize(attribute); break; case AttributeUnderlyingType::Int8: addAttributeSize(attribute); break; case AttributeUnderlyingType::Int16: addAttributeSize(attribute); break; case AttributeUnderlyingType::Int32: addAttributeSize(attribute); break; case AttributeUnderlyingType::Int64: addAttributeSize(attribute); break; case AttributeUnderlyingType::Float32: addAttributeSize(attribute); break; case AttributeUnderlyingType::Float64: addAttributeSize(attribute); break; case AttributeUnderlyingType::String: { addAttributeSize(attribute); bytes_allocated += sizeof(Arena) + attribute.string_arena->size(); break; } } } bytes_allocated += keys_pool.size(); } template void createAttributeImpl(attribute_t & attribute, const Field & null_value) { std::get(attribute.null_values) = null_value.get::Type>(); std::get>(attribute.maps) = std::make_unique>(); } attribute_t createAttributeWithType(const AttributeUnderlyingType type, const Field & null_value) { attribute_t attr{type}; switch (type) { case AttributeUnderlyingType::UInt8: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::UInt16: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::UInt32: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::UInt64: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::Int8: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::Int16: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::Int32: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::Int64: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::Float32: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::Float64: createAttributeImpl(attr, null_value); break; case AttributeUnderlyingType::String: { std::get(attr.null_values) = null_value.get(); std::get>(attr.maps) = std::make_unique>(); attr.string_arena = std::make_unique(); break; } } return attr; } template void getItems( const attribute_t & attribute, const ConstColumnPlainPtrs & key_columns, ValueSetter && set_value, DefaultGetter && get_default) const { const auto & attr = *std::get>(attribute.maps); const auto keys_size = key_columns.size(); StringRefs keys(keys_size); Arena temporary_keys_pool; const auto rows = key_columns.front()->size(); for (const auto i : ext::range(0, rows)) { /// copy key data to arena so it is contiguous and return StringRef to it const auto key = placeKeysInPool(i, key_columns, keys, temporary_keys_pool); const auto it = attr.find(key); set_value(i, it != attr.end() ? it->second : get_default(i)); /// free memory allocated for the key temporary_keys_pool.rollback(key.size); } query_count.fetch_add(rows, std::memory_order_relaxed); } template bool setAttributeValueImpl(attribute_t & attribute, const StringRef key, const T value) { auto & map = *std::get>(attribute.maps); const auto pair = map.insert({ key, value }); return pair.second; } bool setAttributeValue(attribute_t & attribute, const StringRef key, const Field & value) { switch (attribute.type) { case AttributeUnderlyingType::UInt8: return setAttributeValueImpl(attribute, key, value.get()); case AttributeUnderlyingType::UInt16: return setAttributeValueImpl(attribute, key, value.get()); case AttributeUnderlyingType::UInt32: return setAttributeValueImpl(attribute, key, value.get()); case AttributeUnderlyingType::UInt64: return setAttributeValueImpl(attribute, key, value.get()); case AttributeUnderlyingType::Int8: return setAttributeValueImpl(attribute, key, value.get()); case AttributeUnderlyingType::Int16: return setAttributeValueImpl(attribute, key, value.get()); case AttributeUnderlyingType::Int32: return setAttributeValueImpl(attribute, key, value.get()); case AttributeUnderlyingType::Int64: return setAttributeValueImpl(attribute, key, value.get()); case AttributeUnderlyingType::Float32: return setAttributeValueImpl(attribute, key, value.get()); case AttributeUnderlyingType::Float64: return setAttributeValueImpl(attribute, key, value.get()); case AttributeUnderlyingType::String: { auto & map = *std::get>(attribute.maps); const auto & string = value.get(); const auto string_in_arena = attribute.string_arena->insert(string.data(), string.size()); const auto pair = map.insert({ key, StringRef{string_in_arena, string.size()} }); return pair.second; } } return {}; } const attribute_t & getAttribute(const std::string & attribute_name) const { const auto it = attribute_index_by_name.find(attribute_name); if (it == std::end(attribute_index_by_name)) throw Exception{ name + ": no such attribute '" + attribute_name + "'", ErrorCodes::BAD_ARGUMENTS }; return attributes[it->second]; } static StringRef placeKeysInPool( const std::size_t row, const ConstColumnPlainPtrs & key_columns, StringRefs & keys, Arena & pool) { const auto keys_size = key_columns.size(); size_t sum_keys_size{}; for (const auto i : ext::range(0, keys_size)) { keys[i] = key_columns[i]->getDataAtWithTerminatingZero(row); sum_keys_size += keys[i].size; } const auto res = pool.alloc(sum_keys_size); auto place = res; for (size_t j = 0; j < keys_size; ++j) { memcpy(place, keys[j].data, keys[j].size); place += keys[j].size; } return { res, sum_keys_size }; } template void has(const attribute_t & attribute, const ConstColumnPlainPtrs & key_columns, PODArray & out) const { const auto & attr = *std::get>(attribute.maps); const auto keys_size = key_columns.size(); StringRefs keys(keys_size); Arena temporary_keys_pool; const auto rows = key_columns.front()->size(); for (const auto i : ext::range(0, rows)) { /// copy key data to arena so it is contiguous and return StringRef to it const auto key = placeKeysInPool(i, key_columns, keys, temporary_keys_pool); const auto it = attr.find(key); out[i] = it != attr.end(); /// free memory allocated for the key temporary_keys_pool.rollback(key.size); } query_count.fetch_add(rows, std::memory_order_relaxed); } const std::string name; const DictionaryStructure dict_struct; const DictionarySourcePtr source_ptr; const DictionaryLifetime dict_lifetime; const bool require_nonempty; const std::string key_description{dict_struct.getKeyDescription()}; std::map attribute_index_by_name; std::vector attributes; Arena keys_pool; std::size_t bytes_allocated = 0; std::size_t element_count = 0; std::size_t bucket_count = 0; mutable std::atomic query_count{0}; std::chrono::time_point creation_time; std::exception_ptr creation_exception; }; }