--- slug: /en/sql-reference/functions/nlp-functions sidebar_position: 130 sidebar_label: NLP (experimental) --- :::note This is an experimental feature that is currently in development and is not ready for general use. It will change in unpredictable backwards-incompatible ways in future releases. Set `allow_experimental_nlp_functions = 1` to enable it. ::: ## stem Performs stemming on a given word. **Syntax** ``` sql stem('language', word) ``` **Arguments** - `language` — Language which rules will be applied. Must be in lowercase. [String](../../sql-reference/data-types/string.md#string). - `word` — word that needs to be stemmed. Must be in lowercase. [String](../../sql-reference/data-types/string.md#string). **Examples** Query: ``` sql SELECT arrayMap(x -> stem('en', x), ['I', 'think', 'it', 'is', 'a', 'blessing', 'in', 'disguise']) as res; ``` Result: ``` text ┌─res────────────────────────────────────────────────┐ │ ['I','think','it','is','a','bless','in','disguis'] │ └────────────────────────────────────────────────────┘ ``` ## lemmatize Performs lemmatization on a given word. Needs dictionaries to operate, which can be obtained [here](https://github.com/vpodpecan/lemmagen3/tree/master/src/lemmagen3/models). **Syntax** ``` sql lemmatize('language', word) ``` **Arguments** - `language` — Language which rules will be applied. [String](../../sql-reference/data-types/string.md#string). - `word` — Word that needs to be lemmatized. Must be lowercase. [String](../../sql-reference/data-types/string.md#string). **Examples** Query: ``` sql SELECT lemmatize('en', 'wolves'); ``` Result: ``` text ┌─lemmatize("wolves")─┐ │ "wolf" │ └─────────────────────┘ ``` Configuration: ``` xml en en.bin ``` ## synonyms Finds synonyms to a given word. There are two types of synonym extensions: `plain` and `wordnet`. With the `plain` extension type we need to provide a path to a simple text file, where each line corresponds to a certain synonym set. Words in this line must be separated with space or tab characters. With the `wordnet` extension type we need to provide a path to a directory with WordNet thesaurus in it. Thesaurus must contain a WordNet sense index. **Syntax** ``` sql synonyms('extension_name', word) ``` **Arguments** - `extension_name` — Name of the extension in which search will be performed. [String](../../sql-reference/data-types/string.md#string). - `word` — Word that will be searched in extension. [String](../../sql-reference/data-types/string.md#string). **Examples** Query: ``` sql SELECT synonyms('list', 'important'); ``` Result: ``` text ┌─synonyms('list', 'important')────────────┐ │ ['important','big','critical','crucial'] │ └──────────────────────────────────────────┘ ``` Configuration: ``` xml en plain en.txt en wordnet en/ ``` ## detectLanguage Detects the language of the UTF8-encoded input string. The function uses the [CLD2 library](https://github.com/CLD2Owners/cld2) for detection, and it returns the 2-letter ISO language code. The `detectLanguage` function works best when providing over 200 characters in the input string. **Syntax** ``` sql detectLanguage('text_to_be_analyzed') ``` **Arguments** - `text_to_be_analyzed` — A collection (or sentences) of strings to analyze. [String](../../sql-reference/data-types/string.md#string). **Returned value** - The 2-letter ISO code of the detected language Other possible results: - `un` = unknown, can not detect any language. - `other` = the detected language does not have 2 letter code. **Examples** Query: ```sql SELECT detectLanguageMixed('Je pense que je ne parviendrai jamais à parler français comme un natif. Where there’s a will, there’s a way.'); ``` Result: ```response fr ``` ## detectLanguageMixed Similar to the `detectLanguage` function, but `detectLanguageMixed` returns a `Map` of 2-letter language codes that are mapped to the percentage of the certain language in the text. **Syntax** ``` sql detectLanguageMixed('text_to_be_analyzed') ``` **Arguments** - `text_to_be_analyzed` — A collection (or sentences) of strings to analyze. [String](../../sql-reference/data-types/string.md#string). **Returned value** - `Map(String, Float32)`: The keys are 2-letter ISO codes and the values are a perentage of text found for that language **Examples** Query: ```sql SELECT detectLanguageMixed('二兎を追う者は一兎をも得ず二兎を追う者は一兎をも得ず A vaincre sans peril, on triomphe sans gloire.'); ``` Result: ```response ┌─detectLanguageMixed()─┐ │ {'ja':0.62,'fr':0.36 │ └───────────────────────┘ ``` ## detectLanguageUnknown Similar to the `detectLanguage` function, except the `detectLanguageUnknown` function works with non-UTF8-encoded strings. Prefer this version when your character set is UTF-16 or UTF-32. **Syntax** ``` sql detectLanguageUnknown('text_to_be_analyzed') ``` **Arguments** - `text_to_be_analyzed` — A collection (or sentences) of strings to analyze. [String](../../sql-reference/data-types/string.md#string). **Returned value** - The 2-letter ISO code of the detected language Other possible results: - `un` = unknown, can not detect any language. - `other` = the detected language does not have 2 letter code. **Examples** Query: ```sql SELECT detectLanguageUnknown('Ich bleibe für ein paar Tage.'); ``` Result: ```response ┌─detectLanguageUnknown('Ich bleibe für ein paar Tage.')─┐ │ de │ └────────────────────────────────────────────────────────┘ ``` ## detectCharset The `detectCharset` function detects the character set of the non-UTF8-encoded input string. **Syntax** ``` sql detectCharset('text_to_be_analyzed') ``` **Arguments** - `text_to_be_analyzed` — A collection (or sentences) of strings to analyze. [String](../../sql-reference/data-types/string.md#string). **Returned value** - A `String` containing the code of the detected character set **Examples** Query: ```sql SELECT detectCharset('Ich bleibe für ein paar Tage.'); ``` Result: ```response ┌─detectCharset('Ich bleibe für ein paar Tage.')─┐ │ WINDOWS-1252 │ └────────────────────────────────────────────────┘ ```