# MergeTree {#table_engines-mergetree} Движок `MergeTree`, а также другие движки этого семейства (`*MergeTree`) — это наиболее функциональные движки таблиц ClickHouse. Основная идея, заложенная в основу движков семейства `MergeTree` следующая. Когда у вас есть огромное количество данных, которые должны быть вставлены в таблицу, вы должны быстро записать их по частям, а затем объединить части по некоторым правилам в фоновом режиме. Этот метод намного эффективнее, чем постоянная перезапись данных в хранилище при вставке. Основные возможности: - Хранит данные, отсортированные по первичному ключу. Это позволяет создавать разреженный индекс небольшого объёма, который позволяет быстрее находить данные. - Позволяет оперировать партициями, если задан [ключ партиционирования](custom_partitioning_key.md). ClickHouse поддерживает отдельные операции с партициями, которые работают эффективнее, чем общие операции с этим же результатом над этими же данными. Также, ClickHouse автоматически отсекает данные по партициям там, где ключ партиционирования указан в запросе. Это также увеличивает эффективность выполнения запросов. - Поддерживает репликацию данных. Для этого используется семейство таблиц `ReplicatedMergeTree`. Подробнее читайте в разделе [Репликация данных](replication.md). - Поддерживает сэмплирование данных. При необходимости можно задать способ сэмплирования данных в таблице. !!! info Движок [Merge](merge.md) не относится к семейству `*MergeTree`. ## Создание таблицы {#table_engine-mergetree-creating-a-table} ```sql CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster] ( name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1] [TTL expr1], name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2] [TTL expr2], ... INDEX index_name1 expr1 TYPE type1(...) GRANULARITY value1, INDEX index_name2 expr2 TYPE type2(...) GRANULARITY value2 ) ENGINE = MergeTree() [PARTITION BY expr] [ORDER BY expr] [PRIMARY KEY expr] [SAMPLE BY expr] [TTL expr] [SETTINGS name=value, ...] ``` Описание параметров смотрите в [описании запроса CREATE](../../query_language/create.md). !!!note "Note" `INDEX` — экспериментальная возможность, смотрите [Индексы пропуска данных](#table_engine-mergetree-data_skipping-indexes). ### Секции запроса - `ENGINE` — имя и параметры движка. `ENGINE = MergeTree()`. `MergeTree` не имеет параметров. - `PARTITION BY` — [ключ партиционирования](custom_partitioning_key.md). Для партиционирования по месяцам используйте выражение `toYYYYMM(date_column)`, где `date_column` — столбец с датой типа [Date](../../data_types/date.md). В этом случае имена партиций имеют формат `"YYYYMM"`. - `ORDER BY` — ключ сортировки. Кортеж столбцов или произвольных выражений. Пример: `ORDER BY (CounterID, EventDate)`. - `PRIMARY KEY` — первичный ключ, если он [отличается от ключа сортировки](mergetree.md). По умолчанию первичный ключ совпадает с ключом сортировки (который задаётся секцией `ORDER BY`.) Поэтому в большинстве случаев секцию `PRIMARY KEY` отдельно указывать не нужно. - `SAMPLE BY` — выражение для сэмплирования. Если используется выражение для сэмплирования, то первичный ключ должен содержать его. Пример: `SAMPLE BY intHash32(UserID) ORDER BY (CounterID, EventDate, intHash32(UserID))`. - `TTL` — выражение, определяющее длительность хранения строк. Должно зависеть от столбца `Date` или `DateTime` и возвращать столбец `Date` или `DateTime`. Пример:`TTL date + INTERVAL 1 DAY` Дополнительные сведения смотрите в разделе [TTL для столбцов и таблиц](#table_engine-mergetree-ttl) - `SETTINGS` — дополнительные параметры, регулирующие поведение `MergeTree`: - `index_granularity` — гранулярность индекса. Число строк данных между «засечками» индекса. По умолчанию — 8192. Список всех доступных параметров можно посмотреть в [MergeTreeSettings.h](https://github.com/ClickHouse/ClickHouse/blob/master/dbms/src/Storages/MergeTree/MergeTreeSettings.h). - `min_merge_bytes_to_use_direct_io` — минимальный объем данных, необходимый для прямого (небуферизованного) чтения/записи (direct I/O) на диск. При слиянии частей данных ClickHouse вычисляет общий объем хранения всех данных, подлежащих слиянию. Если общий объем хранения всех данных для чтения превышает `min_bytes_to_use_direct_io` байт, тогда ClickHouse использует флаг `O_DIRECT` при чтении данных с диска. Если `min_merge_bytes_to_use_direct_io = 0`, тогда прямой ввод-вывод отключен. Значение по умолчанию: `10 * 1024 * 1024 * 1024` байт. - `merge_with_ttl_timeout` - Минимальное время в секундах для повторного выполнения слияний с TTL. По умолчанию - 86400 (1 день). **Пример задания секций** ```sql ENGINE MergeTree() PARTITION BY toYYYYMM(EventDate) ORDER BY (CounterID, EventDate, intHash32(UserID)) SAMPLE BY intHash32(UserID) SETTINGS index_granularity=8192 ``` В примере мы устанавливаем партиционирование по месяцам. Также мы задаем выражение для сэмплирования в виде хэша по идентификатору посетителя. Это позволяет псевдослучайным образом перемешать данные в таблице для каждого `CounterID` и `EventDate`. Если при выборке данных задать секцию [SAMPLE](../../query_language/select.md#select-sample-clause), то ClickHouse вернёт равномерно-псевдослучайную выборку данных для подмножества посетителей. `index_granularity` можно было не указывать, поскольку 8192 — это значение по умолчанию.
Устаревший способ создания таблицы !!! attention Не используйте этот способ в новых проектах и по возможности переведите старые проекты на способ, описанный выше. ```sql CREATE TABLE [IF NOT EXISTS] [db.]table_name [ON CLUSTER cluster] ( name1 [type1] [DEFAULT|MATERIALIZED|ALIAS expr1], name2 [type2] [DEFAULT|MATERIALIZED|ALIAS expr2], ... ) ENGINE [=] MergeTree(date-column [, sampling_expression], (primary, key), index_granularity) ``` **Параметры MergeTree()** - `date-column` — имя столбца с типом [Date](../../data_types/date.md). На основе этого столбца ClickHouse автоматически создаёт партиции по месяцам. Имена партиций имеют формат `"YYYYMM"`. - `sampling_expression` — выражение для сэмплирования. - `(primary, key)` — первичный ключ. Тип — [Tuple()](../../data_types/tuple.md) - `index_granularity` — гранулярность индекса. Число строк данных между «засечками» индекса. Для большинства задач подходит значение 8192. **Пример** ```sql MergeTree(EventDate, intHash32(UserID), (CounterID, EventDate, intHash32(UserID)), 8192) ``` Движок `MergeTree` сконфигурирован таким же образом, как и в примере выше для основного способа конфигурирования движка.
## Хранение данных Таблица состоит из *кусков* данных (data parts), отсортированных по первичному ключу. При вставке в таблицу создаются отдельные куски данных, каждый из которых лексикографически отсортирован по первичному ключу. Например, если первичный ключ — `(CounterID, Date)`, то данные в куске будут лежать в порядке `CounterID`, а для каждого `CounterID` в порядке `Date`. Данные, относящиеся к разным партициям, разбиваются на разные куски. В фоновом режиме ClickHouse выполняет слияния (merge) кусков данных для более эффективного хранения. Куски, относящиеся к разным партициям не объединяются. Механизм слияния не гарантирует, что все строки с одинаковым первичным ключом окажутся в одном куске. Для каждого куска данных ClickHouse создаёт индексный файл, который содержит значение первичного ключа для каждой индексной строки («засечка»). Номера строк индекса определяются как `n * index_granularity`. Максимальное значение `n` равно целой части деления общего числа строк на `index_granularity`. Для каждого столбца "засечки" также записываются для тех же строк индекса, что и первичный ключ. Эти "засечки" позволяют находить данные непосредственно в столбцах. Вы можете использовать одну большую таблицу, постоянно добавляя в неё данные пачками, именно для этого предназначен движок `MergeTree`. ## Первичные ключи и индексы в запросах {#primary-keys-and-indexes-in-queries} Рассмотрим первичный ключ — `(CounterID, Date)`. В этом случае сортировку и индекс можно проиллюстрировать следующим образом: ```text Whole data: [-------------------------------------------------------------------------] CounterID: [aaaaaaaaaaaaaaaaaabbbbcdeeeeeeeeeeeeefgggggggghhhhhhhhhiiiiiiiiikllllllll] Date: [1111111222222233331233211111222222333211111112122222223111112223311122333] Marks: | | | | | | | | | | | a,1 a,2 a,3 b,3 e,2 e,3 g,1 h,2 i,1 i,3 l,3 Marks numbers: 0 1 2 3 4 5 6 7 8 9 10 ``` Если в запросе к данным указать: - `CounterID IN ('a', 'h')`, то сервер читает данные в диапазонах засечек `[0, 3)` и `[6, 8)`. - `CounterID IN ('a', 'h') AND Date = 3`, то сервер читает данные в диапазонах засечек `[1, 3)` и `[7, 8)`. - `Date = 3`, то сервер читает данные в диапазоне засечек `[1, 10]`. Примеры выше показывают, что использование индекса всегда эффективнее, чем full scan. Разреженный индекс допускает чтение лишних строк. При чтении одного диапазона первичного ключа, может быть прочитано до `index_granularity * 2` лишних строк в каждом блоке данных. В большинстве случаев ClickHouse не теряет производительности при `index_granularity = 8192`. Разреженность индекса позволяет работать даже с очень большим количеством строк в таблицах, поскольку такой индекс всегда помещается в оперативную память компьютера. ClickHouse не требует уникального первичного ключа. Можно вставить много строк с одинаковым первичным ключом. ### Выбор первичного ключа Количество столбцов в первичном ключе не ограничено явным образом. В зависимости от структуры данных в первичный ключ можно включать больше или меньше столбцов. Это может: - Увеличить эффективность индекса. Пусть первичный ключ — `(a, b)`, тогда добавление ещё одного столбца `c` повысит эффективность, если выполнены условия: - Есть запросы с условием на столбец `c`. - Часто встречаются достаточно длинные (в несколько раз больше `index_granularity`) диапазоны данных с одинаковыми значениями `(a, b)`. Иначе говоря, когда добавление ещё одного столбца позволит пропускать достаточно длинные диапазоны данных. - Улучшить сжатие данных. ClickHouse сортирует данные по первичному ключу, поэтому чем выше однородность, тем лучше сжатие. - Обеспечить дополнительную логику при слиянии кусков данных в движках [CollapsingMergeTree](collapsingmergetree.md#table_engine-collapsingmergetree) и [SummingMergeTree](summingmergetree.md). В этом случае имеет смысл указать отдельный *ключ сортировки*, отличающийся от первичного ключа. Длинный первичный ключ будет негативно влиять на производительность вставки и потребление памяти, однако на производительность ClickHouse при запросах `SELECT` лишние столбцы в первичном ключе не влияют. ### Первичный ключ, отличный от ключа сортировки Существует возможность задать первичный ключ (выражение, значения которого будут записаны в индексный файл для каждой засечки), отличный от ключа сортировки (выражение, по которому будут упорядочены строки в кусках данных). Кортеж выражения первичного ключа при этом должен быть префиксом кортежа выражения ключа сортировки. Данная возможность особенно полезна при использовании движков [SummingMergeTree](summingmergetree.md) и [AggregatingMergeTree](aggregatingmergetree.md). В типичном сценарии использования этих движков таблица содержит столбцы двух типов: *измерения* (dimensions) и *меры* (measures). Типичные запросы агрегируют значения столбцов-мер с произвольной группировкой и фильтрацией по измерениям. Так как `SummingMergeTree` и `AggregatingMergeTree` производят фоновую агрегацию строк с одинаковым значением ключа сортировки, приходится добавлять в него все столбцы-измерения. В результате выражение ключа содержит большой список столбцов, который приходится постоянно расширять при добавлении новых измерений. В этом сценарии имеет смысл оставить в первичном ключе всего несколько столбцов, которые обеспечат эффективную фильтрацию по индексу, а остальные столбцы-измерения добавить в выражение ключа сортировки. [ALTER ключа сортировки](../../query_language/alter.md) — лёгкая операция, так как при одновременном добавлении нового столбца в таблицу и ключ сортировки не нужно изменять данные кусков (они остаются упорядоченными и по новому выражению ключа). ### Использование индексов и партиций в запросах Для запросов `SELECT` ClickHouse анализирует возможность использования индекса. Индекс может использоваться, если в секции `WHERE/PREWHERE`, в качестве одного из элементов конъюнкции, или целиком, есть выражение, представляющее операции сравнения на равенства, неравенства, а также `IN` или `LIKE` с фиксированным префиксом, над столбцами или выражениями, входящими в первичный ключ или ключ партиционирования, либо над некоторыми частично монотонными функциями от этих столбцов, а также логические связки над такими выражениями. Таким образом, обеспечивается возможность быстро выполнять запросы по одному или многим диапазонам первичного ключа. Например, в указанном примере будут быстро работать запросы для конкретного счётчика; для конкретного счётчика и диапазона дат; для конкретного счётчика и даты, для нескольких счётчиков и диапазона дат и т. п. Рассмотрим движок сконфигурированный следующим образом: ```sql ENGINE MergeTree() PARTITION BY toYYYYMM(EventDate) ORDER BY (CounterID, EventDate) SETTINGS index_granularity=8192 ``` В этом случае в запросах: ```sql SELECT count() FROM table WHERE EventDate = toDate(now()) AND CounterID = 34 SELECT count() FROM table WHERE EventDate = toDate(now()) AND (CounterID = 34 OR CounterID = 42) SELECT count() FROM table WHERE ((EventDate >= toDate('2014-01-01') AND EventDate <= toDate('2014-01-31')) OR EventDate = toDate('2014-05-01')) AND CounterID IN (101500, 731962, 160656) AND (CounterID = 101500 OR EventDate != toDate('2014-05-01')) ``` ClickHouse будет использовать индекс по первичному ключу для отсечения не подходящих данных, а также ключ партиционирования по месяцам для отсечения партиций, которые находятся в не подходящих диапазонах дат. Запросы выше показывают, что индекс используется даже для сложных выражений. Чтение из таблицы организовано так, что использование индекса не может быть медленнее, чем full scan. В примере ниже индекс не может использоваться. ```sql SELECT count() FROM table WHERE CounterID = 34 OR URL LIKE '%upyachka%' ``` Чтобы проверить, сможет ли ClickHouse использовать индекс при выполнении запроса, используйте настройки [force_index_by_date](../settings/settings.md#settings-force_index_by_date) и [force_primary_key](../settings/settings.md#settings-force_primary_key). Ключ партиционирования по месяцам обеспечивает чтение только тех блоков данных, которые содержат даты из нужного диапазона. При этом блок данных может содержать данные за многие даты (до целого месяца). В пределах одного блока данные упорядочены по первичному ключу, который может не содержать дату в качестве первого столбца. В связи с этим, при использовании запроса с указанием условия только на дату, но не на префикс первичного ключа, будет читаться данных больше, чем за одну дату. ### Использование индекса для частично-монотонных первичных ключей Рассмотрим, например, дни месяца. Они образуют последовательность [монотонную](https://ru.wikipedia.org/wiki/Монотонная_последовательность) в течение одного месяца, но не монотонную на более длительных периодах. Это частично-монотонная последовательность. Если пользователь создаёт таблицу с частично-монотонным первичным ключом, ClickHouse как обычно создаёт разреженный индекс. Когда пользователь выбирает данные из такого рода таблиц, ClickHouse анализирует условия запроса. Если пользователь хочет получить данные между двумя метками индекса, и обе эти метки находятся внутри одного месяца, ClickHouse может использовать индекс в данном конкретном случае, поскольку он может рассчитать расстояние между параметрами запроса и индексными метками. ClickHouse не может использовать индекс, если значения первичного ключа в диапазоне параметров запроса не представляют собой монотонную последовательность. В этом случае ClickHouse использует метод полного сканирования. ClickHouse использует эту логику не только для последовательностей дней месяца, но и для любого частично-монотонного первичного ключа. ### Индексы пропуска данных (экспериментальная функциональность) {#table_engine-mergetree-data_skipping-indexes} Для использования требуется установить настройку `allow_experimental_data_skipping_indices` в 1. (запустить `SET allow_experimental_data_skipping_indices = 1`). Объявление индексов при определении столбцов в запросе `CREATE`. ```sql INDEX index_name expr TYPE type(...) GRANULARITY granularity_value ``` Для таблиц семейства `*MergeTree` можно задать дополнительные индексы в секции столбцов. Индексы агрегируют для заданного выражения некоторые данные, а потом при `SELECT` запросе используют для пропуска блоков данных (пропускаемый блок состоит из гранул данных в количестве равном гранулярности данного индекса), на которых секция `WHERE` не может быть выполнена, тем самым уменьшая объем данных читаемых с диска. **Пример** ```sql CREATE TABLE table_name ( u64 UInt64, i32 Int32, s String, ... INDEX a (u64 * i32, s) TYPE minmax GRANULARITY 3, INDEX b (u64 * length(s)) TYPE set(1000) GRANULARITY 4 ) ENGINE = MergeTree() ... ``` Эти индексы смогут использоваться для оптимизации следующих запросов ```sql SELECT count() FROM table WHERE s < 'z' SELECT count() FROM table WHERE u64 * i32 == 10 AND u64 * length(s) >= 1234 ``` #### Доступные индексы - `minmax` — Хранит минимум и максимум выражения (если выражение - `tuple`, то для каждого элемента `tuple`), используя их для пропуска блоков аналогично первичному ключу. - `set(max_rows)` — Хранит уникальные значения выражения на блоке в количестве не более `max_rows` (если `max_rows = 0`, то ограничений нет), используя их для пропуска блоков, оценивая выполнимость `WHERE` выражения на хранимых данных. - `bloom_filter([false_positive])` — [фильтр Блума](https://en.wikipedia.org/wiki/Bloom_filter) для указанных стоблцов. Необязательный параметр `false_positive` — это вероятность получения ложноположительного срабатывания. Возможные значения: (0, 1). Значение по умолчанию: 0.025. Поддержанные типы данных: `Int*`, `UInt*`, `Float*`, `Enum`, `Date`, `DateTime`, `String`, `FixedString`. Фильтром могут пользоваться функции: [equals](../../query_language/functions/comparison_functions.md), [notEquals](../../query_language/functions/comparison_functions.md), [in](../../query_language/functions/in_functions.md), [notIn](../../query_language/functions/in_functions.md). **Примеры** ```sql INDEX b (u64 * length(str), i32 + f64 * 100, date, str) TYPE minmax GRANULARITY 4 INDEX b (u64 * length(str), i32 + f64 * 100, date, str) TYPE set(100) GRANULARITY 4 ``` #### Поддержка для функций Условия в секции `WHERE` содержат вызовы функций, оперирующих со столбцами. Если столбец - часть индекса, ClickHouse пытается использовать индекс при выполнении функции. Для разных видов индексов, ClickHouse поддерживает различные наборы функций, которые могут использоваться индексами. Индекс `set` используется со всеми функциями. Наборы функций для остальных индексов представлены в таблице ниже. Function (operator) / Index | primary key | minmax | ngrambf_v1 | tokenbf_v1 | bloom_filter ----------------------------|-------------|--------|------------|------------|--------------- [equals (=, ==)](../../query_language/functions/comparison_functions.md#function-equals) | ✔ | ✔ | ✔ | ✔ | ✔ [notEquals(!=, <>)](../../query_language/functions/comparison_functions.md#function-notequals) | ✔ | ✔ | ✔ | ✔ | ✔ [like](../../query_language/functions/string_search_functions.md#function-like) | ✔ | ✔ | ✔ | ✗ | ✗ [notLike](../../query_language/functions/string_search_functions.md#function-notlike) | ✔ | ✔ | ✔ | ✔ | ✗ [startsWith](../../query_language/functions/string_functions.md#function-startswith) | ✔ | ✔ | ✔ | ✔ | ✗ [endsWith](../../query_language/functions/string_functions.md#function-endswith) | ✗ | ✗ | ✔ | ✔ | ✗ [multiSearchAny](../../query_language/functions/string_search_functions.md#function-multisearchany) | ✗ | ✗ | ✔ | ✔ | ✗ [in](../../query_language/functions/in_functions.md#in-functions) | ✔ | ✔ | ✔ | ✔ | ✔ [notIn](../../query_language/functions/in_functions.md#in-functions) | ✔ | ✔ | ✔ | ✔ | ✔ [less (<)](../../query_language/functions/comparison_functions.md#function-less) | ✔ | ✔ | ✗ | ✗ | ✗ [greater (>)](../../query_language/functions/comparison_functions.md#function-greater) | ✔ | ✔ | ✗ | ✗ | ✗ [lessOrEquals (<=)](../../query_language/functions/comparison_functions.md#function-lessorequals) | ✔ | ✔ | ✗ | ✗ | ✗ [greaterOrEquals (>=)](../../query_language/functions/comparison_functions.md#function-greaterorequals) | ✔ | ✔ | ✗ | ✗ | ✗ [empty](../../query_language/functions/array_functions.md#function-empty) | ✔ | ✔ | ✗ | ✗ | ✗ [notEmpty](../../query_language/functions/array_functions.md#function-notempty) | ✔ | ✔ | ✗ | ✗ | ✗ hasToken | ✗ | ✗ | ✗ | ✔ | ✗ Функции с постоянным агрументом, который меньше, чем размер ngram не могут использовать индекс `ngrambf_v1` для оптимизации запроса. Фильтры Блума могут иметь ложнопозитивные срабатывания, следовательно индексы `ngrambf_v1`, `tokenbf_v1` и `bloom_filter` невозможно использовать для оптимизации запросов, в которых результат функции предполается false, например: - Можно оптимизировать: - `s LIKE '%test%'` - `NOT s NOT LIKE '%test%'` - `s = 1` - `NOT s != 1` - `startsWith(s, 'test')` - Нельзя оптимизировать: - `NOT s LIKE '%test%'` - `s NOT LIKE '%test%'` - `NOT s = 1` - `s != 1` - `NOT startsWith(s, 'test')` ## Конкурентный доступ к данным Для конкурентного доступа к таблице используется мультиверсионность. То есть, при одновременном чтении и обновлении таблицы, данные будут читаться из набора кусочков, актуального на момент запроса. Длинных блокировок нет. Вставки никак не мешают чтениям. Чтения из таблицы автоматически распараллеливаются. ## TTL для столбцов и таблиц {#table_engine-mergetree-ttl} Определяет время жизни значений. Секция `TTL` может быть установлена как для всей таблицы, так и для каждого отдельного столбца. Если установлены оба `TTL`, то ClickHouse использует тот, что истекает раньше. Таблица должна иметь столбец типа [Date](../../data_types/date.md) или [DateTime](../../data_types/datetime.md). Для установки времени жизни данных, следует использовать операцию со столбцом с временем, например: ```sql TTL time_column TTL time_column + interval ``` Чтобы задать `interval`, используйте операторы [интервала времени](../../query_language/operators.md#operators-datetime). ```sql TTL date_time + INTERVAL 1 MONTH TTL date_time + INTERVAL 15 HOUR ``` **TTL столбца** Когда срок действия значений в столбце истечет, ClickHouse заменит их значениями по умолчанию для типа данных столбца. Если срок действия всех значений столбцов в части данных истек, ClickHouse удаляет столбец из куска данных в файловой системе. Секцию `TTL` нельзя использовать для ключевых столбцов. Примеры: Создание таблицы с TTL ```sql CREATE TABLE example_table ( d DateTime, a Int TTL d + INTERVAL 1 MONTH, b Int TTL d + INTERVAL 1 MONTH, c String ) ENGINE = MergeTree PARTITION BY toYYYYMM(d) ORDER BY d; ``` Добавление TTL на колонку существующей таблицы ```sql ALTER TABLE example_table MODIFY COLUMN c String TTL d + INTERVAL 1 DAY; ``` Изменение TTL у колонки ```sql ALTER TABLE example_table MODIFY COLUMN c String TTL d + INTERVAL 1 MONTH; ``` **TTL таблицы** Когда некоторые данные в таблице устаревают, ClickHouse удаляет все соответствующие строки. Примеры: ```sql CREATE TABLE example_table ( d DateTime, a Int ) ENGINE = MergeTree PARTITION BY toYYYYMM(d) ORDER BY d TTL d + INTERVAL 1 MONTH; ``` Изменение TTL ```sql ALTER TABLE example_table MODIFY TTL d + INTERVAL 1 DAY; ``` **Удаление данных** Данные с истекшим TTL удаляются, когда ClickHouse мёржит куски данных. Когда ClickHouse видит, что некоторые данные устарели, он выполняет внеплановые мёржи. Для управление частотой подобных мёржей, можно задать настройку [merge_with_ttl_timeout](#mergetree_setting-merge_with_ttl_timeout). Если её значение слишком низкое, придется выполнять много внеплановых мёржей, которые могут начать потреблять значительную долю ресурсов сервера. Если вы выполните запрос `SELECT` между слияниями вы можете получить устаревшие данные. Чтобы избежать этого используйте запрос [OPTIMIZE](../../query_language/misc.md#misc_operations-optimize) перед `SELECT`. [Оригинальная статья](https://clickhouse.yandex/docs/ru/operations/table_engines/mergetree/) ## Хранение данных таблицы на нескольких блочных устройствах {#table_engine-mergetree-multiple-volumes} ### Общее Данные таблиц семейства MergeTree могут храниться на нескольких блочных устройствах. Это может оказаться полезным, например, при неявном разделении данных одной таблицы на "горячие" и "холодные", когда наиболее свежая часть занимает малый объем и запрашивается регулярно, а большой хвост исторических данных запрашивается редко. При наличии в системе нескольких дисков, "горячая" часть данных может быть размещена на быстрых дисках (NVMe SSDs или даже в памяти), а холодная на более медленных (HDD). Минимальной перемещаемой единицей для MergeTree является кусок (part). Данные одного куска могут находится только на одном диске. Куски могут перемещаться между дисками в фоне, согласно пользовательским настройкам, а также с помощью [ALTER](../../query_language/alter.md#alter_move-partition) запросов. ### Термины * Диск — примонтированное в файловой системе блочное устройство. * Диск по умолчанию — диск, на котором находится путь, указанный в корне `config.xml` в теге ``. * Том (Volume) — упорядоченный набор равноценных дисков (схоже с [JBOD](https://ru.wikipedia.org/wiki/JBOD)) * Политика хранения (StoragePolicy) — множество томов с правилами перемещения данных между ними. У всех описанных сущностей, при создании, указываются имена, которые будут отражены в системных таблицах [system.storage_policies](../system_tables.md#system_tables-storage_policies) и [system.disks](../system_tables.md#system_tables-disks). Имя политики хранения используется как настройка у таблиц семейства MergeTree. ### Конфигурация {#table_engine-mergetree-multiple-volumes_configure} Диски, тома и политики хранения задаются в корне конфигурации (внутри тега ``) в основном файле `config.xml` или в отдельном файле в директории `config.d`. Правила составления данной секции конфигурации имеет следующую структуру: ```xml /mnt/fast_ssd/clickhouse /mnt/hdd1/clickhouse 10485760_ /mnt/hdd2/clickhouse 10485760_ ... ``` Где, * имя диска задается внутри имени тега. * `path` — путь по которому будут храниться данные сервера (каталоги `data` и `shadow`), должен быть терминирован `/`. * `keep_free_space_bytes` — размер зарезервированного свободного места на диске. Порядок задания дисков не имеет значения. Конфигурация политик хранения: ```xml disk1 disk2 fast_ssd 1073741824 disk1 0.2 ``` Где, * имя политики и тома задаются внутри имен тегов. * `disk` — диск, находящийся внутри тома. * `max_data_part_size_bytes` — максимальный размер куска, который может находится на любом из дисков этого тома. * `move_factor` — доля свободного места, при превышении которого данные начинают перемещаться на следующий том, если он есть (по умолчанию 0.1). В приведенном примере, политика `hdd_in_order` реализует прицип [round-robin](https://ru.wikipedia.org/wiki/Round-robin_(%D0%B0%D0%BB%D0%B3%D0%BE%D1%80%D0%B8%D1%82%D0%BC)). Так как в политике есть всего 1 том (`single`) все записи производятся на его диски по круговому циклу. Такая политика может быть полезна при наличии в системе нескольких похожих дисков. Политика `moving_from_ssd_to_hdd` полезна при наличии в разных типов дисков. В томе `hot` находится один SSD-диск (`fast_ssd`), а также задается ограничение на максимальный размер куска, который может храниться на этом томе (1GB). Все куски такой таблицы больше 1GB будут записываться сразу на том `cold`, в котором содержится один HDD-диск `disk1`. Также, при заполнении диска `fast_ssd` более чем на 80% данные будут переносится на диск `disk1` фоновым процессом. Порядок томов в политиках хранения важен, при достижении условий на переполнение тома данные переносятся на следующий. Порядок дисков в томах так же важен, данные пишутся по очереди на каждый из них. После задания конфигурации дисков и политик хранения их можно использовать, как настройку при создании таблиц: ```sql CREATE TABLE table_with_non_default_policy ( EventDate Date, OrderID UInt64, BannerID UInt64, SearchPhrase String ) ENGINE = MergeTree ORDER BY (OrderID, BannerID) PARTITION BY toYYYYMM(EventDate) SETTINGS storage_policy = 'moving_from_ssd_to_hdd' ``` По умолчанию используется политика хранения `default` в которой есть один том и один диск, указанный в ``. В данный момент менять политику хранения после создания таблицы нельзя. ### Особенности работы В таблицах MergeTree данные попадают на диск несколькими способами: * В результате вставки (запрос `INSERT`). * В фоновых операциях слияний и [мутаций](../../query_language/alter.md#alter-mutations). * При скачивании данных с другой реплики. * В результате заморозки партиций [ALTER TABLE ... FREEZE PARTITION](../../query_language/alter.md#alter_freeze-partition). Во всех случаях, кроме мутаций и заморозки партиций, при записи куска выбирается том и диск в соответствии с указанной конфигурацией хранилища: 1. Выбирается первый по порядку том, на котором есть свободное место для записи куска (`unreserved_space > current_part_size`) и который позволяет записывать куски требуемого размера `max_data_part_size_bytes > current_part_size`. 2. Внутри тома выбирается следующий диск после того, на который была предыдущая запись и на котором свободного места больше чем размер куска (`unreserved_space - keep_free_space_bytes > current_part_size`) Мутации и запросы заморозки партиций в реализации используют [жесткие ссылки](https://ru.wikipedia.org/wiki/%D0%96%D1%91%D1%81%D1%82%D0%BA%D0%B0%D1%8F_%D1%81%D1%81%D1%8B%D0%BB%D0%BA%D0%B0). Жесткие ссылки между различными дисками не поддерживаются, поэтому в случае таких операций куски размещаются на тех же дисках, что и исходные. В фоне куски перемещаются между томами на основе информации о занятом месте (настройка `move_factor`) по порядку, в котором указаны тома в конфигурации. Данные никогда не перемещаются с последнего тома и на первый том. Следить за фоновыми перемещениями можно с помощью системных таблиц [system.part_log](../system_tables.md#system_tables-part-log) (поле `type = MOVE_PART`) и [system.parts](../system_tables.md#system_tables-parts) (поля `path` и `disk`). Также подробная информация о перемещениях доступна в логах сервера. С помощью запроса [ALTER TABLE ... MOVE PART|PARTITION ... TO VOLUME|DISK ...](../../query_language/alter.md#alter_move-partition) пользователь может принудительно перенести кусок или партицию с одного раздела на другой. При этом учитываются все ограничения, указанные для фоновых операций. Запрос самостоятельно инициирует процесс перемещения не дожидаясь фоновых операций. В случае недостатка места или неудовлетворения ограничениям пользователь получит сообщение об ошибке. Перемещения данных не взаимодействуют с репликацией данных, поэтому на разных репликах одной и той же таблицы могут быть указаны разные политики хранения. После выполнения фоновых слияний или мутаций старые куски не удаляются сразу, а через некоторое время (табличная настройка `old_parts_lifetime`). Также они не перемещаются на другие тома или диски, поэтому до момента удаления они продолжают учитываться при подсчёте занятого дискового пространства.