#include "IMergeTreeDataPart.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace CurrentMetrics { extern const Metric PartsTemporary; extern const Metric PartsPreCommitted; extern const Metric PartsCommitted; extern const Metric PartsPreActive; extern const Metric PartsActive; extern const Metric PartsOutdated; extern const Metric PartsDeleting; extern const Metric PartsDeleteOnDestroy; extern const Metric PartsWide; extern const Metric PartsCompact; extern const Metric PartsInMemory; } namespace DB { namespace ErrorCodes { extern const int DIRECTORY_ALREADY_EXISTS; extern const int CANNOT_READ_ALL_DATA; extern const int LOGICAL_ERROR; extern const int FILE_DOESNT_EXIST; extern const int NO_FILE_IN_DATA_PART; extern const int EXPECTED_END_OF_FILE; extern const int CORRUPTED_DATA; extern const int NOT_FOUND_EXPECTED_DATA_PART; extern const int BAD_SIZE_OF_FILE_IN_DATA_PART; extern const int BAD_TTL_FILE; extern const int NOT_IMPLEMENTED; } void IMergeTreeDataPart::MinMaxIndex::load(const MergeTreeData & data, const PartMetadataManagerPtr & manager) { auto metadata_snapshot = data.getInMemoryMetadataPtr(); const auto & partition_key = metadata_snapshot->getPartitionKey(); auto minmax_column_names = data.getMinMaxColumnsNames(partition_key); auto minmax_column_types = data.getMinMaxColumnsTypes(partition_key); size_t minmax_idx_size = minmax_column_types.size(); hyperrectangle.reserve(minmax_idx_size); for (size_t i = 0; i < minmax_idx_size; ++i) { String file_name = "minmax_" + escapeForFileName(minmax_column_names[i]) + ".idx"; auto file = manager->read(file_name); auto serialization = minmax_column_types[i]->getDefaultSerialization(); Field min_val; serialization->deserializeBinary(min_val, *file); Field max_val; serialization->deserializeBinary(max_val, *file); // NULL_LAST if (min_val.isNull()) min_val = POSITIVE_INFINITY; if (max_val.isNull()) max_val = POSITIVE_INFINITY; hyperrectangle.emplace_back(min_val, true, max_val, true); } initialized = true; } IMergeTreeDataPart::MinMaxIndex::WrittenFiles IMergeTreeDataPart::MinMaxIndex::store( const MergeTreeData & data, const DataPartStorageBuilderPtr & data_part_storage_builder, Checksums & out_checksums) const { auto metadata_snapshot = data.getInMemoryMetadataPtr(); const auto & partition_key = metadata_snapshot->getPartitionKey(); auto minmax_column_names = data.getMinMaxColumnsNames(partition_key); auto minmax_column_types = data.getMinMaxColumnsTypes(partition_key); return store(minmax_column_names, minmax_column_types, data_part_storage_builder, out_checksums); } IMergeTreeDataPart::MinMaxIndex::WrittenFiles IMergeTreeDataPart::MinMaxIndex::store( const Names & column_names, const DataTypes & data_types, const DataPartStorageBuilderPtr & data_part_storage_builder, Checksums & out_checksums) const { if (!initialized) throw Exception( ErrorCodes::LOGICAL_ERROR, "Attempt to store uninitialized MinMax index for part {}. This is a bug.", data_part_storage_builder->getFullPath()); WrittenFiles written_files; for (size_t i = 0; i < column_names.size(); ++i) { String file_name = "minmax_" + escapeForFileName(column_names[i]) + ".idx"; auto serialization = data_types.at(i)->getDefaultSerialization(); auto out = data_part_storage_builder->writeFile(file_name, DBMS_DEFAULT_BUFFER_SIZE); HashingWriteBuffer out_hashing(*out); serialization->serializeBinary(hyperrectangle[i].left, out_hashing); serialization->serializeBinary(hyperrectangle[i].right, out_hashing); out_hashing.next(); out_checksums.files[file_name].file_size = out_hashing.count(); out_checksums.files[file_name].file_hash = out_hashing.getHash(); out->preFinalize(); written_files.emplace_back(std::move(out)); } return written_files; } void IMergeTreeDataPart::MinMaxIndex::update(const Block & block, const Names & column_names) { if (!initialized) hyperrectangle.reserve(column_names.size()); for (size_t i = 0; i < column_names.size(); ++i) { FieldRef min_value; FieldRef max_value; const ColumnWithTypeAndName & column = block.getByName(column_names[i]); if (const auto * column_nullable = typeid_cast(column.column.get())) column_nullable->getExtremesNullLast(min_value, max_value); else column.column->getExtremes(min_value, max_value); if (!initialized) hyperrectangle.emplace_back(min_value, true, max_value, true); else { hyperrectangle[i].left = applyVisitor(FieldVisitorAccurateLess(), hyperrectangle[i].left, min_value) ? hyperrectangle[i].left : min_value; hyperrectangle[i].right = applyVisitor(FieldVisitorAccurateLess(), hyperrectangle[i].right, max_value) ? max_value : hyperrectangle[i].right; } } initialized = true; } void IMergeTreeDataPart::MinMaxIndex::merge(const MinMaxIndex & other) { if (!other.initialized) return; if (!initialized) { hyperrectangle = other.hyperrectangle; initialized = true; } else { for (size_t i = 0; i < hyperrectangle.size(); ++i) { hyperrectangle[i].left = std::min(hyperrectangle[i].left, other.hyperrectangle[i].left); hyperrectangle[i].right = std::max(hyperrectangle[i].right, other.hyperrectangle[i].right); } } } void IMergeTreeDataPart::MinMaxIndex::appendFiles(const MergeTreeData & data, Strings & files) { auto metadata_snapshot = data.getInMemoryMetadataPtr(); const auto & partition_key = metadata_snapshot->getPartitionKey(); auto minmax_column_names = data.getMinMaxColumnsNames(partition_key); size_t minmax_idx_size = minmax_column_names.size(); for (size_t i = 0; i < minmax_idx_size; ++i) { String file_name = "minmax_" + escapeForFileName(minmax_column_names[i]) + ".idx"; files.push_back(file_name); } } static void incrementStateMetric(IMergeTreeDataPart::State state) { switch (state) { case IMergeTreeDataPart::State::Temporary: CurrentMetrics::add(CurrentMetrics::PartsTemporary); return; case IMergeTreeDataPart::State::PreActive: CurrentMetrics::add(CurrentMetrics::PartsPreActive); CurrentMetrics::add(CurrentMetrics::PartsPreCommitted); return; case IMergeTreeDataPart::State::Active: CurrentMetrics::add(CurrentMetrics::PartsActive); CurrentMetrics::add(CurrentMetrics::PartsCommitted); return; case IMergeTreeDataPart::State::Outdated: CurrentMetrics::add(CurrentMetrics::PartsOutdated); return; case IMergeTreeDataPart::State::Deleting: CurrentMetrics::add(CurrentMetrics::PartsDeleting); return; case IMergeTreeDataPart::State::DeleteOnDestroy: CurrentMetrics::add(CurrentMetrics::PartsDeleteOnDestroy); return; } } static void decrementStateMetric(IMergeTreeDataPart::State state) { switch (state) { case IMergeTreeDataPart::State::Temporary: CurrentMetrics::sub(CurrentMetrics::PartsTemporary); return; case IMergeTreeDataPart::State::PreActive: CurrentMetrics::sub(CurrentMetrics::PartsPreActive); CurrentMetrics::sub(CurrentMetrics::PartsPreCommitted); return; case IMergeTreeDataPart::State::Active: CurrentMetrics::sub(CurrentMetrics::PartsActive); CurrentMetrics::sub(CurrentMetrics::PartsCommitted); return; case IMergeTreeDataPart::State::Outdated: CurrentMetrics::sub(CurrentMetrics::PartsOutdated); return; case IMergeTreeDataPart::State::Deleting: CurrentMetrics::sub(CurrentMetrics::PartsDeleting); return; case IMergeTreeDataPart::State::DeleteOnDestroy: CurrentMetrics::sub(CurrentMetrics::PartsDeleteOnDestroy); return; } } static void incrementTypeMetric(MergeTreeDataPartType type) { switch (type.getValue()) { case MergeTreeDataPartType::WIDE: CurrentMetrics::add(CurrentMetrics::PartsWide); return; case MergeTreeDataPartType::COMPACT: CurrentMetrics::add(CurrentMetrics::PartsCompact); return; case MergeTreeDataPartType::IN_MEMORY: CurrentMetrics::add(CurrentMetrics::PartsInMemory); return; case MergeTreeDataPartType::UNKNOWN: return; } } static void decrementTypeMetric(MergeTreeDataPartType type) { switch (type.getValue()) { case MergeTreeDataPartType::WIDE: CurrentMetrics::sub(CurrentMetrics::PartsWide); return; case MergeTreeDataPartType::COMPACT: CurrentMetrics::sub(CurrentMetrics::PartsCompact); return; case MergeTreeDataPartType::IN_MEMORY: CurrentMetrics::sub(CurrentMetrics::PartsInMemory); return; case MergeTreeDataPartType::UNKNOWN: return; } } IMergeTreeDataPart::IMergeTreeDataPart( const MergeTreeData & storage_, const String & name_, const DataPartStoragePtr & data_part_storage_, Type part_type_, const IMergeTreeDataPart * parent_part_) : storage(storage_) , name(name_) , info(MergeTreePartInfo::fromPartName(name_, storage.format_version)) , data_part_storage(parent_part_ ? parent_part_->data_part_storage : data_part_storage_) , index_granularity_info(storage_, part_type_) , part_type(part_type_) , parent_part(parent_part_) , use_metadata_cache(storage.use_metadata_cache) { if (parent_part) state = State::Active; incrementStateMetric(state); incrementTypeMetric(part_type); minmax_idx = std::make_shared(); initializePartMetadataManager(); } IMergeTreeDataPart::IMergeTreeDataPart( const MergeTreeData & storage_, const String & name_, const MergeTreePartInfo & info_, const DataPartStoragePtr & data_part_storage_, Type part_type_, const IMergeTreeDataPart * parent_part_) : storage(storage_) , name(name_) , info(info_) , data_part_storage(parent_part_ ? parent_part_->data_part_storage : data_part_storage_) , index_granularity_info(storage_, part_type_) , part_type(part_type_) , parent_part(parent_part_) , use_metadata_cache(storage.use_metadata_cache) { if (parent_part) state = State::Active; incrementStateMetric(state); incrementTypeMetric(part_type); minmax_idx = std::make_shared(); initializePartMetadataManager(); } IMergeTreeDataPart::~IMergeTreeDataPart() { decrementStateMetric(state); decrementTypeMetric(part_type); } String IMergeTreeDataPart::getNewName(const MergeTreePartInfo & new_part_info) const { if (storage.format_version < MERGE_TREE_DATA_MIN_FORMAT_VERSION_WITH_CUSTOM_PARTITIONING) { /// NOTE: getting min and max dates from the part name (instead of part data) because we want /// the merged part name be determined only by source part names. /// It is simpler this way when the real min and max dates for the block range can change /// (e.g. after an ALTER DELETE command). DayNum min_date; DayNum max_date; MergeTreePartInfo::parseMinMaxDatesFromPartName(name, min_date, max_date); return new_part_info.getPartNameV0(min_date, max_date); } else return new_part_info.getPartName(); } std::optional IMergeTreeDataPart::getColumnPosition(const String & column_name) const { auto it = column_name_to_position.find(column_name); if (it == column_name_to_position.end()) return {}; return it->second; } void IMergeTreeDataPart::setState(IMergeTreeDataPart::State new_state) const { decrementStateMetric(state); state = new_state; incrementStateMetric(state); } IMergeTreeDataPart::State IMergeTreeDataPart::getState() const { return state; } std::pair IMergeTreeDataPart::getMinMaxDate() const { if (storage.minmax_idx_date_column_pos != -1 && minmax_idx->initialized) { const auto & hyperrectangle = minmax_idx->hyperrectangle[storage.minmax_idx_date_column_pos]; return {DayNum(hyperrectangle.left.get()), DayNum(hyperrectangle.right.get())}; } else return {}; } std::pair IMergeTreeDataPart::getMinMaxTime() const { if (storage.minmax_idx_time_column_pos != -1 && minmax_idx->initialized) { const auto & hyperrectangle = minmax_idx->hyperrectangle[storage.minmax_idx_time_column_pos]; /// The case of DateTime if (hyperrectangle.left.getType() == Field::Types::UInt64) { assert(hyperrectangle.right.getType() == Field::Types::UInt64); return {hyperrectangle.left.get(), hyperrectangle.right.get()}; } /// The case of DateTime64 else if (hyperrectangle.left.getType() == Field::Types::Decimal64) { assert(hyperrectangle.right.getType() == Field::Types::Decimal64); auto left = hyperrectangle.left.get>(); auto right = hyperrectangle.right.get>(); assert(left.getScale() == right.getScale()); return { left.getValue() / left.getScaleMultiplier(), right.getValue() / right.getScaleMultiplier() }; } else throw Exception(ErrorCodes::LOGICAL_ERROR, "Part minmax index by time is neither DateTime or DateTime64"); } else return {}; } void IMergeTreeDataPart::setColumns(const NamesAndTypesList & new_columns) { columns = new_columns; column_name_to_position.clear(); column_name_to_position.reserve(new_columns.size()); size_t pos = 0; for (const auto & column : columns) column_name_to_position.emplace(column.name, pos++); } void IMergeTreeDataPart::setSerializationInfos(const SerializationInfoByName & new_infos) { serialization_infos = new_infos; } SerializationPtr IMergeTreeDataPart::getSerialization(const NameAndTypePair & column) const { auto it = serialization_infos.find(column.getNameInStorage()); return it == serialization_infos.end() ? IDataType::getSerialization(column) : IDataType::getSerialization(column, *it->second); } void IMergeTreeDataPart::removeIfNeeded() { if (!is_temp && state != State::DeleteOnDestroy) return; try { auto path = data_part_storage->getFullRelativePath(); if (!data_part_storage->exists()) // path return; if (is_temp) { String file_name = fileName(relative_path); if (file_name.empty()) throw Exception(ErrorCodes::LOGICAL_ERROR, "relative_path {} of part {} is invalid or not set", relative_path, name); if (!startsWith(file_name, "tmp") && !endsWith(file_name, ".tmp_proj")) { LOG_ERROR( storage.log, "~DataPart() should remove part {} but its name doesn't start with \"tmp\" or end with \".tmp_proj\". Too " "suspicious, keeping the part.", path); return; } } if (parent_part) { std::optional keep_shared_data = keepSharedDataInDecoupledStorage(); if (!keep_shared_data.has_value()) return; projectionRemove(parent_part->getFullRelativePath(), *keep_shared_data); } else remove(); if (state == State::DeleteOnDestroy) { LOG_TRACE(storage.log, "Removed part from old location {}", path); } } catch (...) { /// FIXME If part it temporary, then directory will not be removed for 1 day (temporary_directories_lifetime). /// If it's tmp_merge_ or tmp_fetch_, /// then all future attempts to execute part producing operation will fail with "directory already exists". /// Seems like it's especially important for remote disks, because removal may fail due to network issues. tryLogCurrentException(__PRETTY_FUNCTION__); assert(!is_temp); assert(state != State::DeleteOnDestroy); assert(state != State::Temporary); } } UInt64 IMergeTreeDataPart::getIndexSizeInBytes() const { UInt64 res = 0; for (const ColumnPtr & column : index) res += column->byteSize(); return res; } UInt64 IMergeTreeDataPart::getIndexSizeInAllocatedBytes() const { UInt64 res = 0; for (const ColumnPtr & column : index) res += column->allocatedBytes(); return res; } void IMergeTreeDataPart::assertState(const std::initializer_list & affordable_states) const { if (!checkState(affordable_states)) { String states_str; for (auto affordable_state : affordable_states) { states_str += stateString(affordable_state); states_str += ' '; } throw Exception("Unexpected state of part " + getNameWithState() + ". Expected: " + states_str, ErrorCodes::NOT_FOUND_EXPECTED_DATA_PART); } } void IMergeTreeDataPart::assertOnDisk() const { if (!isStoredOnDisk()) throw Exception("Data part '" + name + "' with type '" + getType().toString() + "' is not stored on disk", ErrorCodes::LOGICAL_ERROR); } UInt64 IMergeTreeDataPart::getMarksCount() const { return index_granularity.getMarksCount(); } size_t IMergeTreeDataPart::getFileSizeOrZero(const String & file_name) const { auto checksum = checksums.files.find(file_name); if (checksum == checksums.files.end()) return 0; return checksum->second.file_size; } String IMergeTreeDataPart::getColumnNameWithMinimumCompressedSize(const StorageSnapshotPtr & storage_snapshot) const { auto options = GetColumnsOptions(GetColumnsOptions::AllPhysical).withExtendedObjects().withSubcolumns(); auto storage_columns = storage_snapshot->getColumns(options); MergeTreeData::AlterConversions alter_conversions; if (!parent_part) alter_conversions = storage.getAlterConversionsForPart(shared_from_this()); std::optional minimum_size_column; UInt64 minimum_size = std::numeric_limits::max(); for (const auto & column : storage_columns) { auto column_name = column.name; auto column_type = column.type; if (alter_conversions.isColumnRenamed(column.name)) column_name = alter_conversions.getColumnOldName(column.name); if (!hasColumnFiles(column)) continue; const auto size = getColumnSize(column_name).data_compressed; if (size < minimum_size) { minimum_size = size; minimum_size_column = column_name; } } if (!minimum_size_column) throw Exception("Could not find a column of minimum size in MergeTree, part " + data_part_storage->getFullPath(), ErrorCodes::LOGICAL_ERROR); return *minimum_size_column; } // String IMergeTreeDataPart::getFullPath() const // { // if (relative_path.empty()) // throw Exception("Part relative_path cannot be empty. It's bug.", ErrorCodes::LOGICAL_ERROR); // return fs::path(storage.getFullPathOnDisk(volume->getDisk())) / (parent_part ? parent_part->relative_path : "") / relative_path / ""; // } // String IMergeTreeDataPart::getFullRelativePath() const // { // if (relative_path.empty()) // throw Exception("Part relative_path cannot be empty. It's bug.", ErrorCodes::LOGICAL_ERROR); // return fs::path(storage.relative_data_path) / (parent_part ? parent_part->relative_path : "") / relative_path / ""; // } void IMergeTreeDataPart::loadColumnsChecksumsIndexes(bool require_columns_checksums, bool check_consistency) { assertOnDisk(); /// Memory should not be limited during ATTACH TABLE query. /// This is already true at the server startup but must be also ensured for manual table ATTACH. /// Motivation: memory for index is shared between queries - not belong to the query itself. MemoryTrackerBlockerInThread temporarily_disable_memory_tracker(VariableContext::Global); try { loadUUID(); loadColumns(require_columns_checksums); loadChecksums(require_columns_checksums); loadIndexGranularity(); calculateColumnsAndSecondaryIndicesSizesOnDisk(); loadIndex(); /// Must be called after loadIndexGranularity as it uses the value of `index_granularity` loadRowsCount(); /// Must be called after loadIndexGranularity() as it uses the value of `index_granularity`. loadPartitionAndMinMaxIndex(); if (!parent_part) { loadTTLInfos(); loadProjections(require_columns_checksums, check_consistency); } if (check_consistency) checkConsistency(require_columns_checksums); loadDefaultCompressionCodec(); } catch (...) { // There could be conditions that data part to be loaded is broken, but some of meta infos are already written // into meta data before exception, need to clean them all. metadata_manager->deleteAll(/*include_projection*/ true); metadata_manager->assertAllDeleted(/*include_projection*/ true); throw; } } void IMergeTreeDataPart::appendFilesOfColumnsChecksumsIndexes(Strings & files, bool include_projection) const { if (isStoredOnDisk()) { appendFilesOfUUID(files); appendFilesOfColumns(files); appendFilesOfChecksums(files); appendFilesOfIndexGranularity(files); appendFilesOfIndex(files); appendFilesOfRowsCount(files); appendFilesOfPartitionAndMinMaxIndex(files); appendFilesOfTTLInfos(files); appendFilesOfDefaultCompressionCodec(files); } if (!parent_part && include_projection) { for (const auto & [projection_name, projection_part] : projection_parts) { Strings projection_files; projection_part->appendFilesOfColumnsChecksumsIndexes(projection_files, true); for (const auto & projection_file : projection_files) files.push_back(fs::path(projection_part->name + ".proj") / projection_file); } } } void IMergeTreeDataPart::loadProjections(bool require_columns_checksums, bool check_consistency) { auto metadata_snapshot = storage.getInMemoryMetadataPtr(); for (const auto & projection : metadata_snapshot->projections) { String path = /*getFullRelativePath() + */ projection.name + ".proj"; if (data_part_storage->exists(path)) { auto projection_part_storage = data_part_storage->getProjection(projection.name + ".proj"); auto part = storage.createPart(projection.name, {"all", 0, 0, 0}, projection_part_storage, this); part->loadColumnsChecksumsIndexes(require_columns_checksums, check_consistency); projection_parts.emplace(projection.name, std::move(part)); } } } void IMergeTreeDataPart::loadIndexGranularity() { throw Exception("Method 'loadIndexGranularity' is not implemented for part with type " + getType().toString(), ErrorCodes::NOT_IMPLEMENTED); } /// Currently we don't cache mark files of part, because cache other meta files is enough to speed up loading. void IMergeTreeDataPart::appendFilesOfIndexGranularity(Strings & /* files */) const { } void IMergeTreeDataPart::loadIndex() { /// It can be empty in case of mutations if (!index_granularity.isInitialized()) throw Exception("Index granularity is not loaded before index loading", ErrorCodes::LOGICAL_ERROR); auto metadata_snapshot = storage.getInMemoryMetadataPtr(); if (parent_part) metadata_snapshot = metadata_snapshot->projections.get(name).metadata; const auto & primary_key = metadata_snapshot->getPrimaryKey(); size_t key_size = primary_key.column_names.size(); if (key_size) { MutableColumns loaded_index; loaded_index.resize(key_size); for (size_t i = 0; i < key_size; ++i) { loaded_index[i] = primary_key.data_types[i]->createColumn(); loaded_index[i]->reserve(index_granularity.getMarksCount()); } String index_name = "primary.idx"; String index_path = fs::path(data_part_storage->getFullRelativePath()) / index_name; auto index_file = metadata_manager->read(index_name); size_t marks_count = index_granularity.getMarksCount(); Serializations key_serializations(key_size); for (size_t j = 0; j < key_size; ++j) key_serializations[j] = primary_key.data_types[j]->getDefaultSerialization(); for (size_t i = 0; i < marks_count; ++i) //-V756 for (size_t j = 0; j < key_size; ++j) key_serializations[j]->deserializeBinary(*loaded_index[j], *index_file); for (size_t i = 0; i < key_size; ++i) { loaded_index[i]->protect(); if (loaded_index[i]->size() != marks_count) throw Exception("Cannot read all data from index file " + index_path + "(expected size: " + toString(marks_count) + ", read: " + toString(loaded_index[i]->size()) + ")", ErrorCodes::CANNOT_READ_ALL_DATA); } if (!index_file->eof()) throw Exception("Index file " + index_path + " is unexpectedly long", ErrorCodes::EXPECTED_END_OF_FILE); index.assign(std::make_move_iterator(loaded_index.begin()), std::make_move_iterator(loaded_index.end())); } } void IMergeTreeDataPart::appendFilesOfIndex(Strings & files) const { auto metadata_snapshot = storage.getInMemoryMetadataPtr(); if (parent_part) metadata_snapshot = metadata_snapshot->projections.has(name) ? metadata_snapshot->projections.get(name).metadata : nullptr; if (!metadata_snapshot) return; if (metadata_snapshot->hasPrimaryKey()) files.push_back("primary.idx"); } NameSet IMergeTreeDataPart::getFileNamesWithoutChecksums() const { if (!isStoredOnDisk()) return {}; NameSet result = {"checksums.txt", "columns.txt"}; //String default_codec_path = fs::path(getFullRelativePath()) / DEFAULT_COMPRESSION_CODEC_FILE_NAME; if (data_part_storage->exists(DEFAULT_COMPRESSION_CODEC_FILE_NAME)) result.emplace(DEFAULT_COMPRESSION_CODEC_FILE_NAME); return result; } void IMergeTreeDataPart::loadDefaultCompressionCodec() { /// In memory parts doesn't have any compression if (!isStoredOnDisk()) { default_codec = CompressionCodecFactory::instance().get("NONE", {}); return; } String path = fs::path(data_part_storage->getFullRelativePath()) / DEFAULT_COMPRESSION_CODEC_FILE_NAME; bool exists = metadata_manager->exists(DEFAULT_COMPRESSION_CODEC_FILE_NAME); if (!exists) { default_codec = detectDefaultCompressionCodec(); } else { auto file_buf = metadata_manager->read(DEFAULT_COMPRESSION_CODEC_FILE_NAME); String codec_line; readEscapedStringUntilEOL(codec_line, *file_buf); ReadBufferFromString buf(codec_line); if (!checkString("CODEC", buf)) { LOG_WARNING( storage.log, "Cannot parse default codec for part {} from file {}, content '{}'. Default compression codec will be deduced " "automatically, from data on disk", name, path, codec_line); default_codec = detectDefaultCompressionCodec(); } try { ParserCodec codec_parser; auto codec_ast = parseQuery(codec_parser, codec_line.data() + buf.getPosition(), codec_line.data() + codec_line.length(), "codec parser", 0, DBMS_DEFAULT_MAX_PARSER_DEPTH); default_codec = CompressionCodecFactory::instance().get(codec_ast, {}); } catch (const DB::Exception & ex) { LOG_WARNING(storage.log, "Cannot parse default codec for part {} from file {}, content '{}', error '{}'. Default compression codec will be deduced automatically, from data on disk.", name, path, codec_line, ex.what()); default_codec = detectDefaultCompressionCodec(); } } } void IMergeTreeDataPart::appendFilesOfDefaultCompressionCodec(Strings & files) { files.push_back(DEFAULT_COMPRESSION_CODEC_FILE_NAME); } CompressionCodecPtr IMergeTreeDataPart::detectDefaultCompressionCodec() const { /// In memory parts doesn't have any compression if (!isStoredOnDisk()) return CompressionCodecFactory::instance().get("NONE", {}); auto metadata_snapshot = storage.getInMemoryMetadataPtr(); const auto & storage_columns = metadata_snapshot->getColumns(); CompressionCodecPtr result = nullptr; for (const auto & part_column : columns) { /// It was compressed with default codec and it's not empty auto column_size = getColumnSize(part_column.name); if (column_size.data_compressed != 0 && !storage_columns.hasCompressionCodec(part_column.name)) { String path_to_data_file; getSerialization(part_column)->enumerateStreams([&](const ISerialization::SubstreamPath & substream_path) { if (path_to_data_file.empty()) { String candidate_path = /*fs::path(getFullRelativePath()) */ (ISerialization::getFileNameForStream(part_column, substream_path) + ".bin"); /// We can have existing, but empty .bin files. Example: LowCardinality(Nullable(...)) columns and column_name.dict.null.bin file. if (data_part_storage->exists(candidate_path) && data_part_storage->getFileSize(candidate_path) != 0) path_to_data_file = candidate_path; } }); if (path_to_data_file.empty()) { LOG_WARNING(storage.log, "Part's {} column {} has non zero data compressed size, but all data files don't exist or empty", name, backQuoteIfNeed(part_column.name)); continue; } result = getCompressionCodecForFile(data_part_storage, path_to_data_file); break; } } if (!result) result = CompressionCodecFactory::instance().getDefaultCodec(); return result; } void IMergeTreeDataPart::loadPartitionAndMinMaxIndex() { if (storage.format_version < MERGE_TREE_DATA_MIN_FORMAT_VERSION_WITH_CUSTOM_PARTITIONING && !parent_part) { DayNum min_date; DayNum max_date; MergeTreePartInfo::parseMinMaxDatesFromPartName(name, min_date, max_date); const auto & date_lut = DateLUT::instance(); partition = MergeTreePartition(date_lut.toNumYYYYMM(min_date)); minmax_idx = std::make_shared(min_date, max_date); } else { //String path = getFullRelativePath(); if (!parent_part) partition.load(storage, metadata_manager); if (!isEmpty()) { if (parent_part) // projection parts don't have minmax_idx, and it's always initialized minmax_idx->initialized = true; else minmax_idx->load(storage, metadata_manager); } if (parent_part) return; } auto metadata_snapshot = storage.getInMemoryMetadataPtr(); String calculated_partition_id = partition.getID(metadata_snapshot->getPartitionKey().sample_block); if (calculated_partition_id != info.partition_id) throw Exception( "While loading part " + data_part_storage->getFullPath() + ": calculated partition ID: " + calculated_partition_id + " differs from partition ID in part name: " + info.partition_id, ErrorCodes::CORRUPTED_DATA); } void IMergeTreeDataPart::appendFilesOfPartitionAndMinMaxIndex(Strings & files) const { if (storage.format_version < MERGE_TREE_DATA_MIN_FORMAT_VERSION_WITH_CUSTOM_PARTITIONING && !parent_part) return; if (!parent_part) partition.appendFiles(storage, files); if (!isEmpty()) if (!parent_part) minmax_idx->appendFiles(storage, files); } void IMergeTreeDataPart::loadChecksums(bool require) { //const String path = fs::path(getFullRelativePath()) / "checksums.txt"; bool exists = metadata_manager->exists("checksums.txt"); if (exists) { auto buf = metadata_manager->read("checksums.txt"); if (checksums.read(*buf)) { assertEOF(*buf); bytes_on_disk = checksums.getTotalSizeOnDisk(); } else bytes_on_disk = data_part_storage->calculateTotalSizeOnDisk(); //calculateTotalSizeOnDisk(volume->getDisk(), getFullRelativePath()); } else { if (require) throw Exception(ErrorCodes::NO_FILE_IN_DATA_PART, "No checksums.txt in part {}", name); /// If the checksums file is not present, calculate the checksums and write them to disk. /// Check the data while we are at it. LOG_WARNING(storage.log, "Checksums for part {} not found. Will calculate them from data on disk.", name); checksums = checkDataPart(shared_from_this(), false); data_part_storage->writeChecksums(checksums); bytes_on_disk = checksums.getTotalSizeOnDisk(); } } void IMergeTreeDataPart::appendFilesOfChecksums(Strings & files) { files.push_back("checksums.txt"); } void IMergeTreeDataPart::loadRowsCount() { //String path = fs::path(getFullRelativePath()) / "count.txt"; auto read_rows_count = [&]() { auto buf = metadata_manager->read("count.txt"); readIntText(rows_count, *buf); assertEOF(*buf); }; if (index_granularity.empty()) { rows_count = 0; } else if (storage.format_version >= MERGE_TREE_DATA_MIN_FORMAT_VERSION_WITH_CUSTOM_PARTITIONING || part_type == Type::COMPACT || parent_part) { bool exists = metadata_manager->exists("count.txt"); if (!exists) throw Exception("No count.txt in part " + name, ErrorCodes::NO_FILE_IN_DATA_PART); read_rows_count(); #ifndef NDEBUG /// columns have to be loaded for (const auto & column : getColumns()) { /// Most trivial types if (column.type->isValueRepresentedByNumber() && !column.type->haveSubtypes() && getSerialization(column)->getKind() == ISerialization::Kind::DEFAULT) { auto size = getColumnSize(column.name); if (size.data_uncompressed == 0) continue; size_t rows_in_column = size.data_uncompressed / column.type->getSizeOfValueInMemory(); if (rows_in_column != rows_count) { throw Exception( ErrorCodes::LOGICAL_ERROR, "Column {} has rows count {} according to size in memory " "and size of single value, but data part {} has {} rows", backQuote(column.name), rows_in_column, name, rows_count); } size_t last_possibly_incomplete_mark_rows = index_granularity.getLastNonFinalMarkRows(); /// All this rows have to be written in column size_t index_granularity_without_last_mark = index_granularity.getTotalRows() - last_possibly_incomplete_mark_rows; /// We have more rows in column than in index granularity without last possibly incomplete mark if (rows_in_column < index_granularity_without_last_mark) { throw Exception( ErrorCodes::LOGICAL_ERROR, "Column {} has rows count {} according to size in memory " "and size of single value, but index granularity in part {} without last mark has {} rows, which is more than in column", backQuote(column.name), rows_in_column, name, index_granularity.getTotalRows()); } /// In last mark we actually written less or equal rows than stored in last mark of index granularity if (rows_in_column - index_granularity_without_last_mark > last_possibly_incomplete_mark_rows) { throw Exception( ErrorCodes::LOGICAL_ERROR, "Column {} has rows count {} in last mark according to size in memory " "and size of single value, but index granularity in part {} in last mark has {} rows which is less than in column", backQuote(column.name), rows_in_column - index_granularity_without_last_mark, name, last_possibly_incomplete_mark_rows); } } } #endif } else { if (data_part_storage->exists("count.txt")) { read_rows_count(); return; } for (const NameAndTypePair & column : columns) { ColumnPtr column_col = column.type->createColumn(*getSerialization(column)); if (!column_col->isFixedAndContiguous() || column_col->lowCardinality()) continue; size_t column_size = getColumnSize(column.name).data_uncompressed; if (!column_size) continue; size_t sizeof_field = column_col->sizeOfValueIfFixed(); rows_count = column_size / sizeof_field; if (column_size % sizeof_field != 0) { throw Exception( "Uncompressed size of column " + column.name + "(" + toString(column_size) + ") is not divisible by the size of value (" + toString(sizeof_field) + ")", ErrorCodes::LOGICAL_ERROR); } size_t last_mark_index_granularity = index_granularity.getLastNonFinalMarkRows(); size_t rows_approx = index_granularity.getTotalRows(); if (!(rows_count <= rows_approx && rows_approx < rows_count + last_mark_index_granularity)) throw Exception( "Unexpected size of column " + column.name + ": " + toString(rows_count) + " rows, expected " + toString(rows_approx) + "+-" + toString(last_mark_index_granularity) + " rows according to the index", ErrorCodes::LOGICAL_ERROR); return; } throw Exception("Data part doesn't contain fixed size column (even Date column)", ErrorCodes::LOGICAL_ERROR); } } void IMergeTreeDataPart::appendFilesOfRowsCount(Strings & files) { files.push_back("count.txt"); } void IMergeTreeDataPart::loadTTLInfos() { bool exists = metadata_manager->exists("ttl.txt"); if (exists) { auto in = metadata_manager->read("ttl.txt"); assertString("ttl format version: ", *in); size_t format_version; readText(format_version, *in); assertChar('\n', *in); if (format_version == 1) { try { ttl_infos.read(*in); } catch (const JSONException &) { throw Exception("Error while parsing file ttl.txt in part: " + name, ErrorCodes::BAD_TTL_FILE); } } else throw Exception("Unknown ttl format version: " + toString(format_version), ErrorCodes::BAD_TTL_FILE); } } void IMergeTreeDataPart::appendFilesOfTTLInfos(Strings & files) { files.push_back("ttl.txt"); } void IMergeTreeDataPart::loadUUID() { bool exists = metadata_manager->exists(UUID_FILE_NAME); if (exists) { auto in = metadata_manager->read(UUID_FILE_NAME); readText(uuid, *in); if (uuid == UUIDHelpers::Nil) throw Exception("Unexpected empty " + String(UUID_FILE_NAME) + " in part: " + name, ErrorCodes::LOGICAL_ERROR); } } void IMergeTreeDataPart::appendFilesOfUUID(Strings & files) { files.push_back(UUID_FILE_NAME); } void IMergeTreeDataPart::loadColumns(bool require) { String path = fs::path(data_part_storage->getFullRelativePath()) / "columns.txt"; auto metadata_snapshot = storage.getInMemoryMetadataPtr(); if (parent_part) metadata_snapshot = metadata_snapshot->projections.get(name).metadata; NamesAndTypesList loaded_columns; bool exists = metadata_manager->exists("columns.txt"); if (!exists) { /// We can get list of columns only from columns.txt in compact parts. if (require || part_type == Type::COMPACT) throw Exception("No columns.txt in part " + name + ", expected path " + path + " on drive " + data_part_storage->getName(), ErrorCodes::NO_FILE_IN_DATA_PART); /// If there is no file with a list of columns, write it down. for (const NameAndTypePair & column : metadata_snapshot->getColumns().getAllPhysical()) if (data_part_storage->exists(getFileNameForColumn(column) + ".bin")) loaded_columns.push_back(column); if (columns.empty()) throw Exception("No columns in part " + name, ErrorCodes::NO_FILE_IN_DATA_PART); data_part_storage->writeColumns(loaded_columns); } else { auto in = metadata_manager->read("columns.txt"); loaded_columns.readText(*in); for (const auto & column : loaded_columns) { const auto * aggregate_function_data_type = typeid_cast(column.type.get()); if (aggregate_function_data_type && aggregate_function_data_type->isVersioned()) aggregate_function_data_type->setVersion(0, /* if_empty */true); } } SerializationInfo::Settings settings = { .ratio_of_defaults_for_sparse = storage.getSettings()->ratio_of_defaults_for_sparse_serialization, .choose_kind = false, }; SerializationInfoByName infos(loaded_columns, settings); exists = metadata_manager->exists(SERIALIZATION_FILE_NAME); if (exists) { auto in = metadata_manager->read(SERIALIZATION_FILE_NAME); infos.readJSON(*in); } setColumns(loaded_columns); setSerializationInfos(infos); } void IMergeTreeDataPart::appendFilesOfColumns(Strings & files) { files.push_back("columns.txt"); files.push_back(SERIALIZATION_FILE_NAME); } bool IMergeTreeDataPart::shallParticipateInMerges(const StoragePolicyPtr & storage_policy) const { return data_part_storage->shallParticipateInMerges(*storage_policy); } // UInt64 IMergeTreeDataPart::calculateTotalSizeOnDisk(const DataPartStoragePtr & data_part_storage_, const String & from) // { // if (data_part_storage_->isFile(from)) // return data_part_storage_->getFileSize(from); // std::vector files; // disk_->listFiles(from, files); // UInt64 res = 0; // for (const auto & file : files) // res += calculateTotalSizeOnDisk(data_part_storage_, fs::path(from) / file); // return res; // } void IMergeTreeDataPart::renameTo(const String & new_relative_path, bool remove_new_dir_if_exists) const try { assertOnDisk(); if (parent_part) throw Exception( ErrorCodes::LOGICAL_ERROR, "Move is not supported for projection parts: moving form {} to {}", data_part_storage->getFullPath(), new_relative_path); String from = data_part_storage->getFullRelativePath(); String to = fs::path(storage.relative_data_path) / new_relative_path / ""; data_part_storage->rename(new_relative_path, storage.log, remove_new_dir_if_exists, storage.getSettings()->fsync_part_directory); metadata_manager->move(from, to); storage.lockSharedData(*this); } catch (...) { if (startsWith(new_relative_path, "detached/")) { // Don't throw when the destination is to the detached folder. It might be able to // recover in some cases, such as fetching parts into multi-disks while some of the // disks are broken. tryLogCurrentException(__PRETTY_FUNCTION__); } else throw; } void IMergeTreeDataPart::cleanupOldName(const String & old_part_name) const { if (name == old_part_name) return; storage.unlockSharedData(*this, old_part_name); } std::optional IMergeTreeDataPart::keepSharedDataInDecoupledStorage() const { /// NOTE: It's needed for zero-copy replication if (force_keep_shared_data) return true; return !storage.unlockSharedData(*this); } void IMergeTreeDataPart::initializePartMetadataManager() { #if USE_ROCKSDB if (use_metadata_cache) metadata_manager = std::make_shared(this, storage.getContext()->getMergeTreeMetadataCache()); else metadata_manager = std::make_shared(this); #else metadata_manager = std::make_shared(this); #endif } void IMergeTreeDataPart::remove() const { std::optional keep_shared_data = keepSharedDataInDecoupledStorage(); if (!keep_shared_data.has_value()) return; if (!isStoredOnDisk()) return; if (relative_path.empty()) throw Exception("Part relative_path cannot be empty. This is bug.", ErrorCodes::LOGICAL_ERROR); if (isProjectionPart()) { LOG_WARNING(storage.log, "Projection part {} should be removed by its parent {}.", name, parent_part->name); projectionRemove(parent_part->getFullRelativePath(), *keep_shared_data); return; } metadata_manager->deleteAll(false); metadata_manager->assertAllDeleted(false); /** Atomic directory removal: * - rename directory to temporary name; * - remove it recursive. * * For temporary name we use "delete_tmp_" prefix. * * NOTE: We cannot use "tmp_delete_" prefix, because there is a second thread, * that calls "clearOldTemporaryDirectories" and removes all directories, that begin with "tmp_" and are old enough. * But when we removing data part, it can be old enough. And rename doesn't change mtime. * And a race condition can happen that will lead to "File not found" error here. */ /// NOTE We rename part to delete_tmp_ instead of delete_tmp_ to avoid race condition /// when we try to remove two parts with the same name, but different relative paths, /// for example all_1_2_1 (in Deleting state) and tmp_merge_all_1_2_1 (in Temporary state). fs::path from = fs::path(storage.relative_data_path) / relative_path; fs::path to = fs::path(storage.relative_data_path) / ("delete_tmp_" + relative_path); // TODO directory delete_tmp_ is never removed if server crashes before returning from this function auto disk = volume->getDisk(); if (disk->exists(to)) { LOG_WARNING(storage.log, "Directory {} (to which part must be renamed before removing) already exists. Most likely this is due to unclean restart or race condition. Removing it.", fullPath(disk, to)); try { disk->removeSharedRecursive(fs::path(to) / "", *keep_shared_data); } catch (...) { LOG_ERROR(storage.log, "Cannot recursively remove directory {}. Exception: {}", fullPath(disk, to), getCurrentExceptionMessage(false)); throw; } } try { disk->moveDirectory(from, to); } catch (const fs::filesystem_error & e) { if (e.code() == std::errc::no_such_file_or_directory) { LOG_ERROR(storage.log, "Directory {} (part to remove) doesn't exist or one of nested files has gone. Most likely this is due to manual removing. This should be discouraged. Ignoring.", fullPath(disk, to)); return; } throw; } // Record existing projection directories so we don't remove them twice std::unordered_set projection_directories; for (const auto & [p_name, projection_part] : projection_parts) { projection_part->projectionRemove(to, *keep_shared_data); projection_directories.emplace(p_name + ".proj"); } if (checksums.empty()) { /// If the part is not completely written, we cannot use fast path by listing files. disk->removeSharedRecursive(fs::path(to) / "", *keep_shared_data); } else { try { /// Remove each expected file in directory, then remove directory itself. IDisk::RemoveBatchRequest request; #if !defined(__clang__) # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wunused-variable" #endif for (const auto & [file, _] : checksums.files) { if (projection_directories.find(file) == projection_directories.end()) request.emplace_back(fs::path(to) / file); } #if !defined(__clang__) # pragma GCC diagnostic pop #endif for (const auto & file : {"checksums.txt", "columns.txt"}) request.emplace_back(fs::path(to) / file); request.emplace_back(fs::path(to) / DEFAULT_COMPRESSION_CODEC_FILE_NAME, true); request.emplace_back(fs::path(to) / DELETE_ON_DESTROY_MARKER_FILE_NAME, true); disk->removeSharedFiles(request, *keep_shared_data); disk->removeDirectory(to); } catch (...) { /// Recursive directory removal does many excessive "stat" syscalls under the hood. LOG_ERROR(storage.log, "Cannot quickly remove directory {} by removing files; fallback to recursive removal. Reason: {}", fullPath(disk, to), getCurrentExceptionMessage(false)); disk->removeSharedRecursive(fs::path(to) / "", *keep_shared_data); } } } void IMergeTreeDataPart::projectionRemove(const String & parent_to, bool keep_shared_data) const { metadata_manager->deleteAll(false); metadata_manager->assertAllDeleted(false); String to = fs::path(parent_to) / relative_path; auto disk = volume->getDisk(); if (checksums.empty()) { LOG_ERROR( storage.log, "Cannot quickly remove directory {} by removing files; fallback to recursive removal. Reason: checksums.txt is missing", fullPath(disk, to)); /// If the part is not completely written, we cannot use fast path by listing files. disk->removeSharedRecursive(fs::path(to) / "", keep_shared_data); } else { try { /// Remove each expected file in directory, then remove directory itself. IDisk::RemoveBatchRequest request; #if !defined(__clang__) # pragma GCC diagnostic push # pragma GCC diagnostic ignored "-Wunused-variable" #endif for (const auto & [file, _] : checksums.files) request.emplace_back(fs::path(to) / file); #if !defined(__clang__) # pragma GCC diagnostic pop #endif for (const auto & file : {"checksums.txt", "columns.txt"}) request.emplace_back(fs::path(to) / file); request.emplace_back(fs::path(to) / DEFAULT_COMPRESSION_CODEC_FILE_NAME, true); request.emplace_back(fs::path(to) / DELETE_ON_DESTROY_MARKER_FILE_NAME, true); disk->removeSharedFiles(request, keep_shared_data); disk->removeSharedRecursive(to, keep_shared_data); } catch (...) { /// Recursive directory removal does many excessive "stat" syscalls under the hood. LOG_ERROR(storage.log, "Cannot quickly remove directory {} by removing files; fallback to recursive removal. Reason: {}", fullPath(disk, to), getCurrentExceptionMessage(false)); disk->removeSharedRecursive(fs::path(to) / "", keep_shared_data); } } } String IMergeTreeDataPart::getRelativePathForPrefix(const String & prefix, bool detached) const { String res; /** If you need to detach a part, and directory into which we want to rename it already exists, * we will rename to the directory with the name to which the suffix is added in the form of "_tryN". * This is done only in the case of `to_detached`, because it is assumed that in this case the exact name does not matter. * No more than 10 attempts are made so that there are not too many junk directories left. */ auto full_relative_path = fs::path(storage.relative_data_path); if (detached) full_relative_path /= "detached"; if (detached && parent_part) throw Exception(ErrorCodes::LOGICAL_ERROR, "Cannot detach projection"); else if (parent_part) full_relative_path /= parent_part->relative_path; for (int try_no = 0; try_no < 10; ++try_no) { res = (prefix.empty() ? "" : prefix + "_") + name + (try_no ? "_try" + DB::toString(try_no) : ""); if (!volume->getDisk()->exists(full_relative_path / res)) return res; LOG_WARNING(storage.log, "Directory {} (to detach to) already exists. Will detach to directory with '_tryN' suffix.", res); } return res; } String IMergeTreeDataPart::getRelativePathForDetachedPart(const String & prefix) const { /// Do not allow underscores in the prefix because they are used as separators. assert(prefix.find_first_of('_') == String::npos); assert(prefix.empty() || std::find(DetachedPartInfo::DETACH_REASONS.begin(), DetachedPartInfo::DETACH_REASONS.end(), prefix) != DetachedPartInfo::DETACH_REASONS.end()); return "detached/" + getRelativePathForPrefix(prefix, /* detached */ true); } void IMergeTreeDataPart::renameToDetached(const String & prefix) const { renameTo(getRelativePathForDetachedPart(prefix), true); } void IMergeTreeDataPart::makeCloneInDetached(const String & prefix, const StorageMetadataPtr & /*metadata_snapshot*/) const { String destination_path = fs::path(storage.relative_data_path) / getRelativePathForDetachedPart(prefix); localBackup(volume->getDisk(), getFullRelativePath(), destination_path); volume->getDisk()->removeFileIfExists(fs::path(destination_path) / DELETE_ON_DESTROY_MARKER_FILE_NAME); } void IMergeTreeDataPart::makeCloneOnDisk(const DiskPtr & disk, const String & directory_name) const { assertOnDisk(); if (disk->getName() == volume->getDisk()->getName()) throw Exception("Can not clone data part " + name + " to same disk " + volume->getDisk()->getName(), ErrorCodes::LOGICAL_ERROR); if (directory_name.empty()) throw Exception("Can not clone data part " + name + " to empty directory.", ErrorCodes::LOGICAL_ERROR); String path_to_clone = fs::path(storage.relative_data_path) / directory_name / ""; if (disk->exists(fs::path(path_to_clone) / relative_path)) { LOG_WARNING(storage.log, "Path {} already exists. Will remove it and clone again.", fullPath(disk, path_to_clone + relative_path)); disk->removeRecursive(fs::path(path_to_clone) / relative_path / ""); } disk->createDirectories(path_to_clone); volume->getDisk()->copy(getFullRelativePath(), disk, path_to_clone); volume->getDisk()->removeFileIfExists(fs::path(path_to_clone) / DELETE_ON_DESTROY_MARKER_FILE_NAME); } void IMergeTreeDataPart::checkConsistencyBase() const { String path = getFullRelativePath(); auto metadata_snapshot = storage.getInMemoryMetadataPtr(); if (parent_part) metadata_snapshot = metadata_snapshot->projections.get(name).metadata; else { // No need to check projections here because we already did consistent checking when loading projections if necessary. } const auto & pk = metadata_snapshot->getPrimaryKey(); const auto & partition_key = metadata_snapshot->getPartitionKey(); if (!checksums.empty()) { if (!pk.column_names.empty() && !checksums.files.count("primary.idx")) throw Exception("No checksum for primary.idx", ErrorCodes::NO_FILE_IN_DATA_PART); if (storage.format_version >= MERGE_TREE_DATA_MIN_FORMAT_VERSION_WITH_CUSTOM_PARTITIONING) { if (!checksums.files.count("count.txt")) throw Exception("No checksum for count.txt", ErrorCodes::NO_FILE_IN_DATA_PART); if (metadata_snapshot->hasPartitionKey() && !checksums.files.count("partition.dat")) throw Exception("No checksum for partition.dat", ErrorCodes::NO_FILE_IN_DATA_PART); if (!isEmpty() && !parent_part) { for (const String & col_name : storage.getMinMaxColumnsNames(partition_key)) { if (!checksums.files.count("minmax_" + escapeForFileName(col_name) + ".idx")) throw Exception("No minmax idx file checksum for column " + col_name, ErrorCodes::NO_FILE_IN_DATA_PART); } } } checksums.checkSizes(volume->getDisk(), path); } else { auto check_file_not_empty = [&path](const DiskPtr & disk_, const String & file_path) { UInt64 file_size; if (!disk_->exists(file_path) || (file_size = disk_->getFileSize(file_path)) == 0) throw Exception("Part " + fullPath(disk_, path) + " is broken: " + fullPath(disk_, file_path) + " is empty", ErrorCodes::BAD_SIZE_OF_FILE_IN_DATA_PART); return file_size; }; /// Check that the primary key index is not empty. if (!pk.column_names.empty()) check_file_not_empty(volume->getDisk(), fs::path(path) / "primary.idx"); if (storage.format_version >= MERGE_TREE_DATA_MIN_FORMAT_VERSION_WITH_CUSTOM_PARTITIONING) { check_file_not_empty(volume->getDisk(), fs::path(path) / "count.txt"); if (metadata_snapshot->hasPartitionKey()) check_file_not_empty(volume->getDisk(), fs::path(path) / "partition.dat"); if (!parent_part) { for (const String & col_name : storage.getMinMaxColumnsNames(partition_key)) check_file_not_empty(volume->getDisk(), fs::path(path) / ("minmax_" + escapeForFileName(col_name) + ".idx")); } } } } void IMergeTreeDataPart::checkConsistency(bool /* require_part_metadata */) const { throw Exception("Method 'checkConsistency' is not implemented for part with type " + getType().toString(), ErrorCodes::NOT_IMPLEMENTED); } void IMergeTreeDataPart::calculateColumnsAndSecondaryIndicesSizesOnDisk() { calculateColumnsSizesOnDisk(); calculateSecondaryIndicesSizesOnDisk(); } void IMergeTreeDataPart::calculateColumnsSizesOnDisk() { if (getColumns().empty() || checksums.empty()) throw Exception("Cannot calculate columns sizes when columns or checksums are not initialized", ErrorCodes::LOGICAL_ERROR); calculateEachColumnSizes(columns_sizes, total_columns_size); } void IMergeTreeDataPart::calculateSecondaryIndicesSizesOnDisk() { if (checksums.empty()) throw Exception("Cannot calculate secondary indexes sizes when columns or checksums are not initialized", ErrorCodes::LOGICAL_ERROR); auto secondary_indices_descriptions = storage.getInMemoryMetadataPtr()->secondary_indices; for (auto & index_description : secondary_indices_descriptions) { ColumnSize index_size; auto index_ptr = MergeTreeIndexFactory::instance().get(index_description); auto index_name = index_ptr->getFileName(); auto index_name_escaped = escapeForFileName(index_name); auto index_file_name = index_name_escaped + index_ptr->getSerializedFileExtension(); auto index_marks_file_name = index_name_escaped + index_granularity_info.marks_file_extension; /// If part does not contain index auto bin_checksum = checksums.files.find(index_file_name); if (bin_checksum != checksums.files.end()) { index_size.data_compressed = bin_checksum->second.file_size; index_size.data_uncompressed = bin_checksum->second.uncompressed_size; } auto mrk_checksum = checksums.files.find(index_marks_file_name); if (mrk_checksum != checksums.files.end()) index_size.marks = mrk_checksum->second.file_size; total_secondary_indices_size.add(index_size); secondary_index_sizes[index_description.name] = index_size; } } ColumnSize IMergeTreeDataPart::getColumnSize(const String & column_name) const { /// For some types of parts columns_size maybe not calculated auto it = columns_sizes.find(column_name); if (it != columns_sizes.end()) return it->second; return ColumnSize{}; } IndexSize IMergeTreeDataPart::getSecondaryIndexSize(const String & secondary_index_name) const { auto it = secondary_index_sizes.find(secondary_index_name); if (it != secondary_index_sizes.end()) return it->second; return ColumnSize{}; } void IMergeTreeDataPart::accumulateColumnSizes(ColumnToSize & column_to_size) const { for (const auto & [column_name, size] : columns_sizes) column_to_size[column_name] = size.data_compressed; } bool IMergeTreeDataPart::checkAllTTLCalculated(const StorageMetadataPtr & metadata_snapshot) const { if (!metadata_snapshot->hasAnyTTL()) return false; if (metadata_snapshot->hasRowsTTL()) { if (isEmpty()) /// All rows were finally deleted and we don't store TTL return true; else if (ttl_infos.table_ttl.min == 0) return false; } for (const auto & [column, desc] : metadata_snapshot->getColumnTTLs()) { /// Part has this column, but we don't calculated TTL for it if (!ttl_infos.columns_ttl.count(column) && getColumns().contains(column)) return false; } for (const auto & move_desc : metadata_snapshot->getMoveTTLs()) { /// Move TTL is not calculated if (!ttl_infos.moves_ttl.count(move_desc.result_column)) return false; } for (const auto & group_by_desc : metadata_snapshot->getGroupByTTLs()) { if (!ttl_infos.group_by_ttl.count(group_by_desc.result_column)) return false; } for (const auto & rows_where_desc : metadata_snapshot->getRowsWhereTTLs()) { if (!ttl_infos.rows_where_ttl.count(rows_where_desc.result_column)) return false; } return true; } String IMergeTreeDataPart::getUniqueId() const { auto disk = volume->getDisk(); if (!disk->supportZeroCopyReplication()) throw Exception(fmt::format("Disk {} doesn't support zero-copy replication", disk->getName()), ErrorCodes::LOGICAL_ERROR); return disk->getUniqueId(fs::path(getFullRelativePath()) / FILE_FOR_REFERENCES_CHECK); } String IMergeTreeDataPart::getZeroLevelPartBlockID(std::string_view token) const { if (info.level != 0) throw Exception(ErrorCodes::LOGICAL_ERROR, "Trying to get block id for non zero level part {}", name); SipHash hash; if (token.empty()) { checksums.computeTotalChecksumDataOnly(hash); } else { hash.update(token.data(), token.size()); } union { char bytes[16]; UInt64 words[2]; } hash_value; hash.get128(hash_value.bytes); return info.partition_id + "_" + toString(hash_value.words[0]) + "_" + toString(hash_value.words[1]); } IMergeTreeDataPart::uint128 IMergeTreeDataPart::getActualChecksumByFile(const String & file_path) const { assert(use_metadata_cache); String file_name = std::filesystem::path(file_path).filename(); const auto filenames_without_checksums = getFileNamesWithoutChecksums(); auto it = checksums.files.find(file_name); if (filenames_without_checksums.count(file_name) == 0 && it != checksums.files.end()) { return it->second.file_hash; } if (!volume->getDisk()->exists(file_path)) { return {}; } std::unique_ptr in_file = volume->getDisk()->readFile(file_path); HashingReadBuffer in_hash(*in_file); String value; readStringUntilEOF(value, in_hash); return in_hash.getHash(); } std::unordered_map IMergeTreeDataPart::checkMetadata() const { return metadata_manager->check(); } bool isCompactPart(const MergeTreeDataPartPtr & data_part) { return (data_part && data_part->getType() == MergeTreeDataPartType::COMPACT); } bool isWidePart(const MergeTreeDataPartPtr & data_part) { return (data_part && data_part->getType() == MergeTreeDataPartType::WIDE); } bool isInMemoryPart(const MergeTreeDataPartPtr & data_part) { return (data_part && data_part->getType() == MergeTreeDataPartType::IN_MEMORY); } }