#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace DB { namespace ErrorCodes { extern const int TOO_DEEP_SUBQUERIES; extern const int THERE_IS_NO_COLUMN; extern const int SAMPLING_NOT_SUPPORTED; extern const int ILLEGAL_FINAL; extern const int ILLEGAL_PREWHERE; extern const int TOO_MANY_COLUMNS; extern const int LOGICAL_ERROR; extern const int NOT_IMPLEMENTED; extern const int PARAMETER_OUT_OF_BOUND; extern const int ARGUMENT_OUT_OF_BOUND; extern const int INVALID_LIMIT_EXPRESSION; } namespace { /// Assumes `storage` is set and the table filter is not empty. String generateFilterActions(ExpressionActionsPtr & actions, const StoragePtr & storage, const Context & context, const Names & prerequisite_columns = {}) { const auto & db_name = storage->getDatabaseName(); const auto & table_name = storage->getTableName(); const auto & filter_str = context.getUserProperty(db_name, table_name, "filter"); /// TODO: implement some AST builders for this kind of stuff ASTPtr query_ast = std::make_shared(); auto * select_ast = query_ast->as(); select_ast->setExpression(ASTSelectQuery::Expression::SELECT, std::make_shared()); auto expr_list = select_ast->select(); auto parseExpression = [] (const String & expr) { ParserExpression expr_parser; return parseQuery(expr_parser, expr, 0); }; // The first column is our filter expression. expr_list->children.push_back(parseExpression(filter_str)); /// Keep columns that are required after the filter actions. for (const auto & column_str : prerequisite_columns) expr_list->children.push_back(parseExpression(column_str)); select_ast->setExpression(ASTSelectQuery::Expression::TABLES, std::make_shared()); auto tables = select_ast->tables(); auto tables_elem = std::make_shared(); auto table_expr = std::make_shared(); tables->children.push_back(tables_elem); tables_elem->table_expression = table_expr; tables_elem->children.push_back(table_expr); table_expr->database_and_table_name = createTableIdentifier(db_name, table_name); table_expr->children.push_back(table_expr->database_and_table_name); /// Using separate expression analyzer to prevent any possible alias injection auto syntax_result = SyntaxAnalyzer(context).analyze(query_ast, storage->getColumns().getAllPhysical()); SelectQueryExpressionAnalyzer analyzer(query_ast, syntax_result, context); ExpressionActionsChain new_chain(context); analyzer.appendSelect(new_chain, false); actions = new_chain.getLastActions(); return expr_list->children.at(0)->getColumnName(); } } InterpreterSelectQuery::InterpreterSelectQuery( const ASTPtr & query_ptr_, const Context & context_, const SelectQueryOptions & options_, const Names & required_result_column_names_) : InterpreterSelectQuery(query_ptr_, context_, nullptr, nullptr, options_, required_result_column_names_) { } InterpreterSelectQuery::InterpreterSelectQuery( const ASTPtr & query_ptr_, const Context & context_, const BlockInputStreamPtr & input_, const SelectQueryOptions & options_) : InterpreterSelectQuery(query_ptr_, context_, input_, nullptr, options_.copy().noSubquery()) {} InterpreterSelectQuery::InterpreterSelectQuery( const ASTPtr & query_ptr_, const Context & context_, const StoragePtr & storage_, const SelectQueryOptions & options_) : InterpreterSelectQuery(query_ptr_, context_, nullptr, storage_, options_.copy().noSubquery()) {} InterpreterSelectQuery::~InterpreterSelectQuery() = default; /** There are no limits on the maximum size of the result for the subquery. * Since the result of the query is not the result of the entire query. */ static Context getSubqueryContext(const Context & context) { Context subquery_context = context; Settings subquery_settings = context.getSettings(); subquery_settings.max_result_rows = 0; subquery_settings.max_result_bytes = 0; /// The calculation of extremes does not make sense and is not necessary (if you do it, then the extremes of the subquery can be taken for whole query). subquery_settings.extremes = 0; subquery_context.setSettings(subquery_settings); return subquery_context; } InterpreterSelectQuery::InterpreterSelectQuery( const ASTPtr & query_ptr_, const Context & context_, const BlockInputStreamPtr & input_, const StoragePtr & storage_, const SelectQueryOptions & options_, const Names & required_result_column_names) : options(options_) /// NOTE: the query almost always should be cloned because it will be modified during analysis. , query_ptr(options.modify_inplace ? query_ptr_ : query_ptr_->clone()) , context(context_) , storage(storage_) , input(input_) , log(&Logger::get("InterpreterSelectQuery")) { checkStackSize(); initSettings(); const Settings & settings = context.getSettingsRef(); if (settings.max_subquery_depth && options.subquery_depth > settings.max_subquery_depth) throw Exception("Too deep subqueries. Maximum: " + settings.max_subquery_depth.toString(), ErrorCodes::TOO_DEEP_SUBQUERIES); if (settings.allow_experimental_cross_to_join_conversion) { CrossToInnerJoinVisitor::Data cross_to_inner; CrossToInnerJoinVisitor(cross_to_inner).visit(query_ptr); } if (settings.allow_experimental_multiple_joins_emulation) { JoinToSubqueryTransformVisitor::Data join_to_subs_data{context}; JoinToSubqueryTransformVisitor(join_to_subs_data).visit(query_ptr); } max_streams = settings.max_threads; auto & query = getSelectQuery(); ASTPtr table_expression = extractTableExpression(query, 0); bool is_table_func = false; bool is_subquery = false; if (table_expression) { is_table_func = table_expression->as(); is_subquery = table_expression->as(); } if (input) { /// Read from prepared input. source_header = input->getHeader(); } else if (is_subquery) { /// Read from subquery. interpreter_subquery = std::make_unique( table_expression, getSubqueryContext(context), options.subquery(), required_columns); source_header = interpreter_subquery->getSampleBlock(); } else if (!storage) { if (is_table_func) { /// Read from table function. storage = context.getQueryContext().executeTableFunction(table_expression); } else { String database_name; String table_name; getDatabaseAndTableNames(query, database_name, table_name, context); if (auto view_source = context.getViewSource()) { auto & storage_values = static_cast(*view_source); if (storage_values.getDatabaseName() == database_name && storage_values.getTableName() == table_name) { /// Read from view source. storage = context.getViewSource(); } } if (!storage) { /// Read from table. Even without table expression (implicit SELECT ... FROM system.one). storage = context.getTable(database_name, table_name); } } } if (storage) table_lock = storage->lockStructureForShare(false, context.getCurrentQueryId()); syntax_analyzer_result = SyntaxAnalyzer(context, options).analyze( query_ptr, source_header.getNamesAndTypesList(), required_result_column_names, storage, NamesAndTypesList()); query_analyzer = std::make_unique( query_ptr, syntax_analyzer_result, context, NameSet(required_result_column_names.begin(), required_result_column_names.end()), options.subquery_depth, !options.only_analyze); if (!options.only_analyze) { if (query.sample_size() && (input || !storage || !storage->supportsSampling())) throw Exception("Illegal SAMPLE: table doesn't support sampling", ErrorCodes::SAMPLING_NOT_SUPPORTED); if (query.final() && (input || !storage || !storage->supportsFinal())) throw Exception((!input && storage) ? "Storage " + storage->getName() + " doesn't support FINAL" : "Illegal FINAL", ErrorCodes::ILLEGAL_FINAL); if (query.prewhere() && (input || !storage || !storage->supportsPrewhere())) throw Exception((!input && storage) ? "Storage " + storage->getName() + " doesn't support PREWHERE" : "Illegal PREWHERE", ErrorCodes::ILLEGAL_PREWHERE); /// Save the new temporary tables in the query context for (const auto & it : query_analyzer->getExternalTables()) if (!context.tryGetExternalTable(it.first)) context.addExternalTable(it.first, it.second); } if (!options.only_analyze || options.modify_inplace) { if (syntax_analyzer_result->rewrite_subqueries) { /// remake interpreter_subquery when PredicateOptimizer rewrites subqueries and main table is subquery if (is_subquery) interpreter_subquery = std::make_unique( table_expression, getSubqueryContext(context), options.subquery(), required_columns); } } if (interpreter_subquery) { /// If there is an aggregation in the outer query, WITH TOTALS is ignored in the subquery. if (query_analyzer->hasAggregation()) interpreter_subquery->ignoreWithTotals(); } required_columns = syntax_analyzer_result->requiredSourceColumns(); if (storage) source_header = storage->getSampleBlockForColumns(required_columns); /// Calculate structure of the result. result_header = getSampleBlockImpl(); for (auto & col : result_header) { if (!col.column) col.column = col.type->createColumn(); else if (isColumnConst(*col.column) && !col.column->empty()) col.column = col.column->cloneEmpty(); } } void InterpreterSelectQuery::getDatabaseAndTableNames(const ASTSelectQuery & query, String & database_name, String & table_name, const Context & context) { if (auto db_and_table = getDatabaseAndTable(query, 0)) { table_name = db_and_table->table; database_name = db_and_table->database; /// If the database is not specified - use the current database. if (database_name.empty() && !context.tryGetTable("", table_name)) database_name = context.getCurrentDatabase(); } else /// If the table is not specified - use the table `system.one`. { database_name = "system"; table_name = "one"; } } Block InterpreterSelectQuery::getSampleBlock() { return result_header; } BlockIO InterpreterSelectQuery::execute() { Pipeline pipeline; executeImpl(pipeline, input); executeUnion(pipeline, getSampleBlock()); BlockIO res; res.in = pipeline.firstStream(); return res; } BlockInputStreams InterpreterSelectQuery::executeWithMultipleStreams() { Pipeline pipeline; executeImpl(pipeline, input); unifyStreams(pipeline, getSampleBlock()); return pipeline.streams; } QueryPipeline InterpreterSelectQuery::executeWithProcessors() { QueryPipeline query_pipeline; executeImpl(query_pipeline, input); return query_pipeline; } Block InterpreterSelectQuery::getSampleBlockImpl() { FilterInfoPtr filter_info; /// Need to create sets before analyzeExpressions(). Otherwise some sets for index won't be created. query_analyzer->makeSetsForIndex(getSelectQuery().where()); query_analyzer->makeSetsForIndex(getSelectQuery().prewhere()); auto analysis_result = analyzeExpressions( getSelectQuery(), *query_analyzer, QueryProcessingStage::Enum::FetchColumns, options.to_stage, context, storage, true, filter_info); if (options.to_stage == QueryProcessingStage::Enum::FetchColumns) { auto header = source_header; if (analysis_result.prewhere_info) { analysis_result.prewhere_info->prewhere_actions->execute(header); header = materializeBlock(header); if (analysis_result.prewhere_info->remove_prewhere_column) header.erase(analysis_result.prewhere_info->prewhere_column_name); } return header; } if (options.to_stage == QueryProcessingStage::Enum::WithMergeableState) { if (!analysis_result.need_aggregate) return analysis_result.before_order_and_select->getSampleBlock(); auto header = analysis_result.before_aggregation->getSampleBlock(); Names key_names; AggregateDescriptions aggregates; query_analyzer->getAggregateInfo(key_names, aggregates); Block res; for (auto & key : key_names) res.insert({nullptr, header.getByName(key).type, key}); for (auto & aggregate : aggregates) { size_t arguments_size = aggregate.argument_names.size(); DataTypes argument_types(arguments_size); for (size_t j = 0; j < arguments_size; ++j) argument_types[j] = header.getByName(aggregate.argument_names[j]).type; DataTypePtr type = std::make_shared(aggregate.function, argument_types, aggregate.parameters); res.insert({nullptr, type, aggregate.column_name}); } return res; } return analysis_result.final_projection->getSampleBlock(); } InterpreterSelectQuery::AnalysisResult InterpreterSelectQuery::analyzeExpressions( const ASTSelectQuery & query, SelectQueryExpressionAnalyzer & query_analyzer, QueryProcessingStage::Enum from_stage, QueryProcessingStage::Enum to_stage, const Context & context, const StoragePtr & storage, bool only_types, const FilterInfoPtr & filter_info) { AnalysisResult res; /// Do I need to perform the first part of the pipeline - running on remote servers during distributed processing. res.first_stage = from_stage < QueryProcessingStage::WithMergeableState && to_stage >= QueryProcessingStage::WithMergeableState; /// Do I need to execute the second part of the pipeline - running on the initiating server during distributed processing. res.second_stage = from_stage <= QueryProcessingStage::WithMergeableState && to_stage > QueryProcessingStage::WithMergeableState; /** First we compose a chain of actions and remember the necessary steps from it. * Regardless of from_stage and to_stage, we will compose a complete sequence of actions to perform optimization and * throw out unnecessary columns based on the entire query. In unnecessary parts of the query, we will not execute subqueries. */ bool has_filter = false; bool has_prewhere = false; bool has_where = false; size_t where_step_num; auto finalizeChain = [&](ExpressionActionsChain & chain) { chain.finalize(); if (has_prewhere) { const ExpressionActionsChain::Step & step = chain.steps.at(0); res.prewhere_info->remove_prewhere_column = step.can_remove_required_output.at(0); Names columns_to_remove; for (size_t i = 1; i < step.required_output.size(); ++i) { if (step.can_remove_required_output[i]) columns_to_remove.push_back(step.required_output[i]); } if (!columns_to_remove.empty()) { auto columns = res.prewhere_info->prewhere_actions->getSampleBlock().getNamesAndTypesList(); ExpressionActionsPtr actions = std::make_shared(columns, context); for (const auto & column : columns_to_remove) actions->add(ExpressionAction::removeColumn(column)); res.prewhere_info->remove_columns_actions = std::move(actions); } res.columns_to_remove_after_prewhere = std::move(columns_to_remove); } else if (has_filter) { /// Can't have prewhere and filter set simultaneously res.filter_info->do_remove_column = chain.steps.at(0).can_remove_required_output.at(0); } if (has_where) res.remove_where_filter = chain.steps.at(where_step_num).can_remove_required_output.at(0); has_filter = has_prewhere = has_where = false; chain.clear(); }; { ExpressionActionsChain chain(context); Names additional_required_columns_after_prewhere; if (storage && query.sample_size()) { Names columns_for_sampling = storage->getColumnsRequiredForSampling(); additional_required_columns_after_prewhere.insert(additional_required_columns_after_prewhere.end(), columns_for_sampling.begin(), columns_for_sampling.end()); } if (storage && query.final()) { Names columns_for_final = storage->getColumnsRequiredForFinal(); additional_required_columns_after_prewhere.insert(additional_required_columns_after_prewhere.end(), columns_for_final.begin(), columns_for_final.end()); } if (storage && filter_info) { has_filter = true; /// XXX: aggregated copy-paste from ExpressionAnalyzer::appendSmth() if (chain.steps.empty()) { chain.steps.emplace_back(std::make_shared(NamesAndTypesList(), context)); } ExpressionActionsChain::Step & step = chain.steps.back(); // FIXME: assert(filter_info); res.filter_info = filter_info; step.actions = filter_info->actions; step.required_output.push_back(res.filter_info->column_name); step.can_remove_required_output = {true}; chain.addStep(); } if (query_analyzer.appendPrewhere(chain, !res.first_stage, additional_required_columns_after_prewhere)) { has_prewhere = true; res.prewhere_info = std::make_shared( chain.steps.front().actions, query.prewhere()->getColumnName()); chain.addStep(); } res.need_aggregate = query_analyzer.hasAggregation(); query_analyzer.appendArrayJoin(chain, only_types || !res.first_stage); if (query_analyzer.appendJoin(chain, only_types || !res.first_stage)) { res.before_join = chain.getLastActions(); if (!res.hasJoin()) throw Exception("No expected JOIN", ErrorCodes::LOGICAL_ERROR); chain.addStep(); } if (query_analyzer.appendWhere(chain, only_types || !res.first_stage)) { where_step_num = chain.steps.size() - 1; has_where = res.has_where = true; res.before_where = chain.getLastActions(); chain.addStep(); } if (res.need_aggregate) { query_analyzer.appendGroupBy(chain, only_types || !res.first_stage); query_analyzer.appendAggregateFunctionsArguments(chain, only_types || !res.first_stage); res.before_aggregation = chain.getLastActions(); finalizeChain(chain); if (query_analyzer.appendHaving(chain, only_types || !res.second_stage)) { res.has_having = true; res.before_having = chain.getLastActions(); chain.addStep(); } } /// If there is aggregation, we execute expressions in SELECT and ORDER BY on the initiating server, otherwise on the source servers. query_analyzer.appendSelect(chain, only_types || (res.need_aggregate ? !res.second_stage : !res.first_stage)); res.selected_columns = chain.getLastStep().required_output; res.has_order_by = query_analyzer.appendOrderBy(chain, only_types || (res.need_aggregate ? !res.second_stage : !res.first_stage)); res.before_order_and_select = chain.getLastActions(); chain.addStep(); if (query_analyzer.appendLimitBy(chain, only_types || !res.second_stage)) { res.has_limit_by = true; res.before_limit_by = chain.getLastActions(); chain.addStep(); } query_analyzer.appendProjectResult(chain); res.final_projection = chain.getLastActions(); finalizeChain(chain); } /// Before executing WHERE and HAVING, remove the extra columns from the block (mostly the aggregation keys). if (res.filter_info) res.filter_info->actions->prependProjectInput(); if (res.has_where) res.before_where->prependProjectInput(); if (res.has_having) res.before_having->prependProjectInput(); res.subqueries_for_sets = query_analyzer.getSubqueriesForSets(); /// Check that PREWHERE doesn't contain unusual actions. Unusual actions are that can change number of rows. if (res.prewhere_info) { auto check_actions = [](const ExpressionActionsPtr & actions) { if (actions) for (const auto & action : actions->getActions()) if (action.type == ExpressionAction::Type::JOIN || action.type == ExpressionAction::Type::ARRAY_JOIN) throw Exception("PREWHERE cannot contain ARRAY JOIN or JOIN action", ErrorCodes::ILLEGAL_PREWHERE); }; check_actions(res.prewhere_info->prewhere_actions); check_actions(res.prewhere_info->alias_actions); check_actions(res.prewhere_info->remove_columns_actions); } return res; } static SortDescription getSortDescription(const ASTSelectQuery & query) { SortDescription order_descr; order_descr.reserve(query.orderBy()->children.size()); for (const auto & elem : query.orderBy()->children) { String name = elem->children.front()->getColumnName(); const auto & order_by_elem = elem->as(); std::shared_ptr collator; if (order_by_elem.collation) collator = std::make_shared(order_by_elem.collation->as().value.get()); order_descr.emplace_back(name, order_by_elem.direction, order_by_elem.nulls_direction, collator); } return order_descr; } static UInt64 getLimitUIntValue(const ASTPtr & node, const Context & context) { const auto & [field, type] = evaluateConstantExpression(node, context); if (!isNativeNumber(type)) throw Exception("Illegal type " + type->getName() + " of LIMIT expression, must be numeric type", ErrorCodes::INVALID_LIMIT_EXPRESSION); Field converted = convertFieldToType(field, DataTypeUInt64()); if (converted.isNull()) throw Exception("The value " + applyVisitor(FieldVisitorToString(), field) + " of LIMIT expression is not representable as UInt64", ErrorCodes::INVALID_LIMIT_EXPRESSION); return converted.safeGet(); } static std::pair getLimitLengthAndOffset(const ASTSelectQuery & query, const Context & context) { UInt64 length = 0; UInt64 offset = 0; if (query.limitLength()) { length = getLimitUIntValue(query.limitLength(), context); if (query.limitOffset()) offset = getLimitUIntValue(query.limitOffset(), context); } return {length, offset}; } static UInt64 getLimitForSorting(const ASTSelectQuery & query, const Context & context) { /// Partial sort can be done if there is LIMIT but no DISTINCT or LIMIT BY. if (!query.distinct && !query.limitBy()) { auto [limit_length, limit_offset] = getLimitLengthAndOffset(query, context); return limit_length + limit_offset; } return 0; } static SortingInfoPtr optimizeReadInOrder(const MergeTreeData & merge_tree, const ASTSelectQuery & query, const Context & context, const SyntaxAnalyzerResultPtr & global_syntax_result) { if (!merge_tree.hasSortingKey()) return {}; auto order_descr = getSortDescription(query); SortDescription prefix_order_descr; int read_direction = order_descr.at(0).direction; const auto & sorting_key_columns = merge_tree.getSortingKeyColumns(); size_t prefix_size = std::min(order_descr.size(), sorting_key_columns.size()); for (size_t i = 0; i < prefix_size; ++i) { if (global_syntax_result->array_join_result_to_source.count(order_descr[i].column_name)) break; /// Optimize in case of exact match with order key element /// or in some simple cases when order key element is wrapped into monotonic function. int current_direction = order_descr[i].direction; if (order_descr[i].column_name == sorting_key_columns[i] && current_direction == read_direction) prefix_order_descr.push_back(order_descr[i]); else { auto ast = query.orderBy()->children[i]->children.at(0); auto syntax_result = SyntaxAnalyzer(context).analyze(ast, global_syntax_result->required_source_columns); auto actions = ExpressionAnalyzer(ast, syntax_result, context).getActions(true); const auto & input_columns = actions->getRequiredColumnsWithTypes(); if (input_columns.size() != 1 || input_columns.front().name != sorting_key_columns[i]) break; bool first = true; for (const auto & action : actions->getActions()) { if (action.type != ExpressionAction::APPLY_FUNCTION) continue; if (!first) { current_direction = 0; break; } else first = false; const auto & func = *action.function_base; if (!func.hasInformationAboutMonotonicity()) { current_direction = 0; break; } auto monotonicity = func.getMonotonicityForRange(*input_columns.front().type, {}, {}); if (!monotonicity.is_monotonic) { current_direction = 0; break; } else if (!monotonicity.is_positive) current_direction *= -1; } if (!current_direction || (i > 0 && current_direction != read_direction)) break; if (i == 0) read_direction = current_direction; prefix_order_descr.push_back(order_descr[i]); } } if (prefix_order_descr.empty()) return {}; return std::make_shared(std::move(prefix_order_descr), read_direction); } template void InterpreterSelectQuery::executeImpl(TPipeline & pipeline, const BlockInputStreamPtr & prepared_input) { /** Streams of data. When the query is executed in parallel, we have several data streams. * If there is no GROUP BY, then perform all operations before ORDER BY and LIMIT in parallel, then * if there is an ORDER BY, then glue the streams using UnionBlockInputStream, and then MergeSortingBlockInputStream, * if not, then glue it using UnionBlockInputStream, * then apply LIMIT. * If there is GROUP BY, then we will perform all operations up to GROUP BY, inclusive, in parallel; * a parallel GROUP BY will glue streams into one, * then perform the remaining operations with one resulting stream. */ constexpr bool pipeline_with_processors = std::is_same::value; /// Now we will compose block streams that perform the necessary actions. auto & query = getSelectQuery(); const Settings & settings = context.getSettingsRef(); QueryProcessingStage::Enum from_stage = QueryProcessingStage::FetchColumns; /// PREWHERE optimization /// Turn off, if the table filter is applied. if (storage && !context.hasUserProperty(storage->getDatabaseName(), storage->getTableName(), "filter")) { if (!options.only_analyze) from_stage = storage->getQueryProcessingStage(context); query_analyzer->makeSetsForIndex(query.where()); query_analyzer->makeSetsForIndex(query.prewhere()); auto optimize_prewhere = [&](auto & merge_tree) { SelectQueryInfo current_info; current_info.query = query_ptr; current_info.syntax_analyzer_result = syntax_analyzer_result; current_info.sets = query_analyzer->getPreparedSets(); /// Try transferring some condition from WHERE to PREWHERE if enabled and viable if (settings.optimize_move_to_prewhere && query.where() && !query.prewhere() && !query.final()) MergeTreeWhereOptimizer{current_info, context, merge_tree, syntax_analyzer_result->requiredSourceColumns(), log}; }; if (const MergeTreeData * merge_tree_data = dynamic_cast(storage.get())) optimize_prewhere(*merge_tree_data); } AnalysisResult expressions; FilterInfoPtr filter_info; /// We need proper `source_header` for `NullBlockInputStream` in dry-run. if (storage && context.hasUserProperty(storage->getDatabaseName(), storage->getTableName(), "filter")) { filter_info = std::make_shared(); filter_info->column_name = generateFilterActions(filter_info->actions, storage, context, required_columns); source_header = storage->getSampleBlockForColumns(filter_info->actions->getRequiredColumns()); } SortingInfoPtr sorting_info; if (settings.optimize_read_in_order && storage && query.orderBy() && !query_analyzer->hasAggregation() && !query.final() && !query.join()) { if (const MergeTreeData * merge_tree_data = dynamic_cast(storage.get())) sorting_info = optimizeReadInOrder(*merge_tree_data, query, context, syntax_analyzer_result); } if (options.only_analyze) { if constexpr (pipeline_with_processors) pipeline.init({std::make_shared(source_header)}); else pipeline.streams.emplace_back(std::make_shared(source_header)); expressions = analyzeExpressions( getSelectQuery(), *query_analyzer, QueryProcessingStage::FetchColumns, options.to_stage, context, storage, true, filter_info); if (storage && expressions.filter_info && expressions.prewhere_info) throw Exception("PREWHERE is not supported if the table is filtered by row-level security expression", ErrorCodes::ILLEGAL_PREWHERE); if (expressions.prewhere_info) { if constexpr (pipeline_with_processors) pipeline.addSimpleTransform([&](const Block & header) { return std::make_shared( header, expressions.prewhere_info->prewhere_actions, expressions.prewhere_info->prewhere_column_name, expressions.prewhere_info->remove_prewhere_column); }); else pipeline.streams.back() = std::make_shared( pipeline.streams.back(), expressions.prewhere_info->prewhere_actions, expressions.prewhere_info->prewhere_column_name, expressions.prewhere_info->remove_prewhere_column); } } else { if (prepared_input) { if constexpr (pipeline_with_processors) pipeline.init({std::make_shared(prepared_input)}); else pipeline.streams.push_back(prepared_input); } expressions = analyzeExpressions( getSelectQuery(), *query_analyzer, from_stage, options.to_stage, context, storage, false, filter_info); if (from_stage == QueryProcessingStage::WithMergeableState && options.to_stage == QueryProcessingStage::WithMergeableState) throw Exception("Distributed on Distributed is not supported", ErrorCodes::NOT_IMPLEMENTED); if (storage && expressions.filter_info && expressions.prewhere_info) throw Exception("PREWHERE is not supported if the table is filtered by row-level security expression", ErrorCodes::ILLEGAL_PREWHERE); /** Read the data from Storage. from_stage - to what stage the request was completed in Storage. */ executeFetchColumns(from_stage, pipeline, sorting_info, expressions.prewhere_info, expressions.columns_to_remove_after_prewhere); LOG_TRACE(log, QueryProcessingStage::toString(from_stage) << " -> " << QueryProcessingStage::toString(options.to_stage)); } if (options.to_stage > QueryProcessingStage::FetchColumns) { /// Do I need to aggregate in a separate row rows that have not passed max_rows_to_group_by. bool aggregate_overflow_row = expressions.need_aggregate && query.group_by_with_totals && settings.max_rows_to_group_by && settings.group_by_overflow_mode == OverflowMode::ANY && settings.totals_mode != TotalsMode::AFTER_HAVING_EXCLUSIVE; /// Do I need to immediately finalize the aggregate functions after the aggregation? bool aggregate_final = expressions.need_aggregate && options.to_stage > QueryProcessingStage::WithMergeableState && !query.group_by_with_totals && !query.group_by_with_rollup && !query.group_by_with_cube; if (expressions.first_stage) { if (expressions.filter_info) { if constexpr (pipeline_with_processors) { pipeline.addSimpleTransform([&](const Block & block, QueryPipeline::StreamType stream_type) -> ProcessorPtr { if (stream_type == QueryPipeline::StreamType::Totals) return nullptr; return std::make_shared( block, expressions.filter_info->actions, expressions.filter_info->column_name, expressions.filter_info->do_remove_column); }); } else { pipeline.transform([&](auto & stream) { stream = std::make_shared( stream, expressions.filter_info->actions, expressions.filter_info->column_name, expressions.filter_info->do_remove_column); }); } } if (expressions.hasJoin()) { Block header_before_join; if constexpr (pipeline_with_processors) { header_before_join = pipeline.getHeader(); /// In case joined subquery has totals, and we don't, add default chunk to totals. bool default_totals = false; if (!pipeline.hasTotals()) { pipeline.addDefaultTotals(); default_totals = true; } pipeline.addSimpleTransform([&](const Block & header, QueryPipeline::StreamType type) { bool on_totals = type == QueryPipeline::StreamType::Totals; return std::make_shared(header, expressions.before_join, on_totals, default_totals); }); } else { header_before_join = pipeline.firstStream()->getHeader(); /// Applies to all sources except stream_with_non_joined_data. for (auto & stream : pipeline.streams) stream = std::make_shared(stream, expressions.before_join); } const auto & join = query.join()->table_join->as(); if (isRightOrFull(join.kind)) { auto stream = expressions.before_join->createStreamWithNonJoinedDataIfFullOrRightJoin( header_before_join, settings.max_block_size); if constexpr (pipeline_with_processors) { auto source = std::make_shared(std::move(stream)); pipeline.addDelayedStream(source); } else pipeline.stream_with_non_joined_data = std::move(stream); } } if (expressions.has_where) executeWhere(pipeline, expressions.before_where, expressions.remove_where_filter); if (expressions.need_aggregate) executeAggregation(pipeline, expressions.before_aggregation, aggregate_overflow_row, aggregate_final); else { executeExpression(pipeline, expressions.before_order_and_select); executeDistinct(pipeline, true, expressions.selected_columns); } /** For distributed query processing, * if no GROUP, HAVING set, * but there is an ORDER or LIMIT, * then we will perform the preliminary sorting and LIMIT on the remote server. */ if (!expressions.second_stage && !expressions.need_aggregate && !expressions.has_having) { if (expressions.has_order_by) executeOrder(pipeline, query_info.sorting_info); if (expressions.has_order_by && query.limitLength()) executeDistinct(pipeline, false, expressions.selected_columns); if (expressions.has_limit_by) { executeExpression(pipeline, expressions.before_limit_by); executeLimitBy(pipeline); } if (query.limitLength()) executePreLimit(pipeline); } // If there is no global subqueries, we can run subqueries only when receive them on server. if (!query_analyzer->hasGlobalSubqueries() && !expressions.subqueries_for_sets.empty()) executeSubqueriesInSetsAndJoins(pipeline, expressions.subqueries_for_sets); } if (expressions.second_stage) { bool need_second_distinct_pass = false; bool need_merge_streams = false; if (expressions.need_aggregate) { /// If you need to combine aggregated results from multiple servers if (!expressions.first_stage) executeMergeAggregated(pipeline, aggregate_overflow_row, aggregate_final); if (!aggregate_final) { if (query.group_by_with_totals) { bool final = !query.group_by_with_rollup && !query.group_by_with_cube; executeTotalsAndHaving(pipeline, expressions.has_having, expressions.before_having, aggregate_overflow_row, final); } if (query.group_by_with_rollup) executeRollupOrCube(pipeline, Modificator::ROLLUP); else if (query.group_by_with_cube) executeRollupOrCube(pipeline, Modificator::CUBE); if ((query.group_by_with_rollup || query.group_by_with_cube) && expressions.has_having) { if (query.group_by_with_totals) throw Exception("WITH TOTALS and WITH ROLLUP or CUBE are not supported together in presence of HAVING", ErrorCodes::NOT_IMPLEMENTED); executeHaving(pipeline, expressions.before_having); } } else if (expressions.has_having) executeHaving(pipeline, expressions.before_having); executeExpression(pipeline, expressions.before_order_and_select); executeDistinct(pipeline, true, expressions.selected_columns); need_second_distinct_pass = query.distinct && pipeline.hasMixedStreams(); } else { need_second_distinct_pass = query.distinct && pipeline.hasMixedStreams(); if (query.group_by_with_totals && !aggregate_final) { bool final = !query.group_by_with_rollup && !query.group_by_with_cube; executeTotalsAndHaving(pipeline, expressions.has_having, expressions.before_having, aggregate_overflow_row, final); } if ((query.group_by_with_rollup || query.group_by_with_cube) && !aggregate_final) { if (query.group_by_with_rollup) executeRollupOrCube(pipeline, Modificator::ROLLUP); else if (query.group_by_with_cube) executeRollupOrCube(pipeline, Modificator::CUBE); if (expressions.has_having) { if (query.group_by_with_totals) throw Exception("WITH TOTALS and WITH ROLLUP or CUBE are not supported together in presence of HAVING", ErrorCodes::NOT_IMPLEMENTED); executeHaving(pipeline, expressions.before_having); } } } if (expressions.has_order_by) { /** If there is an ORDER BY for distributed query processing, * but there is no aggregation, then on the remote servers ORDER BY was made * - therefore, we merge the sorted streams from remote servers. */ if (!expressions.first_stage && !expressions.need_aggregate && !(query.group_by_with_totals && !aggregate_final)) executeMergeSorted(pipeline); else /// Otherwise, just sort. executeOrder(pipeline, query_info.sorting_info); } /** Optimization - if there are several sources and there is LIMIT, then first apply the preliminary LIMIT, * limiting the number of rows in each up to `offset + limit`. */ if (query.limitLength() && pipeline.hasMoreThanOneStream() && !query.distinct && !expressions.has_limit_by && !settings.extremes) { executePreLimit(pipeline); } if (need_second_distinct_pass || query.limitLength() || query.limitBy() || pipeline.hasDelayedStream()) { need_merge_streams = true; } if (need_merge_streams) { if constexpr (pipeline_with_processors) pipeline.resize(1); else executeUnion(pipeline, {}); } /** If there was more than one stream, * then DISTINCT needs to be performed once again after merging all streams. */ if (need_second_distinct_pass) executeDistinct(pipeline, false, expressions.selected_columns); if (expressions.has_limit_by) { executeExpression(pipeline, expressions.before_limit_by); executeLimitBy(pipeline); } /** We must do projection after DISTINCT because projection may remove some columns. */ executeProjection(pipeline, expressions.final_projection); /** Extremes are calculated before LIMIT, but after LIMIT BY. This is Ok. */ executeExtremes(pipeline); executeLimit(pipeline); } } if (query_analyzer->hasGlobalSubqueries() && !expressions.subqueries_for_sets.empty()) executeSubqueriesInSetsAndJoins(pipeline, expressions.subqueries_for_sets); } template void InterpreterSelectQuery::executeFetchColumns( QueryProcessingStage::Enum processing_stage, TPipeline & pipeline, const SortingInfoPtr & sorting_info, const PrewhereInfoPtr & prewhere_info, const Names & columns_to_remove_after_prewhere) { constexpr bool pipeline_with_processors = std::is_same::value; auto & query = getSelectQuery(); const Settings & settings = context.getSettingsRef(); /// Actions to calculate ALIAS if required. ExpressionActionsPtr alias_actions; if (storage) { /// Append columns from the table filter to required if (context.hasUserProperty(storage->getDatabaseName(), storage->getTableName(), "filter")) { auto initial_required_columns = required_columns; ExpressionActionsPtr actions; generateFilterActions(actions, storage, context, initial_required_columns); auto required_columns_from_filter = actions->getRequiredColumns(); for (const auto & column : required_columns_from_filter) { if (required_columns.end() == std::find(required_columns.begin(), required_columns.end(), column)) required_columns.push_back(column); } } /// Detect, if ALIAS columns are required for query execution auto alias_columns_required = false; const ColumnsDescription & storage_columns = storage->getColumns(); for (const auto & column_name : required_columns) { auto column_default = storage_columns.getDefault(column_name); if (column_default && column_default->kind == ColumnDefaultKind::Alias) { alias_columns_required = true; break; } } /// There are multiple sources of required columns: /// - raw required columns, /// - columns deduced from ALIAS columns, /// - raw required columns from PREWHERE, /// - columns deduced from ALIAS columns from PREWHERE. /// PREWHERE is a special case, since we need to resolve it and pass directly to `IStorage::read()` /// before any other executions. if (alias_columns_required) { NameSet required_columns_from_prewhere; /// Set of all (including ALIAS) required columns for PREWHERE NameSet required_aliases_from_prewhere; /// Set of ALIAS required columns for PREWHERE if (prewhere_info) { /// Get some columns directly from PREWHERE expression actions auto prewhere_required_columns = prewhere_info->prewhere_actions->getRequiredColumns(); required_columns_from_prewhere.insert(prewhere_required_columns.begin(), prewhere_required_columns.end()); } /// Expression, that contains all raw required columns ASTPtr required_columns_all_expr = std::make_shared(); /// Expression, that contains raw required columns for PREWHERE ASTPtr required_columns_from_prewhere_expr = std::make_shared(); /// Sort out already known required columns between expressions, /// also populate `required_aliases_from_prewhere`. for (const auto & column : required_columns) { ASTPtr column_expr; const auto column_default = storage_columns.getDefault(column); bool is_alias = column_default && column_default->kind == ColumnDefaultKind::Alias; if (is_alias) column_expr = setAlias(column_default->expression->clone(), column); else column_expr = std::make_shared(column); if (required_columns_from_prewhere.count(column)) { required_columns_from_prewhere_expr->children.emplace_back(std::move(column_expr)); if (is_alias) required_aliases_from_prewhere.insert(column); } else required_columns_all_expr->children.emplace_back(std::move(column_expr)); } /// Columns, which we will get after prewhere and filter executions. NamesAndTypesList required_columns_after_prewhere; NameSet required_columns_after_prewhere_set; /// Collect required columns from prewhere expression actions. if (prewhere_info) { NameSet columns_to_remove(columns_to_remove_after_prewhere.begin(), columns_to_remove_after_prewhere.end()); Block prewhere_actions_result = prewhere_info->prewhere_actions->getSampleBlock(); /// Populate required columns with the columns, added by PREWHERE actions and not removed afterwards. /// XXX: looks hacky that we already know which columns after PREWHERE we won't need for sure. for (const auto & column : prewhere_actions_result) { if (prewhere_info->remove_prewhere_column && column.name == prewhere_info->prewhere_column_name) continue; if (columns_to_remove.count(column.name)) continue; required_columns_all_expr->children.emplace_back(std::make_shared(column.name)); required_columns_after_prewhere.emplace_back(column.name, column.type); } required_columns_after_prewhere_set = ext::map(required_columns_after_prewhere, [](const auto & it) { return it.name; }); } auto syntax_result = SyntaxAnalyzer(context).analyze(required_columns_all_expr, required_columns_after_prewhere, {}, storage); alias_actions = ExpressionAnalyzer(required_columns_all_expr, syntax_result, context).getActions(true); /// The set of required columns could be added as a result of adding an action to calculate ALIAS. required_columns = alias_actions->getRequiredColumns(); /// Do not remove prewhere filter if it is a column which is used as alias. if (prewhere_info && prewhere_info->remove_prewhere_column) if (required_columns.end() != std::find(required_columns.begin(), required_columns.end(), prewhere_info->prewhere_column_name)) prewhere_info->remove_prewhere_column = false; /// Remove columns which will be added by prewhere. required_columns.erase(std::remove_if(required_columns.begin(), required_columns.end(), [&](const String & name) { return !!required_columns_after_prewhere_set.count(name); }), required_columns.end()); if (prewhere_info) { /// Don't remove columns which are needed to be aliased. auto new_actions = std::make_shared(prewhere_info->prewhere_actions->getRequiredColumnsWithTypes(), context); for (const auto & action : prewhere_info->prewhere_actions->getActions()) { if (action.type != ExpressionAction::REMOVE_COLUMN || required_columns.end() == std::find(required_columns.begin(), required_columns.end(), action.source_name)) new_actions->add(action); } prewhere_info->prewhere_actions = std::move(new_actions); auto analyzed_result = SyntaxAnalyzer(context).analyze(required_columns_from_prewhere_expr, storage->getColumns().getAllPhysical()); prewhere_info->alias_actions = ExpressionAnalyzer(required_columns_from_prewhere_expr, analyzed_result, context).getActions(true, false); /// Add (physical?) columns required by alias actions. auto required_columns_from_alias = prewhere_info->alias_actions->getRequiredColumns(); Block prewhere_actions_result = prewhere_info->prewhere_actions->getSampleBlock(); for (auto & column : required_columns_from_alias) if (!prewhere_actions_result.has(column)) if (required_columns.end() == std::find(required_columns.begin(), required_columns.end(), column)) required_columns.push_back(column); /// Add physical columns required by prewhere actions. for (const auto & column : required_columns_from_prewhere) if (required_aliases_from_prewhere.count(column) == 0) if (required_columns.end() == std::find(required_columns.begin(), required_columns.end(), column)) required_columns.push_back(column); } } } /// Limitation on the number of columns to read. /// It's not applied in 'only_analyze' mode, because the query could be analyzed without removal of unnecessary columns. if (!options.only_analyze && settings.max_columns_to_read && required_columns.size() > settings.max_columns_to_read) throw Exception("Limit for number of columns to read exceeded. " "Requested: " + toString(required_columns.size()) + ", maximum: " + settings.max_columns_to_read.toString(), ErrorCodes::TOO_MANY_COLUMNS); /** With distributed query processing, almost no computations are done in the threads, * but wait and receive data from remote servers. * If we have 20 remote servers, and max_threads = 8, then it would not be very good * connect and ask only 8 servers at a time. * To simultaneously query more remote servers, * instead of max_threads, max_distributed_connections is used. */ bool is_remote = false; if (storage && storage->isRemote()) { is_remote = true; max_streams = settings.max_distributed_connections; } UInt64 max_block_size = settings.max_block_size; auto [limit_length, limit_offset] = getLimitLengthAndOffset(query, context); /** Optimization - if not specified DISTINCT, WHERE, GROUP, HAVING, ORDER, LIMIT BY but LIMIT is specified, and limit + offset < max_block_size, * then as the block size we will use limit + offset (not to read more from the table than requested), * and also set the number of threads to 1. */ if (!query.distinct && !query.prewhere() && !query.where() && !query.groupBy() && !query.having() && !query.orderBy() && !query.limitBy() && query.limitLength() && !query_analyzer->hasAggregation() && limit_length + limit_offset < max_block_size) { max_block_size = std::max(UInt64(1), limit_length + limit_offset); max_streams = 1; } if (!max_block_size) throw Exception("Setting 'max_block_size' cannot be zero", ErrorCodes::PARAMETER_OUT_OF_BOUND); /// Initialize the initial data streams to which the query transforms are superimposed. Table or subquery or prepared input? if (pipeline.initialized()) { /// Prepared input. } else if (interpreter_subquery) { /// Subquery. /// If we need less number of columns that subquery have - update the interpreter. if (required_columns.size() < source_header.columns()) { ASTPtr subquery = extractTableExpression(query, 0); if (!subquery) throw Exception("Subquery expected", ErrorCodes::LOGICAL_ERROR); interpreter_subquery = std::make_unique( subquery, getSubqueryContext(context), options.copy().subquery().noModify(), required_columns); if (query_analyzer->hasAggregation()) interpreter_subquery->ignoreWithTotals(); } if constexpr (pipeline_with_processors) /// Just use pipeline from subquery. pipeline = interpreter_subquery->executeWithProcessors(); else pipeline.streams = interpreter_subquery->executeWithMultipleStreams(); } else if (storage) { /// Table. if (max_streams == 0) throw Exception("Logical error: zero number of streams requested", ErrorCodes::LOGICAL_ERROR); /// If necessary, we request more sources than the number of threads - to distribute the work evenly over the threads. if (max_streams > 1 && !is_remote) max_streams *= settings.max_streams_to_max_threads_ratio; query_info.query = query_ptr; query_info.syntax_analyzer_result = syntax_analyzer_result; query_info.sets = query_analyzer->getPreparedSets(); query_info.prewhere_info = prewhere_info; query_info.sorting_info = sorting_info; auto streams = storage->read(required_columns, query_info, context, processing_stage, max_block_size, max_streams); if (streams.empty()) { streams = {std::make_shared(storage->getSampleBlockForColumns(required_columns))}; if (query_info.prewhere_info) streams.back() = std::make_shared( streams.back(), prewhere_info->prewhere_actions, prewhere_info->prewhere_column_name, prewhere_info->remove_prewhere_column); } for (auto & stream : streams) stream->addTableLock(table_lock); /// Set the limits and quota for reading data, the speed and time of the query. { IBlockInputStream::LocalLimits limits; limits.mode = IBlockInputStream::LIMITS_TOTAL; limits.size_limits = SizeLimits(settings.max_rows_to_read, settings.max_bytes_to_read, settings.read_overflow_mode); limits.max_execution_time = settings.max_execution_time; limits.timeout_overflow_mode = settings.timeout_overflow_mode; /** Quota and minimal speed restrictions are checked on the initiating server of the request, and not on remote servers, * because the initiating server has a summary of the execution of the request on all servers. * * But limits on data size to read and maximum execution time are reasonable to check both on initiator and * additionally on each remote server, because these limits are checked per block of data processed, * and remote servers may process way more blocks of data than are received by initiator. */ if (options.to_stage == QueryProcessingStage::Complete) { limits.min_execution_speed = settings.min_execution_speed; limits.max_execution_speed = settings.max_execution_speed; limits.min_execution_speed_bytes = settings.min_execution_speed_bytes; limits.max_execution_speed_bytes = settings.max_execution_speed_bytes; limits.timeout_before_checking_execution_speed = settings.timeout_before_checking_execution_speed; } QuotaForIntervals & quota = context.getQuota(); for (auto & stream : streams) { if (!options.ignore_limits) stream->setLimits(limits); if (options.to_stage == QueryProcessingStage::Complete) stream->setQuota(quota); } } if constexpr (pipeline_with_processors) { /// Unify streams. They must have same headers. if (streams.size() > 1) { /// Unify streams in case they have different headers. auto first_header = streams.at(0)->getHeader(); if (first_header.columns() > 1 && first_header.has("_dummy")) first_header.erase("_dummy"); for (size_t i = 0; i < streams.size(); ++i) { auto & stream = streams[i]; auto header = stream->getHeader(); auto mode = ConvertingBlockInputStream::MatchColumnsMode::Name; if (!blocksHaveEqualStructure(first_header, header)) stream = std::make_shared(context, stream, first_header, mode); } } Processors sources; sources.reserve(streams.size()); for (auto & stream : streams) { bool force_add_agg_info = processing_stage == QueryProcessingStage::WithMergeableState; auto source = std::make_shared(stream, force_add_agg_info); if (processing_stage == QueryProcessingStage::Complete) source->addTotalsPort(); sources.emplace_back(std::move(source)); } pipeline.init(std::move(sources)); } else pipeline.streams = std::move(streams); } else throw Exception("Logical error in InterpreterSelectQuery: nowhere to read", ErrorCodes::LOGICAL_ERROR); /// Aliases in table declaration. if (processing_stage == QueryProcessingStage::FetchColumns && alias_actions) { if constexpr (pipeline_with_processors) { pipeline.addSimpleTransform([&](const Block & header) { return std::make_shared(header, alias_actions); }); } else { pipeline.transform([&](auto & stream) { stream = std::make_shared(stream, alias_actions); }); } } } void InterpreterSelectQuery::executeWhere(Pipeline & pipeline, const ExpressionActionsPtr & expression, bool remove_fiter) { pipeline.transform([&](auto & stream) { stream = std::make_shared(stream, expression, getSelectQuery().where()->getColumnName(), remove_fiter); }); } void InterpreterSelectQuery::executeWhere(QueryPipeline & pipeline, const ExpressionActionsPtr & expression, bool remove_fiter) { pipeline.addSimpleTransform([&](const Block & block) { return std::make_shared(block, expression, getSelectQuery().where()->getColumnName(), remove_fiter); }); } void InterpreterSelectQuery::executeAggregation(Pipeline & pipeline, const ExpressionActionsPtr & expression, bool overflow_row, bool final) { pipeline.transform([&](auto & stream) { stream = std::make_shared(stream, expression); }); Names key_names; AggregateDescriptions aggregates; query_analyzer->getAggregateInfo(key_names, aggregates); Block header = pipeline.firstStream()->getHeader(); ColumnNumbers keys; for (const auto & name : key_names) keys.push_back(header.getPositionByName(name)); for (auto & descr : aggregates) if (descr.arguments.empty()) for (const auto & name : descr.argument_names) descr.arguments.push_back(header.getPositionByName(name)); const Settings & settings = context.getSettingsRef(); /** Two-level aggregation is useful in two cases: * 1. Parallel aggregation is done, and the results should be merged in parallel. * 2. An aggregation is done with store of temporary data on the disk, and they need to be merged in a memory efficient way. */ bool allow_to_use_two_level_group_by = pipeline.streams.size() > 1 || settings.max_bytes_before_external_group_by != 0; Aggregator::Params params(header, keys, aggregates, overflow_row, settings.max_rows_to_group_by, settings.group_by_overflow_mode, allow_to_use_two_level_group_by ? settings.group_by_two_level_threshold : SettingUInt64(0), allow_to_use_two_level_group_by ? settings.group_by_two_level_threshold_bytes : SettingUInt64(0), settings.max_bytes_before_external_group_by, settings.empty_result_for_aggregation_by_empty_set, context.getTemporaryPath(), settings.max_threads, settings.min_free_disk_space_for_temporary_data); /// If there are several sources, then we perform parallel aggregation if (pipeline.streams.size() > 1) { pipeline.firstStream() = std::make_shared( pipeline.streams, pipeline.stream_with_non_joined_data, params, final, max_streams, settings.aggregation_memory_efficient_merge_threads ? static_cast(settings.aggregation_memory_efficient_merge_threads) : static_cast(settings.max_threads)); pipeline.stream_with_non_joined_data = nullptr; pipeline.streams.resize(1); } else { BlockInputStreams inputs; if (!pipeline.streams.empty()) inputs.push_back(pipeline.firstStream()); else pipeline.streams.resize(1); if (pipeline.stream_with_non_joined_data) inputs.push_back(pipeline.stream_with_non_joined_data); pipeline.firstStream() = std::make_shared(std::make_shared(inputs), params, final); pipeline.stream_with_non_joined_data = nullptr; } } void InterpreterSelectQuery::executeAggregation(QueryPipeline & pipeline, const ExpressionActionsPtr & expression, bool overflow_row, bool final) { pipeline.addSimpleTransform([&](const Block & header) { return std::make_shared(header, expression); }); Names key_names; AggregateDescriptions aggregates; query_analyzer->getAggregateInfo(key_names, aggregates); Block header_before_aggregation = pipeline.getHeader(); ColumnNumbers keys; for (const auto & name : key_names) keys.push_back(header_before_aggregation.getPositionByName(name)); for (auto & descr : aggregates) if (descr.arguments.empty()) for (const auto & name : descr.argument_names) descr.arguments.push_back(header_before_aggregation.getPositionByName(name)); const Settings & settings = context.getSettingsRef(); /** Two-level aggregation is useful in two cases: * 1. Parallel aggregation is done, and the results should be merged in parallel. * 2. An aggregation is done with store of temporary data on the disk, and they need to be merged in a memory efficient way. */ bool allow_to_use_two_level_group_by = pipeline.getNumMainStreams() > 1 || settings.max_bytes_before_external_group_by != 0; Aggregator::Params params(header_before_aggregation, keys, aggregates, overflow_row, settings.max_rows_to_group_by, settings.group_by_overflow_mode, allow_to_use_two_level_group_by ? settings.group_by_two_level_threshold : SettingUInt64(0), allow_to_use_two_level_group_by ? settings.group_by_two_level_threshold_bytes : SettingUInt64(0), settings.max_bytes_before_external_group_by, settings.empty_result_for_aggregation_by_empty_set, context.getTemporaryPath(), settings.max_threads, settings.min_free_disk_space_for_temporary_data); auto transform_params = std::make_shared(params, final); pipeline.dropTotalsIfHas(); /// If there are several sources, then we perform parallel aggregation if (pipeline.getNumMainStreams() > 1) { pipeline.resize(max_streams); auto many_data = std::make_shared(max_streams); auto merge_threads = settings.aggregation_memory_efficient_merge_threads ? static_cast(settings.aggregation_memory_efficient_merge_threads) : static_cast(settings.max_threads); size_t counter = 0; pipeline.addSimpleTransform([&](const Block & header) { return std::make_shared(header, transform_params, many_data, counter++, max_streams, merge_threads); }); pipeline.resize(1); } else { pipeline.resize(1); pipeline.addSimpleTransform([&](const Block & header) { return std::make_shared(header, transform_params); }); } } void InterpreterSelectQuery::executeMergeAggregated(Pipeline & pipeline, bool overflow_row, bool final) { Names key_names; AggregateDescriptions aggregates; query_analyzer->getAggregateInfo(key_names, aggregates); Block header = pipeline.firstStream()->getHeader(); ColumnNumbers keys; for (const auto & name : key_names) keys.push_back(header.getPositionByName(name)); /** There are two modes of distributed aggregation. * * 1. In different threads read from the remote servers blocks. * Save all the blocks in the RAM. Merge blocks. * If the aggregation is two-level - parallelize to the number of buckets. * * 2. In one thread, read blocks from different servers in order. * RAM stores only one block from each server. * If the aggregation is a two-level aggregation, we consistently merge the blocks of each next level. * * The second option consumes less memory (up to 256 times less) * in the case of two-level aggregation, which is used for large results after GROUP BY, * but it can work more slowly. */ const Settings & settings = context.getSettingsRef(); Aggregator::Params params(header, keys, aggregates, overflow_row, settings.max_threads); if (!settings.distributed_aggregation_memory_efficient) { /// We union several sources into one, parallelizing the work. executeUnion(pipeline, {}); /// Now merge the aggregated blocks pipeline.firstStream() = std::make_shared(pipeline.firstStream(), params, final, settings.max_threads); } else { pipeline.firstStream() = std::make_shared(pipeline.streams, params, final, max_streams, settings.aggregation_memory_efficient_merge_threads ? static_cast(settings.aggregation_memory_efficient_merge_threads) : static_cast(settings.max_threads)); pipeline.streams.resize(1); } } void InterpreterSelectQuery::executeMergeAggregated(QueryPipeline & pipeline, bool overflow_row, bool final) { Names key_names; AggregateDescriptions aggregates; query_analyzer->getAggregateInfo(key_names, aggregates); Block header_before_merge = pipeline.getHeader(); ColumnNumbers keys; for (const auto & name : key_names) keys.push_back(header_before_merge.getPositionByName(name)); /** There are two modes of distributed aggregation. * * 1. In different threads read from the remote servers blocks. * Save all the blocks in the RAM. Merge blocks. * If the aggregation is two-level - parallelize to the number of buckets. * * 2. In one thread, read blocks from different servers in order. * RAM stores only one block from each server. * If the aggregation is a two-level aggregation, we consistently merge the blocks of each next level. * * The second option consumes less memory (up to 256 times less) * in the case of two-level aggregation, which is used for large results after GROUP BY, * but it can work more slowly. */ const Settings & settings = context.getSettingsRef(); Aggregator::Params params(header_before_merge, keys, aggregates, overflow_row, settings.max_threads); auto transform_params = std::make_shared(params, final); if (!settings.distributed_aggregation_memory_efficient) { /// We union several sources into one, parallelizing the work. pipeline.resize(1); /// Now merge the aggregated blocks pipeline.addSimpleTransform([&](const Block & header) { return std::make_shared(header, transform_params, settings.max_threads); }); } else { /// pipeline.resize(max_streams); - Seem we don't need it. auto num_merge_threads = settings.aggregation_memory_efficient_merge_threads ? static_cast(settings.aggregation_memory_efficient_merge_threads) : static_cast(settings.max_threads); auto pipe = createMergingAggregatedMemoryEfficientPipe( pipeline.getHeader(), transform_params, pipeline.getNumStreams(), num_merge_threads); pipeline.addPipe(std::move(pipe)); } } void InterpreterSelectQuery::executeHaving(Pipeline & pipeline, const ExpressionActionsPtr & expression) { pipeline.transform([&](auto & stream) { stream = std::make_shared(stream, expression, getSelectQuery().having()->getColumnName()); }); } void InterpreterSelectQuery::executeHaving(QueryPipeline & pipeline, const ExpressionActionsPtr & expression) { pipeline.addSimpleTransform([&](const Block & header, QueryPipeline::StreamType stream_type) -> ProcessorPtr { if (stream_type == QueryPipeline::StreamType::Totals) return nullptr; /// TODO: do we need to save filter there? return std::make_shared(header, expression, getSelectQuery().having()->getColumnName(), false); }); } void InterpreterSelectQuery::executeTotalsAndHaving(Pipeline & pipeline, bool has_having, const ExpressionActionsPtr & expression, bool overflow_row, bool final) { executeUnion(pipeline, {}); const Settings & settings = context.getSettingsRef(); pipeline.firstStream() = std::make_shared( pipeline.firstStream(), overflow_row, expression, has_having ? getSelectQuery().having()->getColumnName() : "", settings.totals_mode, settings.totals_auto_threshold, final); } void InterpreterSelectQuery::executeTotalsAndHaving(QueryPipeline & pipeline, bool has_having, const ExpressionActionsPtr & expression, bool overflow_row, bool final) { const Settings & settings = context.getSettingsRef(); auto totals_having = std::make_shared( pipeline.getHeader(), overflow_row, expression, has_having ? getSelectQuery().having()->getColumnName() : "", settings.totals_mode, settings.totals_auto_threshold, final); pipeline.addTotalsHavingTransform(std::move(totals_having)); } void InterpreterSelectQuery::executeRollupOrCube(Pipeline & pipeline, Modificator modificator) { executeUnion(pipeline, {}); Names key_names; AggregateDescriptions aggregates; query_analyzer->getAggregateInfo(key_names, aggregates); Block header = pipeline.firstStream()->getHeader(); ColumnNumbers keys; for (const auto & name : key_names) keys.push_back(header.getPositionByName(name)); const Settings & settings = context.getSettingsRef(); Aggregator::Params params(header, keys, aggregates, false, settings.max_rows_to_group_by, settings.group_by_overflow_mode, SettingUInt64(0), SettingUInt64(0), settings.max_bytes_before_external_group_by, settings.empty_result_for_aggregation_by_empty_set, context.getTemporaryPath(), settings.max_threads, settings.min_free_disk_space_for_temporary_data); if (modificator == Modificator::ROLLUP) pipeline.firstStream() = std::make_shared(pipeline.firstStream(), params); else pipeline.firstStream() = std::make_shared(pipeline.firstStream(), params); } void InterpreterSelectQuery::executeRollupOrCube(QueryPipeline & pipeline, Modificator modificator) { pipeline.resize(1); Names key_names; AggregateDescriptions aggregates; query_analyzer->getAggregateInfo(key_names, aggregates); Block header_before_transform = pipeline.getHeader(); ColumnNumbers keys; for (const auto & name : key_names) keys.push_back(header_before_transform.getPositionByName(name)); const Settings & settings = context.getSettingsRef(); Aggregator::Params params(header_before_transform, keys, aggregates, false, settings.max_rows_to_group_by, settings.group_by_overflow_mode, SettingUInt64(0), SettingUInt64(0), settings.max_bytes_before_external_group_by, settings.empty_result_for_aggregation_by_empty_set, context.getTemporaryPath(), settings.max_threads, settings.min_free_disk_space_for_temporary_data); auto transform_params = std::make_shared(params, true); pipeline.addSimpleTransform([&](const Block & header, QueryPipeline::StreamType stream_type) -> ProcessorPtr { if (stream_type == QueryPipeline::StreamType::Totals) return nullptr; if (modificator == Modificator::ROLLUP) return std::make_shared(header, std::move(transform_params)); else return std::make_shared(header, std::move(transform_params)); }); } void InterpreterSelectQuery::executeExpression(Pipeline & pipeline, const ExpressionActionsPtr & expression) { pipeline.transform([&](auto & stream) { stream = std::make_shared(stream, expression); }); } void InterpreterSelectQuery::executeExpression(QueryPipeline & pipeline, const ExpressionActionsPtr & expression) { pipeline.addSimpleTransform([&](const Block & header) -> ProcessorPtr { return std::make_shared(header, expression); }); } void InterpreterSelectQuery::executeOrder(Pipeline & pipeline, SortingInfoPtr sorting_info) { auto & query = getSelectQuery(); SortDescription order_descr = getSortDescription(query); const Settings & settings = context.getSettingsRef(); UInt64 limit = getLimitForSorting(query, context); if (sorting_info) { /* Case of sorting with optimization using sorting key. * We have several threads, each of them reads batch of parts in direct * or reverse order of sorting key using one input stream per part * and then merge them into one sorted stream. * At this stage we merge per-thread streams into one. */ bool need_finish_sorting = (sorting_info->prefix_order_descr.size() < order_descr.size()); if (need_finish_sorting) { pipeline.transform([&](auto & stream) { stream = std::make_shared(stream, order_descr, limit); }); } if (pipeline.hasMoreThanOneStream()) { pipeline.transform([&](auto & stream) { stream = std::make_shared(stream); }); UInt64 limit_for_merging = (need_finish_sorting ? 0 : limit); pipeline.firstStream() = std::make_shared( pipeline.streams, sorting_info->prefix_order_descr, settings.max_block_size, limit_for_merging); pipeline.streams.resize(1); } if (need_finish_sorting) { pipeline.firstStream() = std::make_shared( pipeline.firstStream(), sorting_info->prefix_order_descr, order_descr, settings.max_block_size, limit); } } else { pipeline.transform([&](auto & stream) { auto sorting_stream = std::make_shared(stream, order_descr, limit); /// Limits on sorting IBlockInputStream::LocalLimits limits; limits.mode = IBlockInputStream::LIMITS_TOTAL; limits.size_limits = SizeLimits(settings.max_rows_to_sort, settings.max_bytes_to_sort, settings.sort_overflow_mode); sorting_stream->setLimits(limits); stream = sorting_stream; }); /// If there are several streams, we merge them into one executeUnion(pipeline, {}); /// Merge the sorted blocks. pipeline.firstStream() = std::make_shared( pipeline.firstStream(), order_descr, settings.max_block_size, limit, settings.max_bytes_before_remerge_sort, settings.max_bytes_before_external_sort, context.getTemporaryPath(), settings.min_free_disk_space_for_temporary_data); } } void InterpreterSelectQuery::executeOrder(QueryPipeline & pipeline, SortingInfoPtr /* sorting_info */) { /// TODO: Implement optimization using sorting_info auto & query = getSelectQuery(); SortDescription order_descr = getSortDescription(query); UInt64 limit = getLimitForSorting(query, context); const Settings & settings = context.getSettingsRef(); /// TODO: Limits on sorting // IBlockInputStream::LocalLimits limits; // limits.mode = IBlockInputStream::LIMITS_TOTAL; // limits.size_limits = SizeLimits(settings.max_rows_to_sort, settings.max_bytes_to_sort, settings.sort_overflow_mode); pipeline.addSimpleTransform([&](const Block & header, QueryPipeline::StreamType stream_type) { bool do_count_rows = stream_type == QueryPipeline::StreamType::Main; return std::make_shared(header, order_descr, limit, do_count_rows); }); /// If there are several streams, we merge them into one pipeline.resize(1); /// Merge the sorted blocks. pipeline.addSimpleTransform([&](const Block & header, QueryPipeline::StreamType stream_type) -> ProcessorPtr { if (stream_type == QueryPipeline::StreamType::Totals) return nullptr; return std::make_shared( header, order_descr, settings.max_block_size, limit, settings.max_bytes_before_remerge_sort, settings.max_bytes_before_external_sort, context.getTemporaryPath(), settings.min_free_disk_space_for_temporary_data); }); } void InterpreterSelectQuery::executeMergeSorted(Pipeline & pipeline) { auto & query = getSelectQuery(); SortDescription order_descr = getSortDescription(query); UInt64 limit = getLimitForSorting(query, context); const Settings & settings = context.getSettingsRef(); /// If there are several streams, then we merge them into one if (pipeline.hasMoreThanOneStream()) { unifyStreams(pipeline, pipeline.firstStream()->getHeader()); /** MergingSortedBlockInputStream reads the sources sequentially. * To make the data on the remote servers prepared in parallel, we wrap it in AsynchronousBlockInputStream. */ pipeline.transform([&](auto & stream) { stream = std::make_shared(stream); }); /// Merge the sorted sources into one sorted source. pipeline.firstStream() = std::make_shared(pipeline.streams, order_descr, settings.max_block_size, limit); pipeline.streams.resize(1); } } void InterpreterSelectQuery::executeMergeSorted(QueryPipeline & pipeline) { auto & query = getSelectQuery(); SortDescription order_descr = getSortDescription(query); UInt64 limit = getLimitForSorting(query, context); const Settings & settings = context.getSettingsRef(); /// If there are several streams, then we merge them into one if (pipeline.getNumStreams() > 1) { auto transform = std::make_shared( pipeline.getHeader(), pipeline.getNumStreams(), order_descr, settings.max_block_size, limit); pipeline.addPipe({ std::move(transform) }); } } void InterpreterSelectQuery::executeProjection(Pipeline & pipeline, const ExpressionActionsPtr & expression) { pipeline.transform([&](auto & stream) { stream = std::make_shared(stream, expression); }); } void InterpreterSelectQuery::executeProjection(QueryPipeline & pipeline, const ExpressionActionsPtr & expression) { pipeline.addSimpleTransform([&](const Block & header) -> ProcessorPtr { return std::make_shared(header, expression); }); } void InterpreterSelectQuery::executeDistinct(Pipeline & pipeline, bool before_order, Names columns) { auto & query = getSelectQuery(); if (query.distinct) { const Settings & settings = context.getSettingsRef(); auto [limit_length, limit_offset] = getLimitLengthAndOffset(query, context); UInt64 limit_for_distinct = 0; /// If after this stage of DISTINCT ORDER BY is not executed, then you can get no more than limit_length + limit_offset of different rows. if (!query.orderBy() || !before_order) limit_for_distinct = limit_length + limit_offset; pipeline.transform([&](auto & stream) { SizeLimits limits(settings.max_rows_in_distinct, settings.max_bytes_in_distinct, settings.distinct_overflow_mode); stream = std::make_shared(stream, limits, limit_for_distinct, columns); }); } } void InterpreterSelectQuery::executeDistinct(QueryPipeline & pipeline, bool before_order, Names columns) { auto & query = getSelectQuery(); if (query.distinct) { const Settings & settings = context.getSettingsRef(); auto [limit_length, limit_offset] = getLimitLengthAndOffset(query, context); UInt64 limit_for_distinct = 0; /// If after this stage of DISTINCT ORDER BY is not executed, then you can get no more than limit_length + limit_offset of different rows. if (!query.orderBy() || !before_order) limit_for_distinct = limit_length + limit_offset; SizeLimits limits(settings.max_rows_in_distinct, settings.max_bytes_in_distinct, settings.distinct_overflow_mode); pipeline.addSimpleTransform([&](const Block & header, QueryPipeline::StreamType stream_type) -> ProcessorPtr { if (stream_type == QueryPipeline::StreamType::Totals) return nullptr; return std::make_shared(header, limits, limit_for_distinct, columns); }); } } void InterpreterSelectQuery::executeUnion(Pipeline & pipeline, Block header) { /// If there are still several streams, then we combine them into one if (pipeline.hasMoreThanOneStream()) { if (!header) header = pipeline.firstStream()->getHeader(); unifyStreams(pipeline, std::move(header)); pipeline.firstStream() = std::make_shared(pipeline.streams, pipeline.stream_with_non_joined_data, max_streams); pipeline.stream_with_non_joined_data = nullptr; pipeline.streams.resize(1); pipeline.union_stream = true; } else if (pipeline.stream_with_non_joined_data) { pipeline.streams.push_back(pipeline.stream_with_non_joined_data); pipeline.stream_with_non_joined_data = nullptr; } } /// Preliminary LIMIT - is used in every source, if there are several sources, before they are combined. void InterpreterSelectQuery::executePreLimit(Pipeline & pipeline) { auto & query = getSelectQuery(); /// If there is LIMIT if (query.limitLength()) { auto [limit_length, limit_offset] = getLimitLengthAndOffset(query, context); pipeline.transform([&, limit = limit_length + limit_offset](auto & stream) { stream = std::make_shared(stream, limit, 0, false); }); } } /// Preliminary LIMIT - is used in every source, if there are several sources, before they are combined. void InterpreterSelectQuery::executePreLimit(QueryPipeline & pipeline) { auto & query = getSelectQuery(); /// If there is LIMIT if (query.limitLength()) { auto [limit_length, limit_offset] = getLimitLengthAndOffset(query, context); pipeline.addSimpleTransform([&, limit = limit_length + limit_offset](const Block & header, QueryPipeline::StreamType stream_type) -> ProcessorPtr { if (stream_type == QueryPipeline::StreamType::Totals) return nullptr; return std::make_shared(header, limit, 0); }); } } void InterpreterSelectQuery::executeLimitBy(Pipeline & pipeline) { auto & query = getSelectQuery(); if (!query.limitByLength() || !query.limitBy()) return; Names columns; for (const auto & elem : query.limitBy()->children) columns.emplace_back(elem->getColumnName()); UInt64 length = getLimitUIntValue(query.limitByLength(), context); UInt64 offset = (query.limitByOffset() ? getLimitUIntValue(query.limitByOffset(), context) : 0); pipeline.transform([&](auto & stream) { stream = std::make_shared(stream, length, offset, columns); }); } void InterpreterSelectQuery::executeLimitBy(QueryPipeline & pipeline) { auto & query = getSelectQuery(); if (!query.limitByLength() || !query.limitBy()) return; Names columns; for (const auto & elem : query.limitBy()->children) columns.emplace_back(elem->getColumnName()); UInt64 length = getLimitUIntValue(query.limitByLength(), context); UInt64 offset = (query.limitByOffset() ? getLimitUIntValue(query.limitByOffset(), context) : 0); pipeline.addSimpleTransform([&](const Block & header, QueryPipeline::StreamType stream_type) -> ProcessorPtr { if (stream_type == QueryPipeline::StreamType::Totals) return nullptr; return std::make_shared(header, length, offset, columns); }); } // TODO: move to anonymous namespace bool hasWithTotalsInAnySubqueryInFromClause(const ASTSelectQuery & query) { if (query.group_by_with_totals) return true; /** NOTE You can also check that the table in the subquery is distributed, and that it only looks at one shard. * In other cases, totals will be computed on the initiating server of the query, and it is not necessary to read the data to the end. */ if (auto query_table = extractTableExpression(query, 0)) { if (const auto * ast_union = query_table->as()) { for (const auto & elem : ast_union->list_of_selects->children) if (hasWithTotalsInAnySubqueryInFromClause(elem->as())) return true; } } return false; } void InterpreterSelectQuery::executeLimit(Pipeline & pipeline) { auto & query = getSelectQuery(); /// If there is LIMIT if (query.limitLength()) { /** Rare case: * if there is no WITH TOTALS and there is a subquery in FROM, and there is WITH TOTALS on one of the levels, * then when using LIMIT, you should read the data to the end, rather than cancel the query earlier, * because if you cancel the query, we will not get `totals` data from the remote server. * * Another case: * if there is WITH TOTALS and there is no ORDER BY, then read the data to the end, * otherwise TOTALS is counted according to incomplete data. */ bool always_read_till_end = false; if (query.group_by_with_totals && !query.orderBy()) always_read_till_end = true; if (!query.group_by_with_totals && hasWithTotalsInAnySubqueryInFromClause(query)) always_read_till_end = true; UInt64 limit_length; UInt64 limit_offset; std::tie(limit_length, limit_offset) = getLimitLengthAndOffset(query, context); pipeline.transform([&](auto & stream) { stream = std::make_shared(stream, limit_length, limit_offset, always_read_till_end); }); } } void InterpreterSelectQuery::executeLimit(QueryPipeline & pipeline) { auto & query = getSelectQuery(); /// If there is LIMIT if (query.limitLength()) { /** Rare case: * if there is no WITH TOTALS and there is a subquery in FROM, and there is WITH TOTALS on one of the levels, * then when using LIMIT, you should read the data to the end, rather than cancel the query earlier, * because if you cancel the query, we will not get `totals` data from the remote server. * * Another case: * if there is WITH TOTALS and there is no ORDER BY, then read the data to the end, * otherwise TOTALS is counted according to incomplete data. */ bool always_read_till_end = false; if (query.group_by_with_totals && !query.orderBy()) always_read_till_end = true; if (!query.group_by_with_totals && hasWithTotalsInAnySubqueryInFromClause(query)) always_read_till_end = true; UInt64 limit_length; UInt64 limit_offset; std::tie(limit_length, limit_offset) = getLimitLengthAndOffset(query, context); pipeline.addSimpleTransform([&](const Block & header, QueryPipeline::StreamType stream_type) -> ProcessorPtr { if (stream_type != QueryPipeline::StreamType::Main) return nullptr; return std::make_shared( header, limit_length, limit_offset, always_read_till_end); }); } } void InterpreterSelectQuery::executeExtremes(Pipeline & pipeline) { if (!context.getSettingsRef().extremes) return; pipeline.transform([&](auto & stream) { stream->enableExtremes(); }); } void InterpreterSelectQuery::executeExtremes(QueryPipeline & pipeline) { if (!context.getSettingsRef().extremes) return; auto transform = std::make_shared(pipeline.getHeader()); pipeline.addExtremesTransform(std::move(transform)); } void InterpreterSelectQuery::executeSubqueriesInSetsAndJoins(Pipeline & pipeline, SubqueriesForSets & subqueries_for_sets) { executeUnion(pipeline, {}); pipeline.firstStream() = std::make_shared( pipeline.firstStream(), subqueries_for_sets, context); } void InterpreterSelectQuery::executeSubqueriesInSetsAndJoins(QueryPipeline & pipeline, SubqueriesForSets & subqueries_for_sets) { const Settings & settings = context.getSettingsRef(); auto creating_sets = std::make_shared( pipeline.getHeader(), subqueries_for_sets, SizeLimits(settings.max_rows_to_transfer, settings.max_bytes_to_transfer, settings.transfer_overflow_mode), context); pipeline.addCreatingSetsTransform(std::move(creating_sets)); } void InterpreterSelectQuery::unifyStreams(Pipeline & pipeline, Block header) { /// Unify streams in case they have different headers. /// TODO: remove previos addition of _dummy column. if (header.columns() > 1 && header.has("_dummy")) header.erase("_dummy"); for (size_t i = 0; i < pipeline.streams.size(); ++i) { auto & stream = pipeline.streams[i]; auto stream_header = stream->getHeader(); auto mode = ConvertingBlockInputStream::MatchColumnsMode::Name; if (!blocksHaveEqualStructure(header, stream_header)) stream = std::make_shared(context, stream, header, mode); } } void InterpreterSelectQuery::ignoreWithTotals() { getSelectQuery().group_by_with_totals = false; } void InterpreterSelectQuery::initSettings() { auto & query = getSelectQuery(); if (query.settings()) InterpreterSetQuery(query.settings(), context).executeForCurrentContext(); } }