#pragma once #include #include #include #include #include #include namespace DB { namespace ErrorCodes { extern const int ILLEGAL_TYPE_OF_ARGUMENT; extern const int NOT_IMPLEMENTED; } struct ExpressionAction; /** Interface for normal functions. * Normal functions are functions that do not change the number of rows in the table, * and the result of which for each row does not depend on other rows. * * A function can take an arbitrary number of arguments; returns exactly one value. * The type of the result depends on the type and number of arguments. * * The function is dispatched for the whole block. This allows you to perform all kinds of checks rarely, * and do the main job as an efficient loop. * * The function is applied to one or more columns of the block, and writes its result, * adding a new column to the block. The function does not modify its arguments. */ class IFunction { public: /** The successor of IFunction must implement: * - getName * - either getReturnType, or getReturnTypeAndPrerequisites * - one of the overloads of `execute`. */ /// Get the main function name. virtual String getName() const = 0; /// Override and return true if function could take different number of arguments. virtual bool isVariadic() const { return false; } /// For non-variadic functions, return number of arguments; otherwise return zero (that should be ignored). virtual size_t getNumberOfArguments() const = 0; /// Throw if number of arguments is incorrect. Default implementation will check only in non-variadic case. /// It is called inside getReturnType. virtual void checkNumberOfArguments(size_t number_of_arguments) const; /** Should we evaluate this function while constant folding, if arguments are constants? * Usually this is true. Notable counterexample is function 'sleep'. * If we will call it during query analysis, we will sleep extra amount of time. */ virtual bool isSuitableForConstantFolding() const { return true; } /** Function is called "injective" if it returns different result for different values of arguments. * Example: hex, negate, tuple... * * Function could be injective with some arguments fixed to some constant values. * Examples: * plus(const, x); * multiply(const, x) where x is an integer and constant is not divisable by two; * concat(x, 'const'); * concat(x, 'const', y) where const contain at least one non-numeric character; * concat with FixedString * dictGet... functions takes name of dictionary as its argument, * and some dictionaries could be explicitly defined as injective. * * It could be used, for example, to remove useless function applications from GROUP BY. * * Sometimes, function is not really injective, but considered as injective, for purpose of query optimization. * For example, toString function is not injective for Float64 data type, * as it returns 'nan' for many different representation of NaNs. * But we assume, that it is injective. This could be documented as implementation-specific behaviour. * * sample_block should contain data types of arguments and values of constants, if relevant. */ virtual bool isInjective(const Block & /*sample_block*/) { return false; } /** Function is called "deterministic", if it returns same result for same values of arguments. * Most of functions are deterministic. Notable counterexample is rand(). * Sometimes, functions are "deterministic" in scope of single query * (even for distributed query), but not deterministic it general. * Example: now(). Another example: functions that work with periodically updated dictionaries. */ virtual bool isDeterministicInScopeOfQuery() { return true; } /// Get the result type by argument type. If the function does not apply to these arguments, throw an exception. /// Overloading for those who do not need prerequisites and values of constant arguments. Not called from outside. DataTypePtr getReturnType(const DataTypes & arguments) const; virtual DataTypePtr getReturnTypeImpl(const DataTypes & /*arguments*/) const { throw Exception("getReturnType is not implemented for " + getName(), ErrorCodes::NOT_IMPLEMENTED); } /** Get the result type by argument types and constant argument values. * If the function does not apply to these arguments, throw an exception. * You can also return a description of the additional columns that are required to perform the function. * For non-constant columns `arguments[i].column = nullptr`. * Meaningful element types in out_prerequisites: APPLY_FUNCTION, ADD_COLUMN. */ void getReturnTypeAndPrerequisites( const ColumnsWithTypeAndName & arguments, DataTypePtr & out_return_type, std::vector & out_prerequisites); virtual void getReturnTypeAndPrerequisitesImpl( const ColumnsWithTypeAndName & arguments, DataTypePtr & out_return_type, std::vector & /*out_prerequisites*/) { DataTypes types(arguments.size()); for (size_t i = 0; i < arguments.size(); ++i) types[i] = arguments[i].type; out_return_type = getReturnTypeImpl(types); } /// For higher-order functions (functions, that have lambda expression as at least one argument). /// You pass data types with empty DataTypeExpression for lambda arguments. /// This function will replace it with DataTypeExpression containing actual types. void getLambdaArgumentTypes(DataTypes & arguments) const; virtual void getLambdaArgumentTypesImpl(DataTypes & /*arguments*/) const { throw Exception("Function " + getName() + " can't have lambda-expressions as arguments", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT); } /// Execute the function on the block. Note: can be called simultaneously from several threads, for one object. /// Overloading for those who do not need `prerequisites`. Not called from outside. void execute(Block & block, const ColumnNumbers & arguments, size_t result); /// Execute the function above the block. Note: can be called simultaneously from several threads, for one object. /// `prerequisites` go in the same order as `out_prerequisites` obtained from getReturnTypeAndPrerequisites. void execute(Block & block, const ColumnNumbers & arguments, const ColumnNumbers & prerequisites, size_t result); virtual void executeImpl(Block & /*block*/, const ColumnNumbers & /*arguments*/, size_t /*result*/) { throw Exception("executeImpl is not implemented for " + getName(), ErrorCodes::NOT_IMPLEMENTED); } virtual void executeImpl(Block & block, const ColumnNumbers & arguments, const ColumnNumbers & /*prerequisites*/, size_t result) { executeImpl(block, arguments, result); } /** Default implementation in presense of Nullable arguments or NULL constants as arguments is the following: * if some of arguments are NULL constants then return NULL constant, * if some of arguments are Nullable, then execute function as usual for block, * where Nullable columns are substituted with nested columns (they have arbitary values in rows corresponding to NULL value) * and wrap result in Nullable column where NULLs are in all rows where any of arguments are NULL. */ virtual bool useDefaultImplementationForNulls() const { return true; } /** If the function have non-zero number of arguments, * and if all arguments are constant, that we could automatically provide default implementation: * arguments are converted to ordinary columns with single value, then function is executed as usual, * and then the result is converted to constant column. */ virtual bool useDefaultImplementationForConstants() const { return false; } /** Some arguments could remain constant during this implementation. */ virtual ColumnNumbers getArgumentsThatAreAlwaysConstant() const { return {}; } /** Lets you know if the function is monotonic in a range of values. * This is used to work with the index in a sorted chunk of data. * And allows to use the index not only when it is written, for example `date >= const`, but also, for example, `toMonth(date) >= 11`. * All this is considered only for functions of one argument. */ virtual bool hasInformationAboutMonotonicity() const { return false; } /// The property of monotonicity for a certain range. struct Monotonicity { bool is_monotonic = false; /// Is the function monotonous (nondecreasing or nonincreasing). bool is_positive = true; /// true if the function is nondecreasing, false, if notincreasing. If is_monotonic = false, then it does not matter. bool is_always_monotonic = false; /// Is true if function is monotonic on the whole input range I Monotonicity(bool is_monotonic_ = false, bool is_positive_ = true, bool is_always_monotonic_ = false) : is_monotonic(is_monotonic_), is_positive(is_positive_), is_always_monotonic(is_always_monotonic_) {} }; /** Get information about monotonicity on a range of values. Call only if hasInformationAboutMonotonicity. * NULL can be passed as one of the arguments. This means that the corresponding range is unlimited on the left or on the right. */ virtual Monotonicity getMonotonicityForRange(const IDataType & /*type*/, const Field & /*left*/, const Field & /*right*/) const { throw Exception("Function " + getName() + " has no information about its monotonicity.", ErrorCodes::NOT_IMPLEMENTED); } virtual ~IFunction() {} }; using FunctionPtr = std::shared_ptr; }