#pragma once #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #if !defined(ARCADIA_BUILD) # include "config_core.h" #endif namespace DB { namespace ErrorCodes { extern const int LOGICAL_ERROR; } class Context; class TableJoin; class IJoin; using JoinPtr = std::shared_ptr; class IExecutableFunction; using ExecutableFunctionPtr = std::shared_ptr; class IFunctionBase; using FunctionBasePtr = std::shared_ptr; class IFunctionOverloadResolver; using FunctionOverloadResolverPtr = std::shared_ptr; class IDataType; using DataTypePtr = std::shared_ptr; class ExpressionActions; class CompiledExpressionCache; class ArrayJoinAction; using ArrayJoinActionPtr = std::shared_ptr; class ExpressionActions; using ExpressionActionsPtr = std::shared_ptr; class ActionsDAG; using ActionsDAGPtr = std::shared_ptr; /// Directed acyclic graph of expressions. /// This is an intermediate representation of actions which is usually built from expression list AST. /// Node of DAG describe calculation of a single column with known type, name, and constant value (if applicable). /// /// DAG representation is useful in case we need to know explicit dependencies between actions. /// It is helpful when it is needed to optimize actions, remove unused expressions, compile subexpressions, /// split or merge parts of graph, calculate expressions on partial input. /// /// Built DAG is used by ExpressionActions, which calculates expressions on block. class ActionsDAG { public: enum class ActionType { /// Column which must be in input. INPUT, /// Constant column with known value. COLUMN, /// Another one name for column. ALIAS, /// Function arrayJoin. Specially separated because it changes the number of rows. ARRAY_JOIN, FUNCTION, }; struct Node { std::vector children; ActionType type; std::string result_name; DataTypePtr result_type; FunctionOverloadResolverPtr function_builder; /// Can be used after action was added to ExpressionActions if we want to get function signature or properties like monotonicity. FunctionBasePtr function_base; /// Prepared function which is used in function execution. ExecutableFunctionPtr function; /// If function is a compiled statement. bool is_function_compiled = false; /// For COLUMN node and propagated constants. ColumnPtr column; /// Some functions like `ignore()` always return constant but can't be replaced by constant it. /// We calculate such constants in order to avoid unnecessary materialization, but prohibit it's folding. bool allow_constant_folding = true; }; /// Index is a list of nodes + hash table: name -> list_elem. /// List is ordered, may contain nodes with same names, or one node several times. class Index { private: std::list list; /// Map key is a string_view to Node::result_name for node from value. /// Map always point to existing node, so key always valid (nodes live longer then index). std::unordered_map::iterator> map; public: auto size() const { return list.size(); } bool contains(std::string_view key) const { return map.count(key) != 0; } std::list::iterator begin() { return list.begin(); } std::list::iterator end() { return list.end(); } std::list::const_iterator begin() const { return list.begin(); } std::list::const_iterator end() const { return list.end(); } std::list::const_iterator find(std::string_view key) const { auto it = map.find(key); if (it == map.end()) return list.end(); return it->second; } /// Insert method doesn't check if map already have node with the same name. /// If node with the same name exists, it is removed from map, but not list. /// It is expected and used for project(), when result may have several columns with the same name. void insert(Node * node) { map[node->result_name] = list.emplace(list.end(), node); } /// If node with same name exists in index, replace it. Otherwise insert new node to index. void replace(Node * node) { if (auto handle = map.extract(node->result_name)) { handle.key() = node->result_name; /// Change string_view *handle.mapped() = node; map.insert(std::move(handle)); } else insert(node); } void remove(Node * node) { auto it = map.find(node->result_name); if (it != map.end()) return; list.erase(it->second); map.erase(it); } void swap(Index & other) { list.swap(other.list); map.swap(other.map); } }; using Nodes = std::list; struct ActionsSettings { size_t max_temporary_columns = 0; size_t max_temporary_non_const_columns = 0; size_t min_count_to_compile_expression = 0; bool compile_expressions = false; bool project_input = false; bool projected_output = false; }; private: Nodes nodes; Index index; ActionsSettings settings; #if USE_EMBEDDED_COMPILER std::shared_ptr compilation_cache; #endif public: ActionsDAG() = default; ActionsDAG(const ActionsDAG &) = delete; ActionsDAG & operator=(const ActionsDAG &) = delete; explicit ActionsDAG(const NamesAndTypesList & inputs); explicit ActionsDAG(const ColumnsWithTypeAndName & inputs); const Nodes & getNodes() const { return nodes; } const Index & getIndex() const { return index; } NamesAndTypesList getRequiredColumns() const; ColumnsWithTypeAndName getResultColumns() const; NamesAndTypesList getNamesAndTypesList() const; Names getNames() const; std::string dumpNames() const; std::string dumpDAG() const; const Node & addInput(std::string name, DataTypePtr type); const Node & addInput(ColumnWithTypeAndName column); const Node & addColumn(ColumnWithTypeAndName column); const Node & addAlias(const std::string & name, std::string alias, bool can_replace = false); const Node & addArrayJoin(const std::string & source_name, std::string result_name); const Node & addFunction( const FunctionOverloadResolverPtr & function, const Names & argument_names, std::string result_name, const Context & context); /// Call addAlias several times. void addAliases(const NamesWithAliases & aliases); /// Adds alias actions and removes unused columns from index. void project(const NamesWithAliases & projection); /// Removes column from index. void removeColumn(const std::string & column_name); /// If column is not in index, try to find it in nodes and insert back into index. bool tryRestoreColumn(const std::string & column_name); void projectInput() { settings.project_input = true; } void removeUnusedActions(const Names & required_names); /// Splits actions into two parts. Returned half may be swapped with ARRAY JOIN. /// Returns nullptr if no actions may be moved before ARRAY JOIN. ActionsDAGPtr splitActionsBeforeArrayJoin(const NameSet & array_joined_columns); bool hasArrayJoin() const; bool empty() const; /// If actions only contain inputs. const ActionsSettings & getSettings() const { return settings; } void compileExpressions(); ActionsDAGPtr clone() const; private: Node & addNode(Node node, bool can_replace = false); Node & getNode(const std::string & name); ActionsDAGPtr cloneEmpty() const { auto actions = std::make_shared(); actions->settings = settings; #if USE_EMBEDDED_COMPILER actions->compilation_cache = compilation_cache; #endif return actions; } void removeUnusedActions(const std::vector & required_nodes); void removeUnusedActions(); void addAliases(const NamesWithAliases & aliases, std::vector & result_nodes); void compileFunctions(); }; /** Contains a sequence of actions on the block. */ class ExpressionActions { public: using Node = ActionsDAG::Node; using Index = ActionsDAG::Index; struct Argument { /// Position in ExecutionContext::columns size_t pos; /// True if there is another action which will use this column. /// Otherwise column will be removed. bool needed_later; }; using Arguments = std::vector; struct Action { const Node * node; Arguments arguments; size_t result_position; std::string toString() const; }; using Actions = std::vector; private: struct ExecutionContext { ColumnsWithTypeAndName & inputs; ColumnsWithTypeAndName columns = {}; std::vector inputs_pos = {}; size_t num_rows; }; ActionsDAGPtr actions_dag; Actions actions; size_t num_columns = 0; NamesAndTypesList required_columns; ColumnNumbers result_positions; Block sample_block; /// This flag means that all columns except input will be removed from block before execution. bool project_input = false; size_t max_temporary_non_const_columns = 0; friend class ActionsDAG; public: ~ExpressionActions(); explicit ExpressionActions(ActionsDAGPtr actions_dag_); ExpressionActions(const ExpressionActions &) = default; ExpressionActions & operator=(const ExpressionActions &) = default; const Actions & getActions() const { return actions; } const std::list & getNodes() const { return actions_dag->getNodes(); } const ActionsDAG & getActionsDAG() const { return *actions_dag; } /// Adds to the beginning the removal of all extra columns. void projectInput() { project_input = true; } /// Get a list of input columns. Names getRequiredColumns() const; const NamesAndTypesList & getRequiredColumnsWithTypes() const { return required_columns; } /// Execute the expression on the block. The block must contain all the columns returned by getRequiredColumns. void execute(Block & block, size_t & num_rows, bool dry_run = false) const; /// The same, but without `num_rows`. If result block is empty, adds `_dummy` column to keep block size. void execute(Block & block, bool dry_run = false) const; bool hasArrayJoin() const; /// Obtain a sample block that contains the names and types of result columns. const Block & getSampleBlock() const { return sample_block; } std::string dumpActions() const; static std::string getSmallestColumn(const NamesAndTypesList & columns); /// Check if column is always zero. True if it's definite, false if we can't say for sure. /// Call it only after subqueries for sets were executed. bool checkColumnIsAlwaysFalse(const String & column_name) const; ExpressionActionsPtr clone() const; private: ExpressionActions() = default; void checkLimits(ExecutionContext & execution_context) const; static void executeAction(const Action & action, ExecutionContext & execution_context, bool dry_run); void linearizeActions(); }; /** The sequence of transformations over the block. * It is assumed that the result of each step is fed to the input of the next step. * Used to execute parts of the query individually. * * For example, you can create a chain of two steps: * 1) evaluate the expression in the WHERE clause, * 2) calculate the expression in the SELECT section, * and between the two steps do the filtering by value in the WHERE clause. */ struct ExpressionActionsChain { explicit ExpressionActionsChain(const Context & context_) : context(context_) {} struct Step { virtual ~Step() = default; explicit Step(Names required_output_) : required_output(std::move(required_output_)) {} /// Columns were added to the block before current step in addition to prev step output. NameSet additional_input; /// Columns which are required in the result of current step. Names required_output; /// True if column from required_output is needed only for current step and not used in next actions /// (and can be removed from block). Example: filter column for where actions. /// If not empty, has the same size with required_output; is filled in finalize(). std::vector can_remove_required_output; virtual NamesAndTypesList getRequiredColumns() const = 0; virtual ColumnsWithTypeAndName getResultColumns() const = 0; /// Remove unused result and update required columns virtual void finalize(const Names & required_output_) = 0; /// Add projections to expression virtual void prependProjectInput() const = 0; virtual std::string dump() const = 0; /// Only for ExpressionActionsStep ActionsDAGPtr & actions(); const ActionsDAGPtr & actions() const; }; struct ExpressionActionsStep : public Step { ActionsDAGPtr actions; explicit ExpressionActionsStep(ActionsDAGPtr actions_, Names required_output_ = Names()) : Step(std::move(required_output_)) , actions(std::move(actions_)) { } NamesAndTypesList getRequiredColumns() const override { return actions->getRequiredColumns(); } ColumnsWithTypeAndName getResultColumns() const override { return actions->getResultColumns(); } void finalize(const Names & required_output_) override { if (!actions->getSettings().projected_output) actions->removeUnusedActions(required_output_); } void prependProjectInput() const override { actions->projectInput(); } std::string dump() const override { return actions->dumpDAG(); } }; struct ArrayJoinStep : public Step { ArrayJoinActionPtr array_join; NamesAndTypesList required_columns; ColumnsWithTypeAndName result_columns; ArrayJoinStep(ArrayJoinActionPtr array_join_, ColumnsWithTypeAndName required_columns_); NamesAndTypesList getRequiredColumns() const override { return required_columns; } ColumnsWithTypeAndName getResultColumns() const override { return result_columns; } void finalize(const Names & required_output_) override; void prependProjectInput() const override {} /// TODO: remove unused columns before ARRAY JOIN ? std::string dump() const override { return "ARRAY JOIN"; } }; struct JoinStep : public Step { std::shared_ptr analyzed_join; JoinPtr join; NamesAndTypesList required_columns; ColumnsWithTypeAndName result_columns; JoinStep(std::shared_ptr analyzed_join_, JoinPtr join_, ColumnsWithTypeAndName required_columns_); NamesAndTypesList getRequiredColumns() const override { return required_columns; } ColumnsWithTypeAndName getResultColumns() const override { return result_columns; } void finalize(const Names & required_output_) override; void prependProjectInput() const override {} /// TODO: remove unused columns before JOIN ? std::string dump() const override { return "JOIN"; } }; using StepPtr = std::unique_ptr; using Steps = std::vector; const Context & context; Steps steps; void addStep(NameSet non_constant_inputs = {}); void finalize(); void clear() { steps.clear(); } ActionsDAGPtr getLastActions(bool allow_empty = false) { if (steps.empty()) { if (allow_empty) return {}; throw Exception("Empty ExpressionActionsChain", ErrorCodes::LOGICAL_ERROR); } return typeid_cast(steps.back().get())->actions; } Step & getLastStep() { if (steps.empty()) throw Exception("Empty ExpressionActionsChain", ErrorCodes::LOGICAL_ERROR); return *steps.back(); } Step & lastStep(const NamesAndTypesList & columns) { if (steps.empty()) steps.emplace_back(std::make_unique(std::make_shared(columns))); return *steps.back(); } std::string dumpChain() const; }; }