#pragma once #include #include #include #include #include namespace DB { namespace ErrorCodes { extern const int NO_AVAILABLE_DATA; } /** Compact array for data storage, size `content_width`, in bits, of which is * less than one byte. Instead of storing each value in a separate * bytes, which leads to a waste of 37.5% of the space for content_width = 5, CompactArray stores * adjacent `content_width`-bit values in the byte array, that is actually CompactArray * simulates an array of `content_width`-bit values. */ template class CompactArray final { public: class Reader; class Locus; CompactArray() = default; UInt8 ALWAYS_INLINE operator[](BucketIndex bucket_index) const { Locus locus(bucket_index); if (locus.index_l == locus.index_r) return locus.read(bitset[locus.index_l]); else return locus.read(bitset[locus.index_l], bitset[locus.index_r]); } Locus ALWAYS_INLINE operator[](BucketIndex bucket_index) { Locus locus(bucket_index); locus.content_l = &bitset[locus.index_l]; if (locus.index_l == locus.index_r) locus.content_r = locus.content_l; else locus.content_r = &bitset[locus.index_r]; return locus; } private: /// number of bytes in bitset static constexpr size_t BITSET_SIZE = (static_cast(bucket_count) * content_width + 7) / 8; UInt8 bitset[BITSET_SIZE] = { 0 }; }; /** A class for sequentially reading cells from a compact array on a disk. */ template class CompactArray::Reader final { public: explicit Reader(ReadBuffer & in_) : in(in_) { } Reader(const Reader &) = delete; Reader & operator=(const Reader &) = delete; bool next() { if (current_bucket_index == bucket_count) { is_eof = true; return false; } locus.init(current_bucket_index); if (current_bucket_index == 0) { in.readStrict(reinterpret_cast(&value_l), 1); ++read_count; } else value_l = value_r; if (locus.index_l != locus.index_r) { if (read_count == BITSET_SIZE) fits_in_byte = true; else { fits_in_byte = false; in.readStrict(reinterpret_cast(&value_r), 1); ++read_count; } } else { fits_in_byte = true; value_r = value_l; } ++current_bucket_index; return true; } /** Return the current cell number and the corresponding content. */ inline std::pair get() const { if ((current_bucket_index == 0) || is_eof) throw Exception("No available data.", ErrorCodes::NO_AVAILABLE_DATA); if (fits_in_byte) return std::make_pair(current_bucket_index - 1, locus.read(value_l)); else return std::make_pair(current_bucket_index - 1, locus.read(value_l, value_r)); } private: ReadBuffer & in; /// The physical location of the current cell. Locus locus{}; /// The current position in the file as a cell number. BucketIndex current_bucket_index = 0; /// The number of bytes read. size_t read_count = 0; /// The content in the current position. UInt8 value_l = 0; UInt8 value_r = 0; /// bool is_eof = false; /// Does the cell fully fit into one byte? bool fits_in_byte = false; }; /** TODO This code looks very suboptimal. * * The `Locus` structure contains the necessary information to find for each cell * the corresponding byte and offset, in bits, from the beginning of the cell. Since in general * case the size of one byte is not divisible by the size of one cell, cases possible * when one cell overlaps two bytes. Therefore, the `Locus` structure contains two * pairs (index, offset). */ template class CompactArray::Locus final { friend class CompactArray; friend class CompactArray::Reader; public: ALWAYS_INLINE operator UInt8() const /// NOLINT { if (content_l == content_r) return read(*content_l); else return read(*content_l, *content_r); } Locus ALWAYS_INLINE & operator=(UInt8 content) { if ((index_l == index_r) || (index_l == (BITSET_SIZE - 1))) { /// The cell completely fits into one byte. *content_l &= ~(((1 << content_width) - 1) << offset_l); *content_l |= content << offset_l; } else { /// The cell overlaps two bytes. size_t left = 8 - offset_l; *content_l &= ~(((1 << left) - 1) << offset_l); *content_l |= (content & ((1 << left) - 1)) << offset_l; *content_r &= ~((1 << offset_r) - 1); *content_r |= content >> left; } return *this; } private: Locus() = default; explicit Locus(BucketIndex bucket_index) { init(bucket_index); } void ALWAYS_INLINE init(BucketIndex bucket_index) { /// offset in bits to the leftmost bit size_t l = static_cast(bucket_index) * content_width; /// offset of byte that contains the leftmost bit index_l = l / 8; /// offset in bits to the leftmost bit at that byte offset_l = l % 8; /// offset of byte that contains the rightmost bit index_r = (l + content_width - 1) / 8; /// offset in bits to the next to the rightmost bit at that byte; or zero if the rightmost bit is the rightmost bit in that byte. offset_r = (l + content_width) % 8; content_l = nullptr; content_r = nullptr; } UInt8 ALWAYS_INLINE read(UInt8 value_l) const { /// The cell completely fits into one byte. return (value_l >> offset_l) & ((1 << content_width) - 1); } UInt8 ALWAYS_INLINE read(UInt8 value_l, UInt8 value_r) const { /// The cell overlaps two bytes. return ((value_l >> offset_l) & ((1 << (8 - offset_l)) - 1)) | ((value_r & ((1 << offset_r) - 1)) << (8 - offset_l)); } size_t index_l; size_t offset_l; size_t index_r; size_t offset_r; UInt8 * content_l; UInt8 * content_r; /// Checks static_assert((content_width > 0) && (content_width < 8), "Invalid parameter value"); static_assert(bucket_count <= (std::numeric_limits::max() / content_width), "Invalid parameter value"); }; }