#pragma once // Based on https://github.com/amdn/itoa and combined with our optimizations // //=== itoa.h - Fast integer to ascii conversion --*- C++ -*-// // // The MIT License (MIT) // Copyright (c) 2016 Arturo Martin-de-Nicolas // // Permission is hereby granted, free of charge, to any person obtaining a copy // of this software and associated documentation files (the "Software"), to deal // in the Software without restriction, including without limitation the rights // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell // copies of the Software, and to permit persons to whom the Software is // furnished to do so, subject to the following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE // SOFTWARE. //===----------------------------------------------------------------------===// #include #include #include "likely.h" #include "unaligned.h" using uint128_t = unsigned __int128; namespace impl { // Using a lookup table to convert binary numbers from 0 to 99 // into ascii characters as described by Andrei Alexandrescu in // https://www.facebook.com/notes/facebook-engineering/three-optimization-tips-for-c/10151361643253920/ static const char digits[201] = "00010203040506070809" "10111213141516171819" "20212223242526272829" "30313233343536373839" "40414243444546474849" "50515253545556575859" "60616263646566676869" "70717273747576777879" "80818283848586878889" "90919293949596979899"; static inline uint16_t const & dd(uint8_t u) { return reinterpret_cast(digits)[u]; } template static constexpr T pow10(size_t x) { return x ? 10 * pow10(x - 1) : 1; } // Division by a power of 10 is implemented using a multiplicative inverse. // This strength reduction is also done by optimizing compilers, but // presently the fastest results are produced by using the values // for the multiplication and the shift as given by the algorithm // described by Agner Fog in "Optimizing Subroutines in Assembly Language" // // http://www.agner.org/optimize/optimizing_assembly.pdf // // "Integer division by a constant (all processors) // A floating point number can be divided by a constant by multiplying // with the reciprocal. If we want to do the same with integers, we have // to scale the reciprocal by 2n and then shift the product to the right // by n. There are various algorithms for finding a suitable value of n // and compensating for rounding errors. The algorithm described below // was invented by Terje Mathisen, Norway, and not published elsewhere." template struct MulInv { using type = UInt; static constexpr bool a{A}; static constexpr UInt m{M}; static constexpr unsigned s{S}; }; template struct UT; template struct UT { using U = T; }; template struct UT { using U = typename UT::U; }; template using MI = typename UT< N, 1, MulInv, MulInv, MulInv, MulInv, MulInv>::U; template using U = typename MI::type; // struct QR holds the result of dividing an unsigned N-byte variable // by 10^N resulting in template struct QR { U q; // quotient with fewer than 2*N decimal digits U r; // remainder with at most N decimal digits }; template QR static inline split(U u) { constexpr MI mi{}; U q = (mi.m * (U<2 * N>(u) + mi.a)) >> mi.s; return {q, U(u - q * pow10>(N))}; } template static inline char * out(char * p, T && obj) { memcpy(p, reinterpret_cast(&obj), sizeof(T)); p += sizeof(T); return p; } struct convert { //===----------------------------------------------------------===// // head: find most significant digit, skip leading zeros //===----------------------------------------------------------===// // "x" contains quotient and remainder after division by 10^N // quotient is less than 10^N template static inline char * head(char * p, QR x) { return tail(head(p, U(x.q)), x.r); } // "u" is less than 10^2*N template static inline char * head(char * p, UInt u) { return (u < pow10>(N) ? (head(p, U(u))) : (head(p, split(u)))); } // recursion base case, selected when "u" is one byte static inline char * head(char * p, U<1> u) { return (u < 10 ? (out(p, '0' + u)) : (out(p, dd(u)))); } //===----------------------------------------------------------===// // tail: produce all digits including leading zeros //===----------------------------------------------------------===// // recursive step, "u" is less than 10^2*N template static inline char * tail(char * p, UInt u) { QR x = split(u); return tail(tail(p, U(x.q)), x.r); } // recursion base case, selected when "u" is one byte static inline char * tail(char * p, U<1> u) { return out(p, dd(u)); } //===----------------------------------------------------------===// // large values are >= 10^2*N // where x contains quotient and remainder after division by 10^N //===----------------------------------------------------------===// template static inline char * large(char * p, QR x) { QR y = split(x.q); return tail(tail(head(p, U(y.q)), y.r), x.r); } //===----------------------------------------------------------===// // handle values of "u" that might be >= 10^2*N // where N is the size of "u" in bytes //===----------------------------------------------------------===// template static inline char * itoa(char * p, UInt u) { if (u < pow10>(N)) return head(p, U(u)); QR x = split(u); return (u < pow10>(2 * N) ? (head(p, x)) : (large(p, x))); } // selected when "u" is one byte static inline char * itoa(char * p, U<1> u) { if (u < 10) return out(p, '0' + u); if (u < 100) return out(p, dd(u)); return out(out(p, '0' + u / 100), dd(u % 100)); } //===----------------------------------------------------------===// // handle unsigned and signed integral operands //===----------------------------------------------------------===// // itoa: handle unsigned integral operands (selected by SFINAE) template ::value && std::is_integral::value> * = nullptr> static inline char * itoa(U u, char * p) { return convert::itoa(p, u); } // itoa: handle signed integral operands (selected by SFINAE) template ::value && std::is_integral::value> * = nullptr> static inline char * itoa(I i, char * p) { // Need "mask" to be filled with a copy of the sign bit. // If "i" is a negative value, then the result of "operator >>" // is implementation-defined, though usually it is an arithmetic // right shift that replicates the sign bit. // Use a conditional expression to be portable, // a good optimizing compiler generates an arithmetic right shift // and avoids the conditional branch. U mask = i < 0 ? ~U(0) : 0; // Now get the absolute value of "i" and cast to unsigned type U. // Cannot use std::abs() because the result is undefined // in 2's complement systems for the most-negative value. // Want to avoid conditional branch for performance reasons since // CPU branch prediction will be ineffective when negative values // occur randomly. // Let "u" be "i" cast to unsigned type U. // Subtract "u" from 2*u if "i" is positive or 0 if "i" is negative. // This yields the absolute value with the desired type without // using a conditional branch and without invoking undefined or // implementation defined behavior: U u = ((2 * U(i)) & ~mask) - U(i); // Unconditionally store a minus sign when producing digits // in a forward direction and increment the pointer only if // the value is in fact negative. // This avoids a conditional branch and is safe because we will // always produce at least one digit and it will overwrite the // minus sign when the value is not negative. *p = '-'; p += (mask & 1); p = convert::itoa(p, u); return p; } }; static inline int digits10(uint128_t x) { if (x < 10ULL) return 1; if (x < 100ULL) return 2; if (x < 1000ULL) return 3; if (x < 1000000000000ULL) { if (x < 100000000ULL) { if (x < 1000000ULL) { if (x < 10000ULL) return 4; else return 5 + (x >= 100000ULL); } return 7 + (x >= 10000000ULL); } if (x < 10000000000ULL) return 9 + (x >= 1000000000ULL); return 11 + (x >= 100000000000ULL); } return 12 + digits10(x / 1000000000000ULL); } static inline char * writeUIntText(uint128_t x, char * p) { int len = digits10(x); auto pp = p + len; while (x >= 100) { const auto i = x % 100; x /= 100; pp -= 2; unalignedStore(pp, dd(i)); } if (x < 10) *p = '0' + x; else unalignedStore(p, dd(x)); return p + len; } static inline char * writeLeadingMinus(char * pos) { *pos = '-'; return pos + 1; } static inline char * writeSIntText(__int128 x, char * pos) { static const __int128 min_int128 = __int128(0x8000000000000000ll) << 64; if (unlikely(x == min_int128)) { memcpy(pos, "-170141183460469231731687303715884105728", 40); return pos + 40; } if (x < 0) { x = -x; pos = writeLeadingMinus(pos); } return writeUIntText(static_cast(x), pos); } } template char * itoa(I i, char * p) { return impl::convert::itoa(i, p); } static inline char * itoa(uint128_t i, char * p) { return impl::writeUIntText(i, p); } static inline char * itoa(__int128 i, char * p) { return impl::writeSIntText(i, p); }