--- slug: /en/sql-reference/functions/time-series-functions sidebar_position: 172 sidebar_label: Time Series --- # Time Series Functions Below functions are used for series data analysis. ## seriesOutliersDetectTukey Detects outliers in series data using [Tukey Fences](https://en.wikipedia.org/wiki/Outlier#Tukey%27s_fences). **Syntax** ``` sql seriesOutliersDetectTukey(series); seriesOutliersDetectTukey(series, min_percentile, max_percentile, K); ``` **Arguments** - `series` - An array of numeric values. - `min_percentile` - The minimum percentile to be used to calculate inter-quantile range [(IQR)](https://en.wikipedia.org/wiki/Interquartile_range). The value must be in range [0.02,0.98]. The default is 0.25. - `max_percentile` - The maximum percentile to be used to calculate inter-quantile range (IQR). The value must be in range [0.02,0.98]. The default is 0.75. - `K` - Non-negative constant value to detect mild or stronger outliers. The default value is 1.5. At least four data points are required in `series` to detect outliers. **Returned value** - Returns an array of the same length as the input array where each value represents score of possible anomaly of corresponding element in the series. A non-zero score indicates a possible anomaly. Type: [Array](../../sql-reference/data-types/array.md). **Examples** Query: ``` sql SELECT seriesOutliersDetectTukey([-3, 2, 15, 3, 5, 6, 4, 5, 12, 45, 12, 3, 3, 4, 5, 6]) AS print_0; ``` Result: ``` text ┌───────────print_0─────────────────┐ │[0,0,0,0,0,0,0,0,0,27,0,0,0,0,0,0] │ └───────────────────────────────────┘ ``` Query: ``` sql SELECT seriesOutliersDetectTukey([-3, 2, 15, 3, 5, 6, 4.50, 5, 12, 45, 12, 3.40, 3, 4, 5, 6], 0.2, 0.8, 1.5) AS print_0; ``` Result: ``` text ┌─print_0──────────────────────────────┐ │ [0,0,0,0,0,0,0,0,0,19.5,0,0,0,0,0,0] │ └──────────────────────────────────────┘ ``` ## seriesPeriodDetectFFT Finds the period of the given series data data using FFT FFT - [Fast Fourier transform](https://en.wikipedia.org/wiki/Fast_Fourier_transform) **Syntax** ``` sql seriesPeriodDetectFFT(series); ``` **Arguments** - `series` - An array of numeric values **Returned value** - A real value equal to the period of series data - Returns NAN when number of data points are less than four. Type: [Float64](../../sql-reference/data-types/float.md). **Examples** Query: ``` sql SELECT seriesPeriodDetectFFT([1, 4, 6, 1, 4, 6, 1, 4, 6, 1, 4, 6, 1, 4, 6, 1, 4, 6, 1, 4, 6]) AS print_0; ``` Result: ``` text ┌───────────print_0──────┐ │ 3 │ └────────────────────────┘ ``` ``` sql SELECT seriesPeriodDetectFFT(arrayMap(x -> abs((x % 6) - 3), range(1000))) AS print_0; ``` Result: ``` text ┌─print_0─┐ │ 6 │ └─────────┘ ``` ## seriesDecomposeSTL Decomposes a series data using STL [(Seasonal-Trend Decomposition Procedure Based on Loess)](https://www.wessa.net/download/stl.pdf) into a season, a trend and a residual component. **Syntax** ``` sql seriesDecomposeSTL(series, period); ``` **Arguments** - `series` - An array of numeric values - `period` - A positive integer The number of data points in `series` should be at least twice the value of `period`. **Returned value** - An array of four arrays where the first array include seasonal components, the second array - trend, the third array - residue component, and the fourth array - baseline(seasonal + trend) component. Type: [Array](../../sql-reference/data-types/array.md). **Examples** Query: ``` sql SELECT seriesDecomposeSTL([10.1, 20.45, 40.34, 10.1, 20.45, 40.34, 10.1, 20.45, 40.34, 10.1, 20.45, 40.34, 10.1, 20.45, 40.34, 10.1, 20.45, 40.34, 10.1, 20.45, 40.34, 10.1, 20.45, 40.34], 3) AS print_0; ``` Result: ``` text ┌───────────print_0──────────────────────────────────────────────────────────────────────────────────────────────────────┐ │ [[ -13.529999, -3.1799996, 16.71, -13.53, -3.1799996, 16.71, -13.53, -3.1799996, 16.71, -13.530001, -3.18, 16.710001, -13.530001, -3.1800003, 16.710001, -13.530001, -3.1800003, 16.710001, -13.530001, -3.1799994, 16.71, -13.529999, -3.1799994, 16.709997 ], [ 23.63, 23.63, 23.630003, 23.630001, 23.630001, 23.630001, 23.630001, 23.630001, 23.630001, 23.630001, 23.630001, 23.63, 23.630001, 23.630001, 23.63, 23.630001, 23.630001, 23.63, 23.630001, 23.630001, 23.630001, 23.630001, 23.630001, 23.630003 ], [ 0, 0.0000019073486, -0.0000019073486, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.0000019073486, 0, 0 ], [ 10.1, 20.449999, 40.340004, 10.100001, 20.45, 40.34, 10.100001, 20.45, 40.34, 10.1, 20.45, 40.34, 10.1, 20.45, 40.34, 10.1, 20.45, 40.34, 10.1, 20.45, 40.34, 10.100002, 20.45, 40.34 ]] │ └────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────┘ ```