---
slug: /zh/getting-started/example-datasets/brown-benchmark
sidebar_label: 布朗大学基准
description: 机器生成日志数据的新分析基准
title: "布朗大学基准"
---

`MgBench` 是机器生成的日志数据的新分析基准,[Andrew Crotty](http://cs.brown.edu/people/acrotty/)。

下载数据:

```bash
wget https://datasets.clickhouse.com/mgbench{1..3}.csv.xz 
```

解压数据:

```bash
xz -v -d mgbench{1..3}.csv.xz 
```

创建数据库和表:

```sql
CREATE DATABASE mgbench; 
```

```sql
USE mgbench;
```

```sql
CREATE TABLE mgbench.logs1 (
  log_time      DateTime,
  machine_name  LowCardinality(String),
  machine_group LowCardinality(String),
  cpu_idle      Nullable(Float32),
  cpu_nice      Nullable(Float32),
  cpu_system    Nullable(Float32),
  cpu_user      Nullable(Float32),
  cpu_wio       Nullable(Float32),
  disk_free     Nullable(Float32),
  disk_total    Nullable(Float32),
  part_max_used Nullable(Float32),
  load_fifteen  Nullable(Float32),
  load_five     Nullable(Float32),
  load_one      Nullable(Float32),
  mem_buffers   Nullable(Float32),
  mem_cached    Nullable(Float32),
  mem_free      Nullable(Float32),
  mem_shared    Nullable(Float32),
  swap_free     Nullable(Float32),
  bytes_in      Nullable(Float32),
  bytes_out     Nullable(Float32)
)
ENGINE = MergeTree()
ORDER BY (machine_group, machine_name, log_time);
```


```sql
CREATE TABLE mgbench.logs2 (
  log_time    DateTime,
  client_ip   IPv4,
  request     String,
  status_code UInt16,
  object_size UInt64
)
ENGINE = MergeTree()
ORDER BY log_time;
```


```sql
CREATE TABLE mgbench.logs3 (
  log_time     DateTime64,
  device_id    FixedString(15),
  device_name  LowCardinality(String),
  device_type  LowCardinality(String),
  device_floor UInt8,
  event_type   LowCardinality(String),
  event_unit   FixedString(1),
  event_value  Nullable(Float32)
)
ENGINE = MergeTree()
ORDER BY (event_type, log_time);
```

插入数据:

```
clickhouse-client --query "INSERT INTO mgbench.logs1 FORMAT CSVWithNames" < mgbench1.csv
clickhouse-client --query "INSERT INTO mgbench.logs2 FORMAT CSVWithNames" < mgbench2.csv
clickhouse-client --query "INSERT INTO mgbench.logs3 FORMAT CSVWithNames" < mgbench3.csv
```

## 运行基准查询:

```sql
USE mgbench;
```

```sql 
-- Q1.1: 自午夜以来每个 Web 服务器的 CPU/网络利用率是多少?

SELECT machine_name,
       MIN(cpu) AS cpu_min,
       MAX(cpu) AS cpu_max,
       AVG(cpu) AS cpu_avg,
       MIN(net_in) AS net_in_min,
       MAX(net_in) AS net_in_max,
       AVG(net_in) AS net_in_avg,
       MIN(net_out) AS net_out_min,
       MAX(net_out) AS net_out_max,
       AVG(net_out) AS net_out_avg
FROM (
  SELECT machine_name,
         COALESCE(cpu_user, 0.0) AS cpu,
         COALESCE(bytes_in, 0.0) AS net_in,
         COALESCE(bytes_out, 0.0) AS net_out
  FROM logs1
  WHERE machine_name IN ('anansi','aragog','urd')
    AND log_time >= TIMESTAMP '2017-01-11 00:00:00'
) AS r
GROUP BY machine_name;
```


```sql 
-- Q1.2:最近一天有哪些机房的机器离线?

SELECT machine_name,
       log_time
FROM logs1
WHERE (machine_name LIKE 'cslab%' OR
       machine_name LIKE 'mslab%')
  AND load_one IS NULL
  AND log_time >= TIMESTAMP '2017-01-10 00:00:00'
ORDER BY machine_name,
         log_time;
```

```sql 
-- Q1.3:特定工作站过去 10 天的每小时的平均指标是多少?

SELECT dt,
       hr,
       AVG(load_fifteen) AS load_fifteen_avg,
       AVG(load_five) AS load_five_avg,
       AVG(load_one) AS load_one_avg,
       AVG(mem_free) AS mem_free_avg,
       AVG(swap_free) AS swap_free_avg
FROM (
  SELECT CAST(log_time AS DATE) AS dt,
         EXTRACT(HOUR FROM log_time) AS hr,
         load_fifteen,
         load_five,
         load_one,
         mem_free,
         swap_free
  FROM logs1
  WHERE machine_name = 'babbage'
    AND load_fifteen IS NOT NULL
    AND load_five IS NOT NULL
    AND load_one IS NOT NULL
    AND mem_free IS NOT NULL
    AND swap_free IS NOT NULL
    AND log_time >= TIMESTAMP '2017-01-01 00:00:00'
) AS r
GROUP BY dt,
         hr
ORDER BY dt,
         hr;
```

```sql 
-- Q1.4: 1 个月内,每台服务器的磁盘 I/O 阻塞的频率是多少?

SELECT machine_name,
       COUNT(*) AS spikes
FROM logs1
WHERE machine_group = 'Servers'
  AND cpu_wio > 0.99
  AND log_time >= TIMESTAMP '2016-12-01 00:00:00'
  AND log_time < TIMESTAMP '2017-01-01 00:00:00'
GROUP BY machine_name
ORDER BY spikes DESC
LIMIT 10;
```

```sql 
-- Q1.5:哪些外部可访问的虚拟机的运行内存不足?

SELECT machine_name,
       dt,
       MIN(mem_free) AS mem_free_min
FROM (
  SELECT machine_name,
         CAST(log_time AS DATE) AS dt,
         mem_free
  FROM logs1
  WHERE machine_group = 'DMZ'
    AND mem_free IS NOT NULL
) AS r
GROUP BY machine_name,
         dt
HAVING MIN(mem_free) < 10000
ORDER BY machine_name,
         dt;
```

```sql 
-- Q1.6: 每小时所有文件服务器的总网络流量是多少?

SELECT dt,
       hr,
       SUM(net_in) AS net_in_sum,
       SUM(net_out) AS net_out_sum,
       SUM(net_in) + SUM(net_out) AS both_sum
FROM (
  SELECT CAST(log_time AS DATE) AS dt,
         EXTRACT(HOUR FROM log_time) AS hr,
         COALESCE(bytes_in, 0.0) / 1000000000.0 AS net_in,
         COALESCE(bytes_out, 0.0) / 1000000000.0 AS net_out
  FROM logs1
  WHERE machine_name IN ('allsorts','andes','bigred','blackjack','bonbon',
      'cadbury','chiclets','cotton','crows','dove','fireball','hearts','huey',
      'lindt','milkduds','milkyway','mnm','necco','nerds','orbit','peeps',
      'poprocks','razzles','runts','smarties','smuggler','spree','stride',
      'tootsie','trident','wrigley','york')
) AS r
GROUP BY dt,
         hr
ORDER BY both_sum DESC
LIMIT 10;
```

```sql 
-- Q2.1:过去 2 周内哪些请求导致了服务器错误?

SELECT *
FROM logs2
WHERE status_code >= 500
  AND log_time >= TIMESTAMP '2012-12-18 00:00:00'
ORDER BY log_time;
```

```sql 
-- Q2.2:在特定的某 2 周内,用户密码文件是否被泄露了?

SELECT *
FROM logs2
WHERE status_code >= 200
  AND status_code < 300
  AND request LIKE '%/etc/passwd%'
  AND log_time >= TIMESTAMP '2012-05-06 00:00:00'
  AND log_time < TIMESTAMP '2012-05-20 00:00:00';
```


```sql 
-- Q2.3:过去一个月顶级请求的平均路径深度是多少?

SELECT top_level,
       AVG(LENGTH(request) - LENGTH(REPLACE(request, '/', ''))) AS depth_avg
FROM (
  SELECT SUBSTRING(request FROM 1 FOR len) AS top_level,
         request
  FROM (
    SELECT POSITION(SUBSTRING(request FROM 2), '/') AS len,
           request
    FROM logs2
    WHERE status_code >= 200
      AND status_code < 300
      AND log_time >= TIMESTAMP '2012-12-01 00:00:00'
  ) AS r
  WHERE len > 0
) AS s
WHERE top_level IN ('/about','/courses','/degrees','/events',
                    '/grad','/industry','/news','/people',
                    '/publications','/research','/teaching','/ugrad')
GROUP BY top_level
ORDER BY top_level;
```


```sql 
-- Q2.4:在过去的 3 个月里,哪些客户端发出了过多的请求?

SELECT client_ip,
       COUNT(*) AS num_requests
FROM logs2
WHERE log_time >= TIMESTAMP '2012-10-01 00:00:00'
GROUP BY client_ip
HAVING COUNT(*) >= 100000
ORDER BY num_requests DESC;
```


```sql 
-- Q2.5:每天的独立访问者数量是多少?

SELECT dt,
       COUNT(DISTINCT client_ip)
FROM (
  SELECT CAST(log_time AS DATE) AS dt,
         client_ip
  FROM logs2
) AS r
GROUP BY dt
ORDER BY dt;
```


```sql 
-- Q2.6:平均和最大数据传输速率(Gbps)是多少?

SELECT AVG(transfer) / 125000000.0 AS transfer_avg,
       MAX(transfer) / 125000000.0 AS transfer_max
FROM (
  SELECT log_time,
         SUM(object_size) AS transfer
  FROM logs2
  GROUP BY log_time
) AS r;
```


```sql 
-- Q3.1:自 2019/11/29 17:00 以来,室温是否达到过冰点?

SELECT *
FROM logs3
WHERE event_type = 'temperature'
  AND event_value <= 32.0
  AND log_time >= '2019-11-29 17:00:00.000';
```


```sql 
-- Q3.4:在过去的 6 个月里,每扇门打开的频率是多少?

SELECT device_name,
       device_floor,
       COUNT(*) AS ct
FROM logs3
WHERE event_type = 'door_open'
  AND log_time >= '2019-06-01 00:00:00.000'
GROUP BY device_name,
         device_floor
ORDER BY ct DESC;
```

下面的查询 3.5 使用了 UNION 关键词。设置该模式以便组合 SELECT 的查询结果。该设置仅在未明确指定 UNION ALL 或 UNION DISTINCT 但使用了 UNION 进行共享时使用。 

```sql 
SET union_default_mode = 'DISTINCT' 
```

```sql 
-- Q3.5: 在冬季和夏季,建筑物内哪些地方会出现较大的温度变化?

WITH temperature AS (
  SELECT dt,
         device_name,
         device_type,
         device_floor
  FROM (
    SELECT dt,
           hr,
           device_name,
           device_type,
           device_floor,
           AVG(event_value) AS temperature_hourly_avg
    FROM (
      SELECT CAST(log_time AS DATE) AS dt,
             EXTRACT(HOUR FROM log_time) AS hr,
             device_name,
             device_type,
             device_floor,
             event_value
      FROM logs3
      WHERE event_type = 'temperature'
    ) AS r
    GROUP BY dt,
             hr,
             device_name,
             device_type,
             device_floor
  ) AS s
  GROUP BY dt,
           device_name,
           device_type,
           device_floor
  HAVING MAX(temperature_hourly_avg) - MIN(temperature_hourly_avg) >= 25.0
)
SELECT DISTINCT device_name,
       device_type,
       device_floor,
       'WINTER'
FROM temperature
WHERE dt >= DATE '2018-12-01'
  AND dt < DATE '2019-03-01'
UNION
SELECT DISTINCT device_name,
       device_type,
       device_floor,
       'SUMMER'
FROM temperature
WHERE dt >= DATE '2019-06-01'
  AND dt < DATE '2019-09-01';
```


```sql 
-- Q3.6:对于每种类别的设备,每月的功耗指标是什么?

SELECT yr,
       mo,
       SUM(coffee_hourly_avg) AS coffee_monthly_sum,
       AVG(coffee_hourly_avg) AS coffee_monthly_avg,
       SUM(printer_hourly_avg) AS printer_monthly_sum,
       AVG(printer_hourly_avg) AS printer_monthly_avg,
       SUM(projector_hourly_avg) AS projector_monthly_sum,
       AVG(projector_hourly_avg) AS projector_monthly_avg,
       SUM(vending_hourly_avg) AS vending_monthly_sum,
       AVG(vending_hourly_avg) AS vending_monthly_avg
FROM (
  SELECT dt,
         yr,
         mo,
         hr,
         AVG(coffee) AS coffee_hourly_avg,
         AVG(printer) AS printer_hourly_avg,
         AVG(projector) AS projector_hourly_avg,
         AVG(vending) AS vending_hourly_avg
  FROM (
    SELECT CAST(log_time AS DATE) AS dt,
           EXTRACT(YEAR FROM log_time) AS yr,
           EXTRACT(MONTH FROM log_time) AS mo,
           EXTRACT(HOUR FROM log_time) AS hr,
           CASE WHEN device_name LIKE 'coffee%' THEN event_value END AS coffee,
           CASE WHEN device_name LIKE 'printer%' THEN event_value END AS printer,
           CASE WHEN device_name LIKE 'projector%' THEN event_value END AS projector,
           CASE WHEN device_name LIKE 'vending%' THEN event_value END AS vending
    FROM logs3
    WHERE device_type = 'meter'
  ) AS r
  GROUP BY dt,
           yr,
           mo,
           hr
) AS s
GROUP BY yr,
         mo
ORDER BY yr,
         mo;
```

此数据集可在 [Playground](https://play.clickhouse.com/play?user=play) 中进行交互式的请求, [example](https://play.clickhouse.com/play?user=play#U0VMRUNUIG1hY2hpbmVfbmFtZSwKICAgICAgIE1JTihjcHUpIEFTIGNwdV9taW4sCiAgICAgICBNQVgoY3B1KSBBUyBjcHVfbWF4LAogICAgICAgQVZHKGNwdSkgQVMgY3B1X2F2ZywKICAgICAgIE1JTihuZXRfaW4pIEFTIG5ldF9pbl9taW4sCiAgICAgICBNQVgobmV0X2luKSBBUyBuZXRfaW5fbWF4LAogICAgICAgQVZHKG5ldF9pbikgQVMgbmV0X2luX2F2ZywKICAgICAgIE1JTihuZXRfb3V0KSBBUyBuZXRfb3V0X21pbiwKICAgICAgIE1BWChuZXRfb3V0KSBBUyBuZXRfb3V0X21heCwKICAgICAgIEFWRyhuZXRfb3V0KSBBUyBuZXRfb3V0X2F2ZwpGUk9NICgKICBTRUxFQ1QgbWFjaGluZV9uYW1lLAogICAgICAgICBDT0FMRVNDRShjcHVfdXNlciwgMC4wKSBBUyBjcHUsCiAgICAgICAgIENPQUxFU0NFKGJ5dGVzX2luLCAwLjApIEFTIG5ldF9pbiwKICAgICAgICAgQ09BTEVTQ0UoYnl0ZXNfb3V0LCAwLjApIEFTIG5ldF9vdXQKICBGUk9NIG1nYmVuY2gubG9nczEKICBXSEVSRSBtYWNoaW5lX25hbWUgSU4gKCdhbmFuc2knLCdhcmFnb2cnLCd1cmQnKQogICAgQU5EIGxvZ190aW1lID49IFRJTUVTVEFNUCAnMjAxNy0wMS0xMSAwMDowMDowMCcKKSBBUyByCkdST1VQIEJZIG1hY2hpbmVfbmFtZQ==).