#include #include #include #include #include #include #include #include #include #include #include #include #include namespace DB { namespace ErrorCodes { extern const int LOGICAL_ERROR; extern const int DUPLICATE_COLUMN; extern const int UNKNOWN_IDENTIFIER; extern const int TYPE_MISMATCH; extern const int NUMBER_OF_COLUMNS_DOESNT_MATCH; extern const int THERE_IS_NO_COLUMN; extern const int ILLEGAL_COLUMN; } ActionsDAG::ActionsDAG(const NamesAndTypesList & inputs_) { for (const auto & input : inputs_) index.push_back(&addInput(input.name, input.type)); } ActionsDAG::ActionsDAG(const ColumnsWithTypeAndName & inputs_) { for (const auto & input : inputs_) { if (input.column && isColumnConst(*input.column)) { addInput(input); /// Here we also add column. /// It will allow to remove input which is actually constant (after projection). /// Also, some transforms from query pipeline may randomly materialize constants, /// without any respect to header structure. So, it is a way to drop materialized column and use /// constant value from header. /// We cannot remove such input right now cause inputs positions are important in some cases. index.push_back(&addColumn(input)); } else index.push_back(&addInput(input.name, input.type)); } } ActionsDAG::Node & ActionsDAG::addNode(Node node) { // auto it = index.find(node.result_name); // if (it != index.end() && !can_replace && add_to_index) // throw Exception("Column '" + node.result_name + "' already exists", ErrorCodes::DUPLICATE_COLUMN); auto & res = nodes.emplace_back(std::move(node)); if (res.type == ActionType::INPUT) inputs.emplace_back(&res); // if (add_to_index) // index.replace(&res); return res; } // ActionsDAG::Node & ActionsDAG::getNode(const std::string & name) // { // auto it = index.find(name); // if (it == index.end()) // throw Exception("Unknown identifier: '" + name + "'", ErrorCodes::UNKNOWN_IDENTIFIER); // return **it; // } const ActionsDAG::Node & ActionsDAG::addInput(std::string name, DataTypePtr type) { Node node; node.type = ActionType::INPUT; node.result_type = std::move(type); node.result_name = std::move(name); return addNode(std::move(node)); } const ActionsDAG::Node & ActionsDAG::addInput(ColumnWithTypeAndName column) { Node node; node.type = ActionType::INPUT; node.result_type = std::move(column.type); node.result_name = std::move(column.name); node.column = std::move(column.column); return addNode(std::move(node)); } const ActionsDAG::Node & ActionsDAG::addColumn(ColumnWithTypeAndName column) { if (!column.column) throw Exception(ErrorCodes::LOGICAL_ERROR, "Cannot add column {} because it is nullptr", column.name); Node node; node.type = ActionType::COLUMN; node.result_type = std::move(column.type); node.result_name = std::move(column.name); node.column = std::move(column.column); auto * res = &addNode(std::move(node)); // if (materialize) // { // auto & name = res->result_name; // FunctionOverloadResolverPtr func_builder_materialize = // std::make_shared( // std::make_unique( // std::make_shared())); // res = &addFunction(func_builder_materialize, {res}, {}, true, false); // res = &addAlias(*res, name, true); // } return *res; } const ActionsDAG::Node & ActionsDAG::addAlias(const Node & child, std::string alias) { Node node; node.type = ActionType::ALIAS; node.result_type = child.result_type; node.result_name = std::move(alias); node.column = child.column; node.children.emplace_back(&child); return addNode(std::move(node)); } const ActionsDAG::Node & ActionsDAG::addArrayJoin(const Node & child, std::string result_name) { const DataTypeArray * array_type = typeid_cast(child.result_type.get()); if (!array_type) throw Exception("ARRAY JOIN requires array argument", ErrorCodes::TYPE_MISMATCH); Node node; node.type = ActionType::ARRAY_JOIN; node.result_type = array_type->getNestedType(); node.result_name = std::move(result_name); node.children.emplace_back(&child); return addNode(std::move(node)); } const ActionsDAG::Node & ActionsDAG::addFunction( const FunctionOverloadResolverPtr & function, NodeRawConstPtrs children, std::string result_name) { size_t num_arguments = children.size(); Node node; node.type = ActionType::FUNCTION; node.function_builder = function; node.children = std::move(children); bool all_const = true; ColumnsWithTypeAndName arguments(num_arguments); for (size_t i = 0; i < num_arguments; ++i) { auto & child = *node.children[i]; ColumnWithTypeAndName argument; argument.column = child.column; argument.type = child.result_type; argument.name = child.result_name; if (!argument.column || !isColumnConst(*argument.column)) all_const = false; arguments[i] = std::move(argument); } node.function_base = function->build(arguments); node.result_type = node.function_base->getResultType(); node.function = node.function_base->prepare(arguments); /// If all arguments are constants, and function is suitable to be executed in 'prepare' stage - execute function. if (all_const && node.function_base->isSuitableForConstantFolding()) { size_t num_rows = arguments.empty() ? 0 : arguments.front().column->size(); auto col = node.function->execute(arguments, node.result_type, num_rows, true); /// If the result is not a constant, just in case, we will consider the result as unknown. if (isColumnConst(*col)) { /// All constant (literal) columns in block are added with size 1. /// But if there was no columns in block before executing a function, the result has size 0. /// Change the size to 1. if (col->empty()) col = col->cloneResized(1); node.column = std::move(col); } } /// Some functions like ignore() or getTypeName() always return constant result even if arguments are not constant. /// We can't do constant folding, but can specify in sample block that function result is constant to avoid /// unnecessary materialization. if (!node.column && node.function_base->isSuitableForConstantFolding()) { if (auto col = node.function_base->getResultIfAlwaysReturnsConstantAndHasArguments(arguments)) { node.column = std::move(col); node.allow_constant_folding = false; } } if (result_name.empty()) { result_name = function->getName() + "("; for (size_t i = 0; i < num_arguments; ++i) { if (i) result_name += ", "; result_name += node.children[i]->result_name; } result_name += ")"; } node.result_name = std::move(result_name); return addNode(std::move(node)); } NamesAndTypesList ActionsDAG::getRequiredColumns() const { NamesAndTypesList result; for (const auto & input : inputs) result.emplace_back(input->result_name, input->result_type); return result; } ColumnsWithTypeAndName ActionsDAG::getResultColumns() const { ColumnsWithTypeAndName result; result.reserve(index.size()); for (const auto & node : index) result.emplace_back(node->column, node->result_type, node->result_name); return result; } NamesAndTypesList ActionsDAG::getNamesAndTypesList() const { NamesAndTypesList result; for (const auto & node : index) result.emplace_back(node->result_name, node->result_type); return result; } Names ActionsDAG::getNames() const { Names names; names.reserve(index.size()); for (const auto & node : index) names.emplace_back(node->result_name); return names; } std::string ActionsDAG::dumpNames() const { WriteBufferFromOwnString out; for (auto it = nodes.begin(); it != nodes.end(); ++it) { if (it != nodes.begin()) out << ", "; out << it->result_name; } return out.str(); } void ActionsDAG::removeUnusedActions(const Names & required_names) { NodeRawConstPtrs required_nodes; required_nodes.reserve(required_names.size()); std::unordered_map> names_map; for (const auto * node : index) names_map[node->result_name].push_back(node); for (const auto & name : required_names) { auto & nodes_list = names_map[name]; if (nodes_list.empty()) throw Exception(ErrorCodes::UNKNOWN_IDENTIFIER, "Unknown column: {}, there are only columns {}", name, dumpNames()); required_nodes.push_back(nodes_list.front()); nodes_list.pop_back(); } index.swap(required_nodes); removeUnusedActions(); } void ActionsDAG::removeUnusedActions(bool allow_remove_inputs) { std::unordered_set visited_nodes; std::stack stack; for (const auto * node : index) { visited_nodes.insert(node); stack.push(const_cast(node)); } for (auto & node : nodes) { /// We cannot remove function with side effects even if it returns constant (e.g. ignore(...)). bool prevent_constant_folding = node.column && isColumnConst(*node.column) && !node.allow_constant_folding; /// We cannot remove arrayJoin because it changes the number of rows. bool is_array_join = node.type == ActionType::ARRAY_JOIN; bool must_keep_node = is_array_join || prevent_constant_folding; if (must_keep_node && visited_nodes.count(&node) == 0) { visited_nodes.insert(&node); stack.push(&node); } if (node.type == ActionType::INPUT && !allow_remove_inputs) visited_nodes.insert(&node); } while (!stack.empty()) { auto * node = stack.top(); stack.pop(); if (!node->children.empty() && node->column && isColumnConst(*node->column) && node->allow_constant_folding) { /// Constant folding. node->type = ActionsDAG::ActionType::COLUMN; node->children.clear(); } for (const auto * child : node->children) { if (visited_nodes.count(child) == 0) { stack.push(const_cast(child)); visited_nodes.insert(child); } } } nodes.remove_if([&](const Node & node) { return visited_nodes.count(&node) == 0; }); auto it = std::remove_if(inputs.begin(), inputs.end(), [&](const Node * node) { return visited_nodes.count(node) == 0; }); inputs.erase(it, inputs.end()); } void ActionsDAG::addAliases(const NamesWithAliases & aliases, bool project) { std::unordered_map names_map; for (const auto * node : index) names_map.emplace(node->result_name, node); NodeRawConstPtrs required_nodes; for (const auto & item : aliases) { auto it = names_map.find(item.first); if (it == names_map.end()) throw Exception(ErrorCodes::UNKNOWN_IDENTIFIER, "Unknown column: {}, there are only columns {}", item.first, dumpNames()); required_nodes.push_back(it->second); } if (project) index.clear(); index.reserve(index.size() + aliases.size()); for (size_t i = 0; i < aliases.size(); ++i) { const auto & item = aliases[i]; const auto * child = required_nodes[i]; if (!item.second.empty() && item.first != item.second) { Node node; node.type = ActionType::ALIAS; node.result_type = child->result_type; node.result_name = std::move(item.second); node.column = child->column; node.children.emplace_back(child); auto & alias = addNode(std::move(node)); index.push_back(&alias); } else if (project) index.push_back(child); } } void ActionsDAG::addAliases(const NamesWithAliases & aliases) { addAliases(aliases, false); } void ActionsDAG::project(const NamesWithAliases & projection) { addAliases(projection, true); removeUnusedActions(); projectInput(); projected_output = true; } bool ActionsDAG::tryRestoreColumn(const std::string & column_name) { for (const auto * node : index) if (node->result_name == column_name) return true; for (auto it = nodes.rbegin(); it != nodes.rend(); ++it) { auto & node = *it; if (node.result_name == column_name) { index.push_back(&node); return true; } } return false; } bool ActionsDAG::removeUnusedResult(const std::string & column_name) { /// Find column in index and remove. const Node * col; { auto it = index.begin(); for (; it != index.end(); ++it) if ((*it)->result_name == column_name) break; if (it == index.end()) throw Exception(ErrorCodes::LOGICAL_ERROR, "Not found result {} in ActionsDAG\n{}", column_name, dumpDAG()); col = *it; index.erase(it); } /// Check if column is in input. auto it = inputs.begin(); for (; it != inputs.end(); ++it) if (*it == col) break; if (it == inputs.end()) return false; /// Check column has no dependent. for (const auto & node : nodes) for (const auto * child : node.children) if (col == child) return false; /// Do not remove input if it was mentioned in index several times. for (const auto * node : index) if (col == node) return false; /// Remove from nodes and inputs. for (auto jt = nodes.begin(); jt != nodes.end(); ++jt) { if (&(*jt) == *it) { nodes.erase(jt); break; } } inputs.erase(it); return true; } ActionsDAGPtr ActionsDAG::clone() const { auto actions = std::make_shared(); actions->project_input = project_input; actions->projected_output = projected_output; std::unordered_map copy_map; for (const auto & node : nodes) { auto & copy_node = actions->nodes.emplace_back(node); copy_map[&node] = ©_node; } for (auto & node : actions->nodes) for (auto & child : node.children) child = copy_map[child]; for (const auto & node : index) actions->index.push_back(copy_map[node]); for (const auto & node : inputs) actions->inputs.push_back(copy_map[node]); return actions; } void ActionsDAG::compileExpressions(size_t min_count_to_compile_expression) { compileFunctions(min_count_to_compile_expression); removeUnusedActions(); } // void ActionsDAG::transformHeader(Block & block) // { // NameToNodeMap names_mapping; // std::unordered_map nodes_mapping; // for (size_t i = 0, size = inputs.size(); i < size; ++i) // { // const auto * input = inputs[i]; // names_mapping[input->result_name].emplace_back(i); // nodes_mapping[input] = i; // } // auto inputs_mapping = buildNameToNodeMapping(inputs); // auto inputs_pos = getInputsPositions(block, inputs_mapping); // ColumnsWithTypeAndName result; // result.reserve(index.size()); // for (const auto * node : result) // { // if (node->type = NodeType::INPUT) // { // ssize_t pos = inputs_pos[nodes_mapping[node]]; // if (pos >= 0) // result.push_back(block.getByPosition(pos)); // } // else if (node->column) // result.push_back({node->column, node->result_type, node->result_name}); // else // result.push_back({node->result_type->, node->result_type, node->result_name}); // } // } // ActionsDAG::NameToNodeMap ActionsDAG::buildNameToNodeMapping(const NodeRawConstPtrs & nodes) // { // NameToNodeMap map; // for (size_t i = 0, size = nodes.size(); i < size; ++i) // { // const auto * node = nodes[i]; // map[node->result_name].emplace_back(i); // } // return map; // } // static std::vector ActionsDAG::getInputsPositions(const Block & block, const NameToNodeMap & inputs_mapping) // { // std::vector inputs_pos(inputs.size(), -1); // for (size_t pos = 0; pos < block.columns(); ++pos) // { // const auto & col = block.getByPosition(pos); // auto it = inputs_mapping.find(col.name); // if (it != inputs_mapping.end()) // { // for (auto input_pos : it->second) // { // if (inputs_pos[input_pos] < 0) // { // inputs_pos[input_pos] = pos; // break; // } // } // } // } // return inputs_pos; // } // void ActionsDAG::transformBlock(Block & block, std::vector inputs_pos, ColumnsWithTypeAndName result_columns) // { // if (project_input)) // { // block.clear(); // } // else // { // std::sort(inputs_pos.rbegin(), inputs_pos.rend()); // for (auto input : execution_context.inputs_pos) // if (input >= 0) // block.erase(input); // } // Block res; // for (auto & col : result_columns) // res.insert(std::move(col)); // for (const auto & item : block) // res.insert(std::move(item)); // block.swap(res); // } std::string ActionsDAG::dumpDAG() const { std::unordered_map map; for (const auto & node : nodes) { size_t idx = map.size(); map[&node] = idx; } WriteBufferFromOwnString out; for (const auto & node : nodes) { out << map[&node] << " : "; switch (node.type) { case ActionsDAG::ActionType::COLUMN: out << "COLUMN "; break; case ActionsDAG::ActionType::ALIAS: out << "ALIAS "; break; case ActionsDAG::ActionType::FUNCTION: out << "FUNCTION "; break; case ActionsDAG::ActionType::ARRAY_JOIN: out << "ARRAY JOIN "; break; case ActionsDAG::ActionType::INPUT: out << "INPUT "; break; } out << "("; for (size_t i = 0; i < node.children.size(); ++i) { if (i) out << ", "; out << map[node.children[i]]; } out << ")"; out << " " << (node.column ? node.column->getName() : "(no column)"); out << " " << (node.result_type ? node.result_type->getName() : "(no type)"); out << " " << (!node.result_name.empty() ? node.result_name : "(no name)"); if (node.function_base) out << " [" << node.function_base->getName() << "]"; out << "\n"; } out << "Index:"; for (const auto * node : index) out << ' ' << map[node]; out << '\n'; return out.str(); } bool ActionsDAG::hasArrayJoin() const { for (const auto & node : nodes) if (node.type == ActionType::ARRAY_JOIN) return true; return false; } bool ActionsDAG::hasStatefulFunctions() const { for (const auto & node : nodes) if (node.type == ActionType::FUNCTION && node.function_base->isStateful()) return true; return false; } bool ActionsDAG::trivial() const { for (const auto & node : nodes) if (node.type == ActionType::FUNCTION || node.type == ActionType::ARRAY_JOIN) return false; return true; } void ActionsDAG::addMaterializingOutputActions() { FunctionOverloadResolverPtr func_builder_materialize = std::make_shared( std::make_unique( std::make_shared())); for (auto & node : index) { auto & name = node->result_name; node = &addFunction(func_builder_materialize, {node}, {}); node = &addAlias(*node, name); } } ActionsDAGPtr ActionsDAG::makeConvertingActions( const ColumnsWithTypeAndName & source, const ColumnsWithTypeAndName & result, MatchColumnsMode mode, bool ignore_constant_values) { size_t num_input_columns = source.size(); size_t num_result_columns = result.size(); if (mode == MatchColumnsMode::Position && num_input_columns != num_result_columns) throw Exception("Number of columns doesn't match", ErrorCodes::NUMBER_OF_COLUMNS_DOESNT_MATCH); auto actions_dag = std::make_shared(source); NodeRawConstPtrs projection(num_result_columns); FunctionOverloadResolverPtr func_builder_materialize = std::make_shared( std::make_unique( std::make_shared())); std::map> inputs; if (mode == MatchColumnsMode::Name) { for (size_t pos = 0; pos < actions_dag->inputs.size(); ++pos) inputs[actions_dag->inputs[pos]->result_name].push_back(pos); } for (size_t result_col_num = 0; result_col_num < num_result_columns; ++result_col_num) { const auto & res_elem = result[result_col_num]; const Node * src_node = nullptr; switch (mode) { case MatchColumnsMode::Position: { src_node = actions_dag->inputs[result_col_num]; break; } case MatchColumnsMode::Name: { auto & input = inputs[res_elem.name]; if (input.empty()) throw Exception("Cannot find column " + backQuote(res_elem.name) + " in source stream", ErrorCodes::THERE_IS_NO_COLUMN); src_node = actions_dag->inputs[input.front()]; input.pop_front(); break; } } /// Check constants. if (const auto * res_const = typeid_cast(res_elem.column.get())) { if (const auto * src_const = typeid_cast(src_node->column.get())) { if (ignore_constant_values) src_node = &actions_dag->addColumn(res_elem); else if (res_const->getField() != src_const->getField()) throw Exception("Cannot convert column " + backQuote(res_elem.name) + " because " "it is constant but values of constants are different in source and result", ErrorCodes::ILLEGAL_COLUMN); } else throw Exception("Cannot convert column " + backQuote(res_elem.name) + " because " "it is non constant in source stream but must be constant in result", ErrorCodes::ILLEGAL_COLUMN); } /// Add CAST function to convert into result type if needed. if (!res_elem.type->equals(*src_node->result_type)) { ColumnWithTypeAndName column; column.name = res_elem.type->getName(); column.column = DataTypeString().createColumnConst(0, column.name); column.type = std::make_shared(); const auto * right_arg = &actions_dag->addColumn(std::move(column)); const auto * left_arg = src_node; FunctionCast::Diagnostic diagnostic = {src_node->result_name, res_elem.name}; FunctionOverloadResolverPtr func_builder_cast = std::make_shared( CastOverloadResolver::createImpl(false, std::move(diagnostic))); NodeRawConstPtrs children = { left_arg, right_arg }; src_node = &actions_dag->addFunction(func_builder_cast, std::move(children), {}); } if (src_node->column && isColumnConst(*src_node->column) && !(res_elem.column && isColumnConst(*res_elem.column))) { NodeRawConstPtrs children = {src_node}; src_node = &actions_dag->addFunction(func_builder_materialize, std::move(children), {}); } if (src_node->result_name != res_elem.name) src_node = &actions_dag->addAlias(*src_node, res_elem.name); projection[result_col_num] = src_node; } actions_dag->index.swap(projection); actions_dag->removeUnusedActions(); actions_dag->projectInput(); return actions_dag; } ActionsDAGPtr ActionsDAG::makeAddingColumnActions(ColumnWithTypeAndName column) { auto adding_column_action = std::make_shared(); FunctionOverloadResolverPtr func_builder_materialize = std::make_shared( std::make_unique( std::make_shared())); auto column_name = column.name; const auto * column_node = &adding_column_action->addColumn(std::move(column)); NodeRawConstPtrs inputs = {column_node}; auto & function_node = adding_column_action->addFunction(func_builder_materialize, std::move(inputs), {}); auto & alias_node = adding_column_action->addAlias(function_node, std::move(column_name)); adding_column_action->index.push_back(&alias_node); return adding_column_action; } ActionsDAGPtr ActionsDAG::merge(ActionsDAG && first, ActionsDAG && second) { /// first: x (1), x (2), y ==> x (2), z, x (3) /// second: x (1), x (2), x (3) ==> x (3), x (2), x (1) /// merge: x (1), x (2), x (3), y =(first)=> x (2), z, x (4), x (3) =(second)=> x (3), x (4), x (2), z /// Will store merged result in `first`. /// This map contains nodes which should be removed from `first` index, cause they are used as inputs for `second`. /// The second element is the number of removes (cause one node may be repeated several times in result). std::unordered_map removed_first_result; /// Map inputs of `second` to nodes of `first`. std::unordered_map inputs_map; /// Update inputs list. { /// Index may have multiple columns with same name. They also may be used by `second`. Order is important. std::unordered_map> first_result; for (const auto & node : first.index) first_result[node->result_name].push_back(node); for (const auto & node : second.inputs) { auto it = first_result.find(node->result_name); if (it == first_result.end() || it->second.empty()) { if (first.project_input) throw Exception(ErrorCodes::LOGICAL_ERROR, "Cannot find column {} in ActionsDAG result", node->result_name); first.inputs.push_back(node); } else { inputs_map[node] = it->second.front(); removed_first_result[it->second.front()] += 1; it->second.pop_front(); } } } /// Replace inputs from `second` to nodes from `first` result. for (auto & node : second.nodes) { for (auto & child : node.children) { if (child->type == ActionType::INPUT) { auto it = inputs_map.find(child); if (it != inputs_map.end()) child = it->second; } } } for (auto & node : second.index) { if (node->type == ActionType::INPUT) { auto it = inputs_map.find(node); if (it != inputs_map.end()) node = it->second; } } /// Update index. if (second.project_input) { first.index.swap(second.index); first.project_input = true; } else { /// Add not removed result from first actions. for (const auto * node : first.index) { auto it = removed_first_result.find(node); if (it != removed_first_result.end() && it->second > 0) --it->second; else second.index.push_back(node); } first.index.swap(second.index); } first.nodes.splice(first.nodes.end(), std::move(second.nodes)); first.projected_output = second.projected_output; /// Drop unused inputs and, probably, some actions. first.removeUnusedActions(); return std::make_shared(std::move(first)); } ActionsDAG::SplitResult ActionsDAG::split(std::unordered_set split_nodes) const { /// Split DAG into two parts. /// (first_nodes, first_index) is a part which will have split_list in result. /// (second_nodes, second_index) is a part which will have same index as current actions. Nodes second_nodes; Nodes first_nodes; NodeRawConstPtrs second_index; NodeRawConstPtrs first_index; /// List of nodes from current actions which are not inputs, but will be in second part. NodeRawConstPtrs new_inputs; struct Frame { const Node * node; size_t next_child_to_visit = 0; }; struct Data { bool needed_by_split_node = false; bool visited = false; bool used_in_result = false; /// Copies of node in one of the DAGs. /// For COLUMN and INPUT both copies may exist. Node * to_second = nullptr; Node * to_first = nullptr; }; std::stack stack; std::unordered_map data; for (const auto & node : index) data[node].used_in_result = true; /// DFS. Decide if node is needed by split. for (const auto & node : nodes) { if (split_nodes.count(&node) == 0) continue; auto & cur_data = data[&node]; if (cur_data.needed_by_split_node) continue; cur_data.needed_by_split_node = true; stack.push({.node = &node}); while (!stack.empty()) { auto & cur_node = stack.top().node; stack.pop(); for (const auto * child : cur_node->children) { auto & child_data = data[child]; if (!child_data.needed_by_split_node) { child_data.needed_by_split_node = true; stack.push({.node = child}); } } } } /// DFS. Move nodes to one of the DAGs. for (const auto & node : nodes) { if (!data[&node].visited) stack.push({.node = &node}); while (!stack.empty()) { auto & cur = stack.top(); auto & cur_data = data[cur.node]; /// At first, visit all children. while (cur.next_child_to_visit < cur.node->children.size()) { auto * child = cur.node->children[cur.next_child_to_visit]; auto & child_data = data[child]; if (!child_data.visited) { stack.push({.node = child}); break; } ++cur.next_child_to_visit; } /// Make a copy part. if (cur.next_child_to_visit == cur.node->children.size()) { cur_data.visited = true; stack.pop(); if (!cur_data.needed_by_split_node) { auto & copy = second_nodes.emplace_back(*cur.node); cur_data.to_second = © /// Replace children to newly created nodes. for (auto & child : copy.children) { auto & child_data = data[child]; /// If children is not created, it may be from split part. if (!child_data.to_second) { if (child->type == ActionType::COLUMN) /// Just create new node for COLUMN action. { child_data.to_second = &second_nodes.emplace_back(*child); } else { /// Node from first part is added as new input. Node input_node; input_node.type = ActionType::INPUT; input_node.result_type = child->result_type; input_node.result_name = child->result_name; child_data.to_second = &second_nodes.emplace_back(std::move(input_node)); new_inputs.push_back(child); } } child = child_data.to_second; } /// Input from second DAG should also be in the first. if (copy.type == ActionType::INPUT) { auto & input_copy = first_nodes.emplace_back(*cur.node); assert(cur_data.to_first == nullptr); cur_data.to_first = &input_copy; new_inputs.push_back(cur.node); } } else { auto & copy = first_nodes.emplace_back(*cur.node); cur_data.to_first = © /// Replace children to newly created nodes. for (auto & child : copy.children) { child = data[child].to_first; assert(child != nullptr); } if (cur_data.used_in_result) { /// If this node is needed in result, add it as input. Node input_node; input_node.type = ActionType::INPUT; input_node.result_type = node.result_type; input_node.result_name = node.result_name; cur_data.to_second = &second_nodes.emplace_back(std::move(input_node)); new_inputs.push_back(cur.node); } } } } } for (const auto * node : index) second_index.push_back(data[node].to_second); NodeRawConstPtrs second_inputs; NodeRawConstPtrs first_inputs; for (const auto * input : inputs) { const auto & cur = data[input]; first_inputs.push_back(cur.to_first); } for (const auto * input : new_inputs) { const auto & cur = data[input]; second_inputs.push_back(cur.to_second); first_index.push_back(cur.to_first); } auto first_actions = std::make_shared(); first_actions->nodes.swap(first_nodes); first_actions->index.swap(first_index); first_actions->inputs.swap(first_inputs); auto second_actions = std::make_shared(); second_actions->nodes.swap(second_nodes); second_actions->index.swap(second_index); second_actions->inputs.swap(second_inputs); return {std::move(first_actions), std::move(second_actions)}; } ActionsDAG::SplitResult ActionsDAG::splitActionsBeforeArrayJoin(const NameSet & array_joined_columns) const { struct Frame { const Node * node; size_t next_child_to_visit = 0; }; std::unordered_set split_nodes; std::unordered_set visited_nodes; std::stack stack; /// DFS. Decide if node depends on ARRAY JOIN. for (const auto & node : nodes) { if (visited_nodes.count(&node)) continue; visited_nodes.insert(&node); stack.push({.node = &node}); while (!stack.empty()) { auto & cur = stack.top(); /// At first, visit all children. We depend on ARRAY JOIN if any child does. while (cur.next_child_to_visit < cur.node->children.size()) { const auto * child = cur.node->children[cur.next_child_to_visit]; if (visited_nodes.count(child) == 0) { visited_nodes.insert(child); stack.push({.node = child}); break; } ++cur.next_child_to_visit; } if (cur.next_child_to_visit == cur.node->children.size()) { bool depend_on_array_join = false; if (cur.node->type == ActionType::INPUT && array_joined_columns.count(cur.node->result_name)) depend_on_array_join = true; for (const auto * child : cur.node->children) { if (split_nodes.count(child) == 0) depend_on_array_join = true; } if (!depend_on_array_join) split_nodes.insert(cur.node); stack.pop(); } } } auto res = split(split_nodes); /// Do not remove array joined columns if they are not used. res.first->project_input = false; return res; } ActionsDAG::SplitResult ActionsDAG::splitActionsForFilter(const std::string & column_name) const { auto it = index.begin(); for (; it != index.end(); ++it) if ((*it)->result_name == column_name) break; if (it == index.end()) throw Exception(ErrorCodes::LOGICAL_ERROR, "Index for ActionsDAG does not contain filter column name {}. DAG:\n{}", column_name, dumpDAG()); std::unordered_set split_nodes = {*it}; return split(split_nodes); } namespace { struct ConjunctionNodes { ActionsDAG::NodeRawConstPtrs allowed; ActionsDAG::NodeRawConstPtrs rejected; }; /// Take a node which result is predicate. /// Assuming predicate is a conjunction (probably, trivial). /// Find separate conjunctions nodes. Split nodes into allowed and rejected sets. /// Allowed predicate is a predicate which can be calculated using only nodes from allowed_nodes set. ConjunctionNodes getConjunctionNodes(ActionsDAG::Node * predicate, std::unordered_set allowed_nodes) { ConjunctionNodes conjunction; std::unordered_set allowed; std::unordered_set rejected; struct Frame { const ActionsDAG::Node * node; bool is_predicate = false; size_t next_child_to_visit = 0; size_t num_allowed_children = 0; }; std::stack stack; std::unordered_set visited_nodes; stack.push(Frame{.node = predicate, .is_predicate = true}); visited_nodes.insert(predicate); while (!stack.empty()) { auto & cur = stack.top(); bool is_conjunction = cur.is_predicate && cur.node->type == ActionsDAG::ActionType::FUNCTION && cur.node->function_base->getName() == "and"; /// At first, visit all children. while (cur.next_child_to_visit < cur.node->children.size()) { const auto * child = cur.node->children[cur.next_child_to_visit]; if (visited_nodes.count(child) == 0) { visited_nodes.insert(child); stack.push({.node = child, .is_predicate = is_conjunction}); break; } if (allowed_nodes.contains(child)) ++cur.num_allowed_children; ++cur.next_child_to_visit; } if (cur.next_child_to_visit == cur.node->children.size()) { if (cur.num_allowed_children == cur.node->children.size()) { if (cur.node->type != ActionsDAG::ActionType::ARRAY_JOIN && cur.node->type != ActionsDAG::ActionType::INPUT) allowed_nodes.emplace(cur.node); } else if (is_conjunction) { for (const auto * child : cur.node->children) { if (allowed_nodes.count(child)) { if (allowed.insert(child).second) conjunction.allowed.push_back(child); } } } else if (cur.is_predicate) { if (rejected.insert(cur.node).second) conjunction.rejected.push_back(cur.node); } stack.pop(); } } if (conjunction.allowed.empty()) { /// If nothing was added to conjunction, check if it is trivial. if (allowed_nodes.count(predicate)) conjunction.allowed.push_back(predicate); } return conjunction; } ColumnsWithTypeAndName prepareFunctionArguments(const ActionsDAG::NodeRawConstPtrs & nodes) { ColumnsWithTypeAndName arguments; arguments.reserve(nodes.size()); for (const auto * child : nodes) { ColumnWithTypeAndName argument; argument.column = child->column; argument.type = child->result_type; argument.name = child->result_name; arguments.emplace_back(std::move(argument)); } return arguments; } } /// Create actions which calculate conjunction of selected nodes. /// Assume conjunction nodes are predicates (and may be used as arguments of function AND). /// /// Result actions add single column with conjunction result (it is always last in index). /// No other columns are added or removed. ActionsDAGPtr ActionsDAG::cloneActionsForConjunction(NodeRawConstPtrs conjunction) { if (conjunction.empty()) return nullptr; auto actions = std::make_shared(); FunctionOverloadResolverPtr func_builder_and = std::make_shared( std::make_unique( std::make_shared())); std::unordered_map nodes_mapping; struct Frame { const ActionsDAG::Node * node; size_t next_child_to_visit = 0; }; std::stack stack; /// DFS. Clone actions. for (const auto * predicate : conjunction) { if (nodes_mapping.count(predicate)) continue; stack.push({.node = predicate}); while (!stack.empty()) { auto & cur = stack.top(); /// At first, visit all children. while (cur.next_child_to_visit < cur.node->children.size()) { const auto * child = cur.node->children[cur.next_child_to_visit]; if (nodes_mapping.count(child) == 0) { stack.push({.node = child}); break; } ++cur.next_child_to_visit; } if (cur.next_child_to_visit == cur.node->children.size()) { auto & node = actions->nodes.emplace_back(*cur.node); nodes_mapping[cur.node] = &node; for (auto & child : node.children) child = nodes_mapping[child]; if (node.type == ActionType::INPUT) { actions->inputs.emplace_back(&node); actions->index.push_back(&node); } stack.pop(); } } } const Node * result_predicate = nodes_mapping[*conjunction.begin()]; if (conjunction.size() > 1) { NodeRawConstPtrs args; args.reserve(conjunction.size()); for (const auto * predicate : conjunction) args.emplace_back(nodes_mapping[predicate]); result_predicate = &actions->addFunction(func_builder_and, std::move(args), {}); } actions->index.push_back(result_predicate); return actions; } ActionsDAGPtr ActionsDAG::splitActionsForFilter(const std::string & filter_name, bool can_remove_filter, const Names & available_inputs) { Node * predicate; { auto it = index.begin(); for (; it != index.end(); ++it) if ((*it)->result_name == filter_name) break; if (it == index.end()) throw Exception(ErrorCodes::LOGICAL_ERROR, "Index for ActionsDAG does not contain filter column name {}. DAG:\n{}", filter_name, dumpDAG()); predicate = const_cast(*it); } std::unordered_set allowed_nodes; /// Get input nodes from available_inputs names. { std::unordered_map> inputs_map; for (const auto & input : inputs) inputs_map[input->result_name].emplace_back(input); for (const auto & name : available_inputs) { auto & inputs_list = inputs_map[name]; if (inputs_list.empty()) continue; allowed_nodes.emplace(inputs_list.front()); inputs_list.pop_front(); } } auto conjunction = getConjunctionNodes(predicate, allowed_nodes); auto actions = cloneActionsForConjunction(conjunction.allowed); if (!actions) return nullptr; /// Now, when actions are created, update current DAG. if (conjunction.rejected.empty()) { /// The whole predicate was split. if (can_remove_filter) { /// If filter column is not needed, remove it from index. for (auto i = index.begin(); i != index.end(); ++i) { if (*i == predicate) { index.erase(i); break; } } } else { /// Replace predicate result to constant 1. Node node; node.type = ActionType::COLUMN; node.result_name = std::move(predicate->result_name); node.result_type = std::move(predicate->result_type); node.column = node.result_type->createColumnConst(0, 1); *predicate = std::move(node); } removeUnusedActions(false); } else { /// Predicate is conjunction, where both allowed and rejected sets are not empty. /// Replace this node to conjunction of rejected predicates. NodeRawConstPtrs new_children = std::move(conjunction.rejected); if (new_children.size() == 1) { /// Rejected set has only one predicate. if (new_children.front()->result_type->equals(*predicate->result_type)) { /// If it's type is same, just add alias. Node node; node.type = ActionType::ALIAS; node.result_name = predicate->result_name; node.result_type = predicate->result_type; node.children.swap(new_children); *predicate = std::move(node); } else { /// If type is different, cast column. /// This case is possible, cause AND can use any numeric type as argument. Node node; node.type = ActionType::COLUMN; node.result_name = predicate->result_type->getName(); node.column = DataTypeString().createColumnConst(0, node.result_name); node.result_type = std::make_shared(); const auto * right_arg = &nodes.emplace_back(std::move(node)); const auto * left_arg = new_children.front(); predicate->children = {left_arg, right_arg}; auto arguments = prepareFunctionArguments(predicate->children); FunctionOverloadResolverPtr func_builder_cast = std::make_shared( CastOverloadResolver::createImpl(false)); predicate->function_builder = func_builder_cast; predicate->function_base = predicate->function_builder->build(arguments); predicate->function = predicate->function_base->prepare(arguments); } } else { /// Predicate is function AND, which still have more then one argument. /// Just update children and rebuild it. predicate->children.swap(new_children); auto arguments = prepareFunctionArguments(predicate->children); predicate->function_base = predicate->function_builder->build(arguments); predicate->function = predicate->function_base->prepare(arguments); } removeUnusedActions(false); } return actions; } }