#pragma once #include #if !defined(__APPLE__) && !defined(__FreeBSD__) #include #endif #include #include #include #include #include #include #include #include /** Radix sort, has the following functionality: * Can sort unsigned, signed numbers, and floats. * Can sort an array of fixed length elements that contain something else besides the key. * Customizable radix size. * * LSB, stable. * NOTE For some applications it makes sense to add MSB-radix-sort, * as well as radix-select, radix-partial-sort, radix-get-permutation algorithms based on it. */ /** Used as a template parameter. See below. */ struct RadixSortMallocAllocator { void * allocate(size_t size) { return malloc(size); } void deallocate(void * ptr, size_t /*size*/) { return free(ptr); } }; /** A transformation that transforms the bit representation of a key into an unsigned integer number, * that the order relation over the keys will match the order relation over the obtained unsigned numbers. * For floats this conversion does the following: * if the signed bit is set, it flips all other bits. * In this case, NaN-s are bigger than all normal numbers. */ template struct RadixSortFloatTransform { /// Is it worth writing the result in memory, or is it better to do calculation every time again? static constexpr bool transform_is_simple = false; static KeyBits forward(KeyBits x) { return x ^ ((-(x >> (sizeof(KeyBits) * 8 - 1))) | (KeyBits(1) << (sizeof(KeyBits) * 8 - 1))); } static KeyBits backward(KeyBits x) { return x ^ (((x >> (sizeof(KeyBits) * 8 - 1)) - 1) | (KeyBits(1) << (sizeof(KeyBits) * 8 - 1))); } }; template struct RadixSortFloatTraits { using Element = TElement; /// The type of the element. It can be a structure with a key and some other payload. Or just a key. using Key = Element; /// The key to sort by. using CountType = uint32_t; /// Type for calculating histograms. In the case of a known small number of elements, it can be less than size_t. /// The type to which the key is transformed to do bit operations. This UInt is the same size as the key. using KeyBits = std::conditional_t; static constexpr size_t PART_SIZE_BITS = 8; /// With what pieces of the key, in bits, to do one pass - reshuffle of the array. /// Converting a key into KeyBits is such that the order relation over the key corresponds to the order relation over KeyBits. using Transform = RadixSortFloatTransform; /// An object with the functions allocate and deallocate. /// Can be used, for example, to allocate memory for a temporary array on the stack. /// To do this, the allocator itself is created on the stack. using Allocator = RadixSortMallocAllocator; /// The function to get the key from an array element. static Key & extractKey(Element & elem) { return elem; } /// Used when fallback to comparison based sorting is needed. /// TODO: Correct handling of NaNs, NULLs, etc static bool less(Key x, Key y) { return x < y; } }; template struct RadixSortIdentityTransform { static constexpr bool transform_is_simple = true; static KeyBits forward(KeyBits x) { return x; } static KeyBits backward(KeyBits x) { return x; } }; template struct RadixSortUIntTraits { using Element = TElement; using Key = Element; using CountType = uint32_t; using KeyBits = Key; static constexpr size_t PART_SIZE_BITS = 8; using Transform = RadixSortIdentityTransform; using Allocator = RadixSortMallocAllocator; static Key & extractKey(Element & elem) { return elem; } static bool less(Key x, Key y) { return x < y; } }; template struct RadixSortSignedTransform { static constexpr bool transform_is_simple = true; static KeyBits forward(KeyBits x) { return x ^ (KeyBits(1) << (sizeof(KeyBits) * 8 - 1)); } static KeyBits backward(KeyBits x) { return x ^ (KeyBits(1) << (sizeof(KeyBits) * 8 - 1)); } }; template struct RadixSortIntTraits { using Element = TElement; using Key = Element; using CountType = uint32_t; using KeyBits = std::make_unsigned_t; static constexpr size_t PART_SIZE_BITS = 8; using Transform = RadixSortSignedTransform; using Allocator = RadixSortMallocAllocator; static Key & extractKey(Element & elem) { return elem; } static bool less(Key x, Key y) { return x < y; } }; template using RadixSortNumTraits = std::conditional_t< is_integral_v, std::conditional_t, RadixSortUIntTraits, RadixSortIntTraits>, RadixSortFloatTraits>; template struct RadixSort { private: using Element = typename Traits::Element; using Key = typename Traits::Key; using CountType = typename Traits::CountType; using KeyBits = typename Traits::KeyBits; // Use insertion sort if the size of the array is less than equal to this threshold static constexpr size_t INSERTION_SORT_THRESHOLD = 64; static constexpr size_t HISTOGRAM_SIZE = 1 << Traits::PART_SIZE_BITS; static constexpr size_t PART_BITMASK = HISTOGRAM_SIZE - 1; static constexpr size_t KEY_BITS = sizeof(Key) * 8; static constexpr size_t NUM_PASSES = (KEY_BITS + (Traits::PART_SIZE_BITS - 1)) / Traits::PART_SIZE_BITS; static ALWAYS_INLINE KeyBits getPart(size_t N, KeyBits x) { if (Traits::Transform::transform_is_simple) x = Traits::Transform::forward(x); return (x >> (N * Traits::PART_SIZE_BITS)) & PART_BITMASK; } static KeyBits keyToBits(Key x) { return ext::bit_cast(x); } static Key bitsToKey(KeyBits x) { return ext::bit_cast(x); } static void insertionSortInternal(Element *arr, size_t size) { Element * end = arr + size; for (Element * i = arr + 1; i < end; ++i) { if (Traits::less(Traits::extractKey(*i), Traits::extractKey(*(i - 1)))) { Element * j; Element tmp = *i; *i = *(i - 1); for (j = i - 1; j > arr && Traits::less(Traits::extractKey(tmp), Traits::extractKey(*(j - 1))); --j) *j = *(j - 1); *j = tmp; } } } /* Main MSD radix sort subroutine * Puts elements to buckets based on PASS-th digit, then recursively calls insertion sort or itself on the buckets */ template static inline void radixSortMSDInternal(Element * arr, size_t size, size_t limit) { Element * last_list[HISTOGRAM_SIZE + 1]; Element ** last = last_list + 1; size_t count[HISTOGRAM_SIZE] = {0}; for (Element * i = arr; i < arr + size; ++i) ++count[getPart(PASS, *i)]; last_list[0] = last_list[1] = arr; size_t buckets_for_recursion = HISTOGRAM_SIZE; Element * finish = arr + size; for (size_t i = 1; i < HISTOGRAM_SIZE; ++i) { last[i] = last[i - 1] + count[i - 1]; if (last[i] >= arr + limit) { buckets_for_recursion = i; finish = last[i]; } } /* At this point, we have the following variables: * count[i] is the size of i-th bucket * last[i] is a pointer to the beginning of i-th bucket, last[-1] == last[0] * buckets_for_recursion is the number of buckets that should be sorted, the last of them only partially * finish is a pointer to the end of the first buckets_for_recursion buckets */ // Scatter array elements to buckets until the first buckets_for_recursion buckets are full for (size_t i = 0; i < buckets_for_recursion; ++i) { Element * end = last[i - 1] + count[i]; if (end == finish) { last[i] = end; break; } while (last[i] != end) { Element swapper = *last[i]; KeyBits tag = getPart(PASS, swapper); if (tag != i) { do { std::swap(swapper, *last[tag]++); } while ((tag = getPart(PASS, swapper)) != i); *last[i] = swapper; } ++last[i]; } } if constexpr (PASS > 0) { // Recursively sort buckets, except the last one for (size_t i = 0; i < buckets_for_recursion - 1; ++i) { Element * start = last[i - 1]; size_t subsize = last[i] - last[i - 1]; radixSortMSDInternalHelper(start, subsize, subsize); } // Sort last necessary bucket with limit Element * start = last[buckets_for_recursion - 2]; size_t subsize = last[buckets_for_recursion - 1] - last[buckets_for_recursion - 2]; size_t sublimit = limit - (last[buckets_for_recursion - 1] - arr); radixSortMSDInternalHelper(start, subsize, sublimit); } } // A helper to choose sorting algorithm based on array length template static inline void radixSortMSDInternalHelper(Element * arr, size_t size, size_t limit) { if (size <= INSERTION_SORT_THRESHOLD) insertionSortInternal(arr, size); else radixSortMSDInternal(arr, size, limit); } public: /// Least significant digit radix sort (stable) static void executeLSD(Element * arr, size_t size) { /// If the array is smaller than 256, then it is better to use another algorithm. /// There are loops of NUM_PASSES. It is very important that they are unfolded at compile-time. /// For each of the NUM_PASSES bit ranges of the key, consider how many times each value of this bit range met. CountType histograms[HISTOGRAM_SIZE * NUM_PASSES] = {0}; typename Traits::Allocator allocator; /// We will do several passes through the array. On each pass, the data is transferred to another array. Let's allocate this temporary array. Element * swap_buffer = reinterpret_cast(allocator.allocate(size * sizeof(Element))); /// Transform the array and calculate the histogram. /// NOTE This is slightly suboptimal. Look at https://github.com/powturbo/TurboHist for (size_t i = 0; i < size; ++i) { if (!Traits::Transform::transform_is_simple) Traits::extractKey(arr[i]) = bitsToKey(Traits::Transform::forward(keyToBits(Traits::extractKey(arr[i])))); for (size_t pass = 0; pass < NUM_PASSES; ++pass) ++histograms[pass * HISTOGRAM_SIZE + getPart(pass, keyToBits(Traits::extractKey(arr[i])))]; } { /// Replace the histograms with the accumulated sums: the value in position i is the sum of the previous positions minus one. size_t sums[NUM_PASSES] = {0}; for (size_t i = 0; i < HISTOGRAM_SIZE; ++i) { for (size_t pass = 0; pass < NUM_PASSES; ++pass) { size_t tmp = histograms[pass * HISTOGRAM_SIZE + i] + sums[pass]; histograms[pass * HISTOGRAM_SIZE + i] = sums[pass] - 1; sums[pass] = tmp; } } } /// Move the elements in the order starting from the least bit piece, and then do a few passes on the number of pieces. for (size_t pass = 0; pass < NUM_PASSES; ++pass) { Element * writer = pass % 2 ? arr : swap_buffer; Element * reader = pass % 2 ? swap_buffer : arr; for (size_t i = 0; i < size; ++i) { size_t pos = getPart(pass, keyToBits(Traits::extractKey(reader[i]))); /// Place the element on the next free position. auto & dest = writer[++histograms[pass * HISTOGRAM_SIZE + pos]]; dest = reader[i]; /// On the last pass, we do the reverse transformation. if (!Traits::Transform::transform_is_simple && pass == NUM_PASSES - 1) Traits::extractKey(dest) = bitsToKey(Traits::Transform::backward(keyToBits(Traits::extractKey(reader[i])))); } } /// If the number of passes is odd, the result array is in a temporary buffer. Copy it to the place of the original array. /// NOTE Sometimes it will be more optimal to provide non-destructive interface, that will not modify original array. if (NUM_PASSES % 2) memcpy(arr, swap_buffer, size * sizeof(Element)); allocator.deallocate(swap_buffer, size * sizeof(Element)); } /* Most significant digit radix sort * Usually slower than LSD and is not stable, but allows partial sorting * * Based on https://github.com/voutcn/kxsort, license: * The MIT License * Copyright (c) 2016 Dinghua Li * * Permission is hereby granted, free of charge, to any person obtaining * a copy of this software and associated documentation files (the * "Software"), to deal in the Software without restriction, including * without limitation the rights to use, copy, modify, merge, publish, * distribute, sublicense, and/or sell copies of the Software, and to * permit persons to whom the Software is furnished to do so, subject to * the following conditions: * * The above copyright notice and this permission notice shall be * included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ static void executeMSD(Element * arr, size_t size, size_t limit) { limit = std::min(limit, size); radixSortMSDInternalHelper(arr, size, limit); } }; /// Helper functions for numeric types. /// Use RadixSort with custom traits for complex types instead. template void radixSortLSD(T *arr, size_t size) { RadixSort>::executeLSD(arr, size); } template void radixSortMSD(T *arr, size_t size, size_t limit) { RadixSort>::executeMSD(arr, size, limit); }