#include #include #include #include #include namespace DB { namespace ErrorCodes { extern const int TOO_MUCH_ROWS; extern const int TOO_MUCH_BYTES; extern const int TIMEOUT_EXCEEDED; extern const int TOO_SLOW; extern const int LOGICAL_ERROR; } IProfilingBlockInputStream::IProfilingBlockInputStream() { info.parent = this; } Block IProfilingBlockInputStream::read() { collectAndSendTotalRowsApprox(); if (!info.started) { info.total_stopwatch.start(); info.started = true; } Block res; if (is_cancelled.load(std::memory_order_seq_cst)) return res; if (!limit_exceeded_need_break) res = readImpl(); if (res) { info.update(res); if (enabled_extremes) updateExtremes(res); if (!checkLimits()) limit_exceeded_need_break = true; if (quota != nullptr) checkQuota(res); } else { /** If the thread is over, then we will ask all children to abort the execution. * This makes sense when running a query with LIMIT * - there is a situation when all the necessary data has already been read, * but `children sources are still working, * herewith they can work in separate threads or even remotely. */ cancel(); } progress(Progress(res.rows(), res.bytes())); return res; } void IProfilingBlockInputStream::readPrefix() { readPrefixImpl(); for (auto & child : children) child->readPrefix(); } void IProfilingBlockInputStream::readSuffix() { for (auto & child : children) child->readSuffix(); readSuffixImpl(); } void IProfilingBlockInputStream::updateExtremes(Block & block) { size_t columns = block.columns(); if (!extremes) { extremes = block.cloneEmpty(); for (size_t i = 0; i < columns; ++i) { Field min_value; Field max_value; block.safeGetByPosition(i).column->getExtremes(min_value, max_value); ColumnPtr & column = extremes.safeGetByPosition(i).column; if (auto converted = column->convertToFullColumnIfConst()) column = converted; column->insert(min_value); column->insert(max_value); } } else { for (size_t i = 0; i < columns; ++i) { ColumnPtr & column = extremes.safeGetByPosition(i).column; Field min_value = (*column)[0]; Field max_value = (*column)[1]; Field cur_min_value; Field cur_max_value; block.safeGetByPosition(i).column->getExtremes(cur_min_value, cur_max_value); if (cur_min_value < min_value) min_value = cur_min_value; if (cur_max_value > max_value) max_value = cur_max_value; column = column->cloneEmpty(); column->insert(min_value); column->insert(max_value); } } } bool IProfilingBlockInputStream::checkLimits() { auto handle_overflow_mode = [] (OverflowMode mode, const String & message, int code) { switch (mode) { case OverflowMode::THROW: throw Exception(message, code); case OverflowMode::BREAK: return false; default: throw Exception("Logical error: unknown overflow mode", ErrorCodes::LOGICAL_ERROR); } }; if (limits.mode == LIMITS_CURRENT) { /// Check current stream limitations (i.e. max_result_{rows,bytes}) if (limits.max_rows_to_read && info.rows > limits.max_rows_to_read) return handle_overflow_mode(limits.read_overflow_mode, std::string("Limit for result rows") + " exceeded: read " + toString(info.rows) + " rows, maximum: " + toString(limits.max_rows_to_read), ErrorCodes::TOO_MUCH_ROWS); if (limits.max_bytes_to_read && info.bytes > limits.max_bytes_to_read) return handle_overflow_mode(limits.read_overflow_mode, std::string("Limit for result bytes (uncompressed)") + " exceeded: read " + toString(info.bytes) + " bytes, maximum: " + toString(limits.max_bytes_to_read), ErrorCodes::TOO_MUCH_BYTES); } if (limits.max_execution_time != 0 && info.total_stopwatch.elapsed() > static_cast(limits.max_execution_time.totalMicroseconds()) * 1000) return handle_overflow_mode(limits.timeout_overflow_mode, "Timeout exceeded: elapsed " + toString(info.total_stopwatch.elapsedSeconds()) + " seconds, maximum: " + toString(limits.max_execution_time.totalMicroseconds() / 1000000.0), ErrorCodes::TIMEOUT_EXCEEDED); return true; } void IProfilingBlockInputStream::checkQuota(Block & block) { switch (limits.mode) { case LIMITS_TOTAL: /// Checked in `progress` method. break; case LIMITS_CURRENT: { time_t current_time = time(nullptr); double total_elapsed = info.total_stopwatch.elapsedSeconds(); quota->checkAndAddResultRowsBytes(current_time, block.rows(), block.bytes()); quota->checkAndAddExecutionTime(current_time, Poco::Timespan((total_elapsed - prev_elapsed) * 1000000.0)); prev_elapsed = total_elapsed; break; } default: throw Exception("Logical error: unknown limits mode.", ErrorCodes::LOGICAL_ERROR); } } void IProfilingBlockInputStream::progressImpl(const Progress & value) { if (progress_callback) progress_callback(value); if (process_list_elem) { if (!process_list_elem->updateProgressIn(value)) cancel(); /// The total amount of data processed or intended for processing in all leaf sources, possibly on remote servers. size_t rows_processed = process_list_elem->progress_in.rows; size_t bytes_processed = process_list_elem->progress_in.bytes; size_t total_rows_estimate = std::max(rows_processed, process_list_elem->progress_in.total_rows.load(std::memory_order_relaxed)); /** Check the restrictions on the amount of data to read, the speed of the query, the quota on the amount of data to read. * NOTE: Maybe it makes sense to have them checked directly in ProcessList? */ if (limits.mode == LIMITS_TOTAL && ((limits.max_rows_to_read && total_rows_estimate > limits.max_rows_to_read) || (limits.max_bytes_to_read && bytes_processed > limits.max_bytes_to_read))) { switch (limits.read_overflow_mode) { case OverflowMode::THROW: { if (limits.max_rows_to_read && total_rows_estimate > limits.max_rows_to_read) throw Exception("Limit for rows to read exceeded: " + toString(total_rows_estimate) + " rows read (or to read), maximum: " + toString(limits.max_rows_to_read), ErrorCodes::TOO_MUCH_ROWS); else throw Exception("Limit for (uncompressed) bytes to read exceeded: " + toString(bytes_processed) + " bytes read, maximum: " + toString(limits.max_bytes_to_read), ErrorCodes::TOO_MUCH_BYTES); break; } case OverflowMode::BREAK: { /// For `break`, we will stop only if so many lines were actually read, and not just supposed to be read. if ((limits.max_rows_to_read && rows_processed > limits.max_rows_to_read) || (limits.max_bytes_to_read && bytes_processed > limits.max_bytes_to_read)) { cancel(); } break; } default: throw Exception("Logical error: unknown overflow mode", ErrorCodes::LOGICAL_ERROR); } } size_t total_rows = process_list_elem->progress_in.total_rows; if (limits.min_execution_speed || (total_rows && limits.timeout_before_checking_execution_speed != 0)) { double total_elapsed = info.total_stopwatch.elapsedSeconds(); if (total_elapsed > limits.timeout_before_checking_execution_speed.totalMicroseconds() / 1000000.0) { if (limits.min_execution_speed && rows_processed / total_elapsed < limits.min_execution_speed) throw Exception("Query is executing too slow: " + toString(rows_processed / total_elapsed) + " rows/sec., minimum: " + toString(limits.min_execution_speed), ErrorCodes::TOO_SLOW); size_t total_rows = process_list_elem->progress_in.total_rows; /// If the predicted execution time is longer than `max_execution_time`. if (limits.max_execution_time != 0 && total_rows) { double estimated_execution_time_seconds = total_elapsed * (static_cast(total_rows) / rows_processed); if (estimated_execution_time_seconds > limits.max_execution_time.totalSeconds()) throw Exception("Estimated query execution time (" + toString(estimated_execution_time_seconds) + " seconds)" + " is too long. Maximum: " + toString(limits.max_execution_time.totalSeconds()) + ". Estimated rows to process: " + toString(total_rows), ErrorCodes::TOO_SLOW); } } } if (quota != nullptr && limits.mode == LIMITS_TOTAL) { quota->checkAndAddReadRowsBytes(time(0), value.rows, value.bytes); } } } void IProfilingBlockInputStream::cancel() { bool old_val = false; if (!is_cancelled.compare_exchange_strong(old_val, true, std::memory_order_seq_cst, std::memory_order_relaxed)) return; for (auto & child : children) if (IProfilingBlockInputStream * p_child = dynamic_cast(&*child)) p_child->cancel(); } void IProfilingBlockInputStream::setProgressCallback(const ProgressCallback & callback) { progress_callback = callback; for (auto & child : children) if (IProfilingBlockInputStream * p_child = dynamic_cast(&*child)) p_child->setProgressCallback(callback); } void IProfilingBlockInputStream::setProcessListElement(ProcessListElement * elem) { process_list_elem = elem; for (auto & child : children) if (IProfilingBlockInputStream * p_child = dynamic_cast(&*child)) p_child->setProcessListElement(elem); } const Block & IProfilingBlockInputStream::getTotals() { if (totals) return totals; for (auto & child : children) { if (IProfilingBlockInputStream * p_child = dynamic_cast(&*child)) { const Block & res = p_child->getTotals(); if (res) return res; } } return totals; } const Block & IProfilingBlockInputStream::getExtremes() const { if (extremes) return extremes; for (const auto & child : children) { if (const IProfilingBlockInputStream * p_child = dynamic_cast(&*child)) { const Block & res = p_child->getExtremes(); if (res) return res; } } return extremes; } void IProfilingBlockInputStream::collectTotalRowsApprox() { if (collected_total_rows_approx) return; collected_total_rows_approx = true; for (auto & child : children) { if (IProfilingBlockInputStream * p_child = dynamic_cast(&*child)) { p_child->collectTotalRowsApprox(); total_rows_approx += p_child->total_rows_approx; } } } void IProfilingBlockInputStream::collectAndSendTotalRowsApprox() { if (collected_total_rows_approx) return; collectTotalRowsApprox(); progressImpl(Progress(0, 0, total_rows_approx)); } }