#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace fs = std::filesystem; namespace { const UInt64 FORCE_OPTIMIZE_SKIP_UNUSED_SHARDS_HAS_SHARDING_KEY = 1; const UInt64 FORCE_OPTIMIZE_SKIP_UNUSED_SHARDS_ALWAYS = 2; const UInt64 DISTRIBUTED_GROUP_BY_NO_MERGE_AFTER_AGGREGATION = 2; const UInt64 PARALLEL_DISTRIBUTED_INSERT_SELECT_ALL = 2; } namespace ProfileEvents { extern const Event DistributedRejectedInserts; extern const Event DistributedDelayedInserts; extern const Event DistributedDelayedInsertsMilliseconds; } namespace DB { namespace ErrorCodes { extern const int LOGICAL_ERROR; extern const int NOT_IMPLEMENTED; extern const int STORAGE_REQUIRES_PARAMETER; extern const int BAD_ARGUMENTS; extern const int NUMBER_OF_ARGUMENTS_DOESNT_MATCH; extern const int INCORRECT_NUMBER_OF_COLUMNS; extern const int INFINITE_LOOP; extern const int TYPE_MISMATCH; extern const int TOO_MANY_ROWS; extern const int UNABLE_TO_SKIP_UNUSED_SHARDS; extern const int INVALID_SHARD_ID; extern const int ALTER_OF_COLUMN_IS_FORBIDDEN; extern const int DISTRIBUTED_TOO_MANY_PENDING_BYTES; extern const int ARGUMENT_OUT_OF_BOUND; } namespace ActionLocks { extern const StorageActionBlockType DistributedSend; } namespace { /// select query has database, table and table function names as AST pointers /// Creates a copy of query, changes database, table and table function names. ASTPtr rewriteSelectQuery(const ASTPtr & query, const std::string & database, const std::string & table, ASTPtr table_function_ptr = nullptr) { auto modified_query_ast = query->clone(); ASTSelectQuery & select_query = modified_query_ast->as(); // Get rid of the settings clause so we don't send them to remote. Thus newly non-important // settings won't break any remote parser. It's also more reasonable since the query settings // are written into the query context and will be sent by the query pipeline. select_query.setExpression(ASTSelectQuery::Expression::SETTINGS, {}); if (table_function_ptr) select_query.addTableFunction(table_function_ptr); else select_query.replaceDatabaseAndTable(database, table); /// Restore long column names (cause our short names are ambiguous). /// TODO: aliased table functions & CREATE TABLE AS table function cases if (!table_function_ptr) { RestoreQualifiedNamesVisitor::Data data; data.distributed_table = DatabaseAndTableWithAlias(*getTableExpression(query->as(), 0)); data.remote_table.database = database; data.remote_table.table = table; data.rename = true; RestoreQualifiedNamesVisitor(data).visit(modified_query_ast); } return modified_query_ast; } /// The columns list in the original INSERT query is incorrect because inserted blocks are transformed /// to the form of the sample block of the Distributed table. So we rewrite it and add all columns from /// the sample block instead. ASTPtr createInsertToRemoteTableQuery(const std::string & database, const std::string & table, const Block & sample_block) { auto query = std::make_shared(); query->table_id = StorageID(database, table); auto columns = std::make_shared(); query->columns = columns; query->children.push_back(columns); for (const auto & col : sample_block) columns->children.push_back(std::make_shared(col.name)); return query; } /// Calculate maximum number in file names in directory and all subdirectories. /// To ensure global order of data blocks yet to be sent across server restarts. UInt64 getMaximumFileNumber(const std::string & dir_path) { UInt64 res = 0; std::filesystem::recursive_directory_iterator begin(dir_path); std::filesystem::recursive_directory_iterator end; for (auto it = begin; it != end; ++it) { const auto & file_path = it->path(); if (!std::filesystem::is_regular_file(*it) || !endsWith(file_path.filename().string(), ".bin")) continue; UInt64 num = 0; try { num = parse(file_path.filename().stem().string()); } catch (Exception & e) { e.addMessage("Unexpected file name " + file_path.filename().string() + " found at " + file_path.parent_path().string() + ", should have numeric base name."); throw; } if (num > res) res = num; } return res; } std::string makeFormattedListOfShards(const ClusterPtr & cluster) { WriteBufferFromOwnString buf; bool head = true; buf << "["; for (const auto & shard_info : cluster->getShardsInfo()) { (head ? buf : buf << ", ") << shard_info.shard_num; head = false; } buf << "]"; return buf.str(); } ExpressionActionsPtr buildShardingKeyExpression(const ASTPtr & sharding_key, ContextPtr context, const NamesAndTypesList & columns, bool project) { ASTPtr query = sharding_key; auto syntax_result = TreeRewriter(context).analyze(query, columns); return ExpressionAnalyzer(query, syntax_result, context).getActions(project); } bool isExpressionActionsDeterministics(const ExpressionActionsPtr & actions) { for (const auto & action : actions->getActions()) { if (action.node->type != ActionsDAG::ActionType::FUNCTION) continue; if (!action.node->function_base->isDeterministic()) return false; } return true; } class ReplacingConstantExpressionsMatcher { public: using Data = Block; static bool needChildVisit(ASTPtr &, const ASTPtr &) { return true; } static void visit(ASTPtr & node, Block & block_with_constants) { if (!node->as()) return; std::string name = node->getColumnName(); if (block_with_constants.has(name)) { auto result = block_with_constants.getByName(name); if (!isColumnConst(*result.column)) return; node = std::make_shared(assert_cast(*result.column).getField()); } } }; void replaceConstantExpressions( ASTPtr & node, ContextPtr context, const NamesAndTypesList & columns, ConstStoragePtr storage, const StorageMetadataPtr & metadata_snapshot) { auto syntax_result = TreeRewriter(context).analyze(node, columns, storage, metadata_snapshot); Block block_with_constants = KeyCondition::getBlockWithConstants(node, syntax_result, context); InDepthNodeVisitor visitor(block_with_constants); visitor.visit(node); } /// This is the implementation of optimize_distributed_group_by_sharding_key. /// It returns up to which stage the query can be processed on a shard, which /// is one of the following: /// - QueryProcessingStage::Complete /// - QueryProcessingStage::WithMergeableStateAfterAggregation /// - QueryProcessingStage::WithMergeableStateAfterAggregationAndLimit /// - none (in this case regular WithMergeableState should be used) std::optional getOptimizedQueryProcessingStage(const SelectQueryInfo & query_info, bool extremes, const Block & sharding_key_block) { const auto & select = query_info.query->as(); auto sharding_block_has = [&](const auto & exprs, size_t limit = SIZE_MAX) -> bool { size_t i = 0; for (auto & expr : exprs) { ++i; if (i > limit) break; auto id = expr->template as(); if (!id) return false; /// TODO: if GROUP BY contains multiIf()/if() it should contain only columns from sharding_key if (!sharding_key_block.has(id->name())) return false; } return true; }; // GROUP BY qualifiers // - TODO: WITH TOTALS can be implemented // - TODO: WITH ROLLUP can be implemented (I guess) if (select.group_by_with_totals || select.group_by_with_rollup || select.group_by_with_cube) return {}; // Window functions are not supported. if (query_info.has_window) return {}; // TODO: extremes support can be implemented if (extremes) return {}; // DISTINCT if (select.distinct) { if (!sharding_block_has(select.select()->children)) return {}; } // GROUP BY const ASTPtr group_by = select.groupBy(); if (!group_by) { if (!select.distinct) return {}; } else { if (!sharding_block_has(group_by->children, 1)) return {}; } // ORDER BY const ASTPtr order_by = select.orderBy(); if (order_by) return QueryProcessingStage::WithMergeableStateAfterAggregationAndLimit; // LIMIT BY // LIMIT // OFFSET if (select.limitBy() || select.limitLength() || select.limitOffset()) return QueryProcessingStage::WithMergeableStateAfterAggregationAndLimit; // Only simple SELECT FROM GROUP BY sharding_key can use Complete state. return QueryProcessingStage::Complete; } size_t getClusterQueriedNodes(const Settings & settings, const ClusterPtr & cluster) { size_t num_local_shards = cluster->getLocalShardCount(); size_t num_remote_shards = cluster->getRemoteShardCount(); return (num_remote_shards * settings.max_parallel_replicas) + num_local_shards; } } /// For destruction of std::unique_ptr of type that is incomplete in class definition. StorageDistributed::~StorageDistributed() = default; NamesAndTypesList StorageDistributed::getVirtuals() const { /// NOTE This is weird. Most of these virtual columns are part of MergeTree /// tables info. But Distributed is general-purpose engine. return NamesAndTypesList{ NameAndTypePair("_table", std::make_shared()), NameAndTypePair("_part", std::make_shared()), NameAndTypePair("_part_index", std::make_shared()), NameAndTypePair("_part_uuid", std::make_shared()), NameAndTypePair("_partition_id", std::make_shared()), NameAndTypePair("_sample_factor", std::make_shared()), NameAndTypePair("_shard_num", std::make_shared()), }; } StorageDistributed::StorageDistributed( const StorageID & id_, const ColumnsDescription & columns_, const ConstraintsDescription & constraints_, const String & comment, const String & remote_database_, const String & remote_table_, const String & cluster_name_, ContextPtr context_, const ASTPtr & sharding_key_, const String & storage_policy_name_, const String & relative_data_path_, const DistributedSettings & distributed_settings_, bool attach_, ClusterPtr owned_cluster_) : IStorage(id_) , WithContext(context_->getGlobalContext()) , remote_database(remote_database_) , remote_table(remote_table_) , log(&Poco::Logger::get("StorageDistributed (" + id_.table_name + ")")) , owned_cluster(std::move(owned_cluster_)) , cluster_name(getContext()->getMacros()->expand(cluster_name_)) , has_sharding_key(sharding_key_) , relative_data_path(relative_data_path_) , distributed_settings(distributed_settings_) , rng(randomSeed()) { StorageInMemoryMetadata storage_metadata; storage_metadata.setColumns(columns_); storage_metadata.setConstraints(constraints_); storage_metadata.setComment(comment); setInMemoryMetadata(storage_metadata); if (sharding_key_) { sharding_key_expr = buildShardingKeyExpression(sharding_key_, getContext(), storage_metadata.getColumns().getAllPhysical(), false); sharding_key_column_name = sharding_key_->getColumnName(); sharding_key_is_deterministic = isExpressionActionsDeterministics(sharding_key_expr); } if (!relative_data_path.empty()) { storage_policy = getContext()->getStoragePolicy(storage_policy_name_); data_volume = storage_policy->getVolume(0); if (storage_policy->getVolumes().size() > 1) LOG_WARNING(log, "Storage policy for Distributed table has multiple volumes. " "Only {} volume will be used to store data. Other will be ignored.", data_volume->getName()); } /// Sanity check. Skip check if the table is already created to allow the server to start. if (!attach_ && !cluster_name.empty()) { size_t num_local_shards = getContext()->getCluster(cluster_name)->getLocalShardCount(); if (num_local_shards && remote_database == id_.database_name && remote_table == id_.table_name) throw Exception("Distributed table " + id_.table_name + " looks at itself", ErrorCodes::INFINITE_LOOP); } } StorageDistributed::StorageDistributed( const StorageID & id_, const ColumnsDescription & columns_, const ConstraintsDescription & constraints_, ASTPtr remote_table_function_ptr_, const String & cluster_name_, ContextPtr context_, const ASTPtr & sharding_key_, const String & storage_policy_name_, const String & relative_data_path_, const DistributedSettings & distributed_settings_, bool attach, ClusterPtr owned_cluster_) : StorageDistributed( id_, columns_, constraints_, String{}, String{}, String{}, cluster_name_, context_, sharding_key_, storage_policy_name_, relative_data_path_, distributed_settings_, attach, std::move(owned_cluster_)) { remote_table_function_ptr = std::move(remote_table_function_ptr_); } QueryProcessingStage::Enum StorageDistributed::getQueryProcessingStage( ContextPtr local_context, QueryProcessingStage::Enum to_stage, const StorageMetadataPtr & metadata_snapshot, SelectQueryInfo & query_info) const { const auto & settings = local_context->getSettingsRef(); ClusterPtr cluster = getCluster(); query_info.cluster = cluster; /// Always calculate optimized cluster here, to avoid conditions during read() /// (Anyway it will be calculated in the read()) if (getClusterQueriedNodes(settings, cluster) > 1 && settings.optimize_skip_unused_shards) { ClusterPtr optimized_cluster = getOptimizedCluster(local_context, metadata_snapshot, query_info.query); if (optimized_cluster) { LOG_DEBUG(log, "Skipping irrelevant shards - the query will be sent to the following shards of the cluster (shard numbers): {}", makeFormattedListOfShards(optimized_cluster)); cluster = optimized_cluster; query_info.optimized_cluster = cluster; } else { LOG_DEBUG(log, "Unable to figure out irrelevant shards from WHERE/PREWHERE clauses - the query will be sent to all shards of the cluster{}", has_sharding_key ? "" : " (no sharding key)"); } } if (settings.distributed_group_by_no_merge) { if (settings.distributed_group_by_no_merge == DISTRIBUTED_GROUP_BY_NO_MERGE_AFTER_AGGREGATION) { if (settings.distributed_push_down_limit) return QueryProcessingStage::WithMergeableStateAfterAggregationAndLimit; else return QueryProcessingStage::WithMergeableStateAfterAggregation; } else { /// NOTE: distributed_group_by_no_merge=1 does not respect distributed_push_down_limit /// (since in this case queries processed separatelly and the initiator is just a proxy in this case). return QueryProcessingStage::Complete; } } if (settings.distributed_push_down_limit) return QueryProcessingStage::WithMergeableStateAfterAggregationAndLimit; /// Nested distributed query cannot return Complete stage, /// since the parent query need to aggregate the results after. if (to_stage == QueryProcessingStage::WithMergeableState) return QueryProcessingStage::WithMergeableState; /// If there is only one node, the query can be fully processed by the /// shard, initiator will work as a proxy only. if (getClusterQueriedNodes(settings, cluster) == 1) return QueryProcessingStage::Complete; if (settings.optimize_skip_unused_shards && settings.optimize_distributed_group_by_sharding_key && has_sharding_key && (settings.allow_nondeterministic_optimize_skip_unused_shards || sharding_key_is_deterministic)) { Block sharding_key_block = sharding_key_expr->getSampleBlock(); auto stage = getOptimizedQueryProcessingStage(query_info, settings.extremes, sharding_key_block); if (stage) { LOG_DEBUG(log, "Force processing stage to {}", QueryProcessingStage::toString(*stage)); return *stage; } } return QueryProcessingStage::WithMergeableState; } Pipe StorageDistributed::read( const Names & column_names, const StorageMetadataPtr & metadata_snapshot, SelectQueryInfo & query_info, ContextPtr local_context, QueryProcessingStage::Enum processed_stage, const size_t max_block_size, const unsigned num_streams) { QueryPlan plan; read(plan, column_names, metadata_snapshot, query_info, local_context, processed_stage, max_block_size, num_streams); return plan.convertToPipe( QueryPlanOptimizationSettings::fromContext(local_context), BuildQueryPipelineSettings::fromContext(local_context)); } void StorageDistributed::read( QueryPlan & query_plan, const Names & column_names, const StorageMetadataPtr & metadata_snapshot, SelectQueryInfo & query_info, ContextPtr local_context, QueryProcessingStage::Enum processed_stage, const size_t /*max_block_size*/, const unsigned /*num_streams*/) { const auto & modified_query_ast = rewriteSelectQuery( query_info.query, remote_database, remote_table, remote_table_function_ptr); Block header = InterpreterSelectQuery(query_info.query, local_context, SelectQueryOptions(processed_stage).analyze()).getSampleBlock(); /// Return directly (with correct header) if no shard to query. if (query_info.getCluster()->getShardsInfo().empty()) { Pipe pipe(std::make_shared(header)); auto read_from_pipe = std::make_unique(std::move(pipe)); read_from_pipe->setStepDescription("Read from NullSource (Distributed)"); query_plan.addStep(std::move(read_from_pipe)); return; } const Scalars & scalars = local_context->hasQueryContext() ? local_context->getQueryContext()->getScalars() : Scalars{}; bool has_virtual_shard_num_column = std::find(column_names.begin(), column_names.end(), "_shard_num") != column_names.end(); if (has_virtual_shard_num_column && !isVirtualColumn("_shard_num", metadata_snapshot)) has_virtual_shard_num_column = false; ClusterProxy::SelectStreamFactory select_stream_factory = remote_table_function_ptr ? ClusterProxy::SelectStreamFactory( header, processed_stage, remote_table_function_ptr, scalars, has_virtual_shard_num_column, local_context->getExternalTables()) : ClusterProxy::SelectStreamFactory( header, processed_stage, StorageID{remote_database, remote_table}, scalars, has_virtual_shard_num_column, local_context->getExternalTables()); ClusterProxy::executeQuery(query_plan, select_stream_factory, log, modified_query_ast, local_context, query_info, sharding_key_expr, sharding_key_column_name, query_info.cluster); /// This is a bug, it is possible only when there is no shards to query, and this is handled earlier. if (!query_plan.isInitialized()) throw Exception("Pipeline is not initialized", ErrorCodes::LOGICAL_ERROR); } BlockOutputStreamPtr StorageDistributed::write(const ASTPtr &, const StorageMetadataPtr & metadata_snapshot, ContextPtr local_context) { auto cluster = getCluster(); const auto & settings = local_context->getSettingsRef(); /// Ban an attempt to make async insert into the table belonging to DatabaseMemory if (!storage_policy && !owned_cluster && !settings.insert_distributed_sync && !settings.insert_shard_id) { throw Exception("Storage " + getName() + " must have own data directory to enable asynchronous inserts", ErrorCodes::BAD_ARGUMENTS); } auto shard_num = cluster->getLocalShardCount() + cluster->getRemoteShardCount(); /// If sharding key is not specified, then you can only write to a shard containing only one shard if (!settings.insert_shard_id && !settings.insert_distributed_one_random_shard && !has_sharding_key && shard_num >= 2) { throw Exception( "Method write is not supported by storage " + getName() + " with more than one shard and no sharding key provided", ErrorCodes::STORAGE_REQUIRES_PARAMETER); } if (settings.insert_shard_id && settings.insert_shard_id > shard_num) { throw Exception("Shard id should be range from 1 to shard number", ErrorCodes::INVALID_SHARD_ID); } /// Force sync insertion if it is remote() table function bool insert_sync = settings.insert_distributed_sync || settings.insert_shard_id || owned_cluster; auto timeout = settings.insert_distributed_timeout; Block sample_block; if (!settings.insert_allow_materialized_columns) sample_block = metadata_snapshot->getSampleBlockNonMaterialized(); else sample_block = metadata_snapshot->getSampleBlock(); /// DistributedBlockOutputStream will not own cluster, but will own ConnectionPools of the cluster return std::make_shared( local_context, *this, metadata_snapshot, createInsertToRemoteTableQuery(remote_database, remote_table, sample_block), cluster, insert_sync, timeout, StorageID{remote_database, remote_table}); } QueryPipelinePtr StorageDistributed::distributedWrite(const ASTInsertQuery & query, ContextPtr local_context) { const Settings & settings = local_context->getSettingsRef(); std::shared_ptr storage_src; auto & select = query.select->as(); auto new_query = std::dynamic_pointer_cast(query.clone()); if (select.list_of_selects->children.size() == 1) { if (auto * select_query = select.list_of_selects->children.at(0)->as()) { JoinedTables joined_tables(Context::createCopy(local_context), *select_query); if (joined_tables.tablesCount() == 1) { storage_src = std::dynamic_pointer_cast(joined_tables.getLeftTableStorage()); if (storage_src) { const auto select_with_union_query = std::make_shared(); select_with_union_query->list_of_selects = std::make_shared(); auto new_select_query = std::dynamic_pointer_cast(select_query->clone()); select_with_union_query->list_of_selects->children.push_back(new_select_query); new_select_query->replaceDatabaseAndTable(storage_src->getRemoteDatabaseName(), storage_src->getRemoteTableName()); new_query->select = select_with_union_query; } } } } if (!storage_src || storage_src->getClusterName() != getClusterName()) { return nullptr; } if (settings.parallel_distributed_insert_select == PARALLEL_DISTRIBUTED_INSERT_SELECT_ALL) { new_query->table_id = StorageID(getRemoteDatabaseName(), getRemoteTableName()); } const auto & cluster = getCluster(); const auto & shards_info = cluster->getShardsInfo(); std::vector> pipelines; String new_query_str = queryToString(new_query); for (size_t shard_index : collections::range(0, shards_info.size())) { const auto & shard_info = shards_info[shard_index]; if (shard_info.isLocal()) { InterpreterInsertQuery interpreter(new_query, local_context); pipelines.emplace_back(std::make_unique(interpreter.execute().pipeline)); } else { auto timeouts = ConnectionTimeouts::getTCPTimeoutsWithFailover(settings); auto connections = shard_info.pool->getMany(timeouts, &settings, PoolMode::GET_ONE); if (connections.empty() || connections.front().isNull()) throw Exception( "Expected exactly one connection for shard " + toString(shard_info.shard_num), ErrorCodes::LOGICAL_ERROR); /// INSERT SELECT query returns empty block auto in_stream = std::make_shared(std::move(connections), new_query_str, Block{}, local_context); pipelines.emplace_back(std::make_unique()); pipelines.back()->init(Pipe(std::make_shared(std::move(in_stream)))); pipelines.back()->setSinks([](const Block & header, QueryPipeline::StreamType) -> ProcessorPtr { return std::make_shared(header); }); } } return std::make_unique(QueryPipeline::unitePipelines(std::move(pipelines))); } void StorageDistributed::checkAlterIsPossible(const AlterCommands & commands, ContextPtr local_context) const { auto name_deps = getDependentViewsByColumn(local_context); for (const auto & command : commands) { if (command.type != AlterCommand::Type::ADD_COLUMN && command.type != AlterCommand::Type::MODIFY_COLUMN && command.type != AlterCommand::Type::DROP_COLUMN && command.type != AlterCommand::Type::COMMENT_COLUMN && command.type != AlterCommand::Type::RENAME_COLUMN) throw Exception("Alter of type '" + alterTypeToString(command.type) + "' is not supported by storage " + getName(), ErrorCodes::NOT_IMPLEMENTED); if (command.type == AlterCommand::DROP_COLUMN && !command.clear) { const auto & deps_mv = name_deps[command.column_name]; if (!deps_mv.empty()) { throw Exception( "Trying to ALTER DROP column " + backQuoteIfNeed(command.column_name) + " which is referenced by materialized view " + toString(deps_mv), ErrorCodes::ALTER_OF_COLUMN_IS_FORBIDDEN); } } } } void StorageDistributed::alter(const AlterCommands & params, ContextPtr local_context, TableLockHolder &) { auto table_id = getStorageID(); checkAlterIsPossible(params, local_context); StorageInMemoryMetadata new_metadata = getInMemoryMetadata(); params.apply(new_metadata, local_context); DatabaseCatalog::instance().getDatabase(table_id.database_name)->alterTable(local_context, table_id, new_metadata); setInMemoryMetadata(new_metadata); } void StorageDistributed::startup() { if (remote_database.empty() && !remote_table_function_ptr && !getCluster()->maybeCrossReplication()) LOG_WARNING(log, "Name of remote database is empty. Default database will be used implicitly."); if (!storage_policy) return; const auto & disks = data_volume->getDisks(); ThreadPool pool(disks.size()); for (const DiskPtr & disk : disks) { pool.scheduleOrThrowOnError([&]() { createDirectoryMonitors(disk); }); } pool.wait(); const auto & paths = getDataPaths(); std::vector last_increment(paths.size()); for (size_t i = 0; i < paths.size(); ++i) { pool.scheduleOrThrowOnError([&, i]() { last_increment[i] = getMaximumFileNumber(paths[i]); }); } pool.wait(); for (const auto inc : last_increment) { if (inc > file_names_increment.value) file_names_increment.value.store(inc); } LOG_DEBUG(log, "Auto-increment is {}", file_names_increment.value); } void StorageDistributed::shutdown() { monitors_blocker.cancelForever(); std::lock_guard lock(cluster_nodes_mutex); LOG_DEBUG(log, "Joining background threads for async INSERT"); cluster_nodes_data.clear(); LOG_DEBUG(log, "Background threads for async INSERT joined"); } void StorageDistributed::drop() { // Some INSERT in-between shutdown() and drop() can call // requireDirectoryMonitor() again, so call shutdown() to clear them, but // when the drop() (this function) executed none of INSERT is allowed in // parallel. // // And second time shutdown() should be fast, since none of // DirectoryMonitor should do anything, because ActionBlocker is canceled // (in shutdown()). shutdown(); // Distributed table w/o sharding_key does not allows INSERTs if (relative_data_path.empty()) return; LOG_DEBUG(log, "Removing pending blocks for async INSERT from filesystem on DROP TABLE"); auto disks = data_volume->getDisks(); for (const auto & disk : disks) disk->removeRecursive(relative_data_path); LOG_DEBUG(log, "Removed"); } Strings StorageDistributed::getDataPaths() const { Strings paths; if (relative_data_path.empty()) return paths; for (const DiskPtr & disk : data_volume->getDisks()) paths.push_back(disk->getPath() + relative_data_path); return paths; } void StorageDistributed::truncate(const ASTPtr &, const StorageMetadataPtr &, ContextPtr, TableExclusiveLockHolder &) { std::lock_guard lock(cluster_nodes_mutex); LOG_DEBUG(log, "Removing pending blocks for async INSERT from filesystem on TRUNCATE TABLE"); for (auto it = cluster_nodes_data.begin(); it != cluster_nodes_data.end();) { it->second.directory_monitor->shutdownAndDropAllData(); it = cluster_nodes_data.erase(it); } LOG_DEBUG(log, "Removed"); } StoragePolicyPtr StorageDistributed::getStoragePolicy() const { return storage_policy; } void StorageDistributed::createDirectoryMonitors(const DiskPtr & disk) { const std::string path(disk->getPath() + relative_data_path); fs::create_directories(path); std::filesystem::directory_iterator begin(path); std::filesystem::directory_iterator end; for (auto it = begin; it != end; ++it) { const auto & dir_path = it->path(); if (std::filesystem::is_directory(dir_path)) { const auto & tmp_path = dir_path / "tmp"; /// "tmp" created by DistributedBlockOutputStream if (std::filesystem::is_directory(tmp_path) && std::filesystem::is_empty(tmp_path)) std::filesystem::remove(tmp_path); if (std::filesystem::is_empty(dir_path)) { LOG_DEBUG(log, "Removing {} (used for async INSERT into Distributed)", dir_path.string()); /// Will be created by DistributedBlockOutputStream on demand. std::filesystem::remove(dir_path); } else { requireDirectoryMonitor(disk, dir_path.filename().string(), /* startup= */ true); } } } } StorageDistributedDirectoryMonitor& StorageDistributed::requireDirectoryMonitor(const DiskPtr & disk, const std::string & name, bool startup) { const std::string & disk_path = disk->getPath(); const std::string key(disk_path + name); auto create_node_data = [&]() { ClusterNodeData data; data.connection_pool = StorageDistributedDirectoryMonitor::createPool(name, *this); data.directory_monitor = std::make_unique( *this, disk, relative_data_path + name, data.connection_pool, monitors_blocker, getContext()->getDistributedSchedulePool()); return data; }; /// In case of startup the lock can be acquired later. if (startup) { auto tmp_node_data = create_node_data(); std::lock_guard lock(cluster_nodes_mutex); auto & node_data = cluster_nodes_data[key]; assert(!node_data.directory_monitor); node_data = std::move(tmp_node_data); return *node_data.directory_monitor; } else { std::lock_guard lock(cluster_nodes_mutex); auto & node_data = cluster_nodes_data[key]; if (!node_data.directory_monitor) { node_data = create_node_data(); } return *node_data.directory_monitor; } } std::vector StorageDistributed::getDirectoryMonitorsStatuses() const { std::vector statuses; std::lock_guard lock(cluster_nodes_mutex); statuses.reserve(cluster_nodes_data.size()); for (const auto & node : cluster_nodes_data) statuses.push_back(node.second.directory_monitor->getStatus()); return statuses; } std::optional StorageDistributed::totalBytes(const Settings &) const { UInt64 total_bytes = 0; for (const auto & status : getDirectoryMonitorsStatuses()) total_bytes += status.bytes_count; return total_bytes; } size_t StorageDistributed::getShardCount() const { return getCluster()->getShardCount(); } ClusterPtr StorageDistributed::getCluster() const { return owned_cluster ? owned_cluster : getContext()->getCluster(cluster_name); } ClusterPtr StorageDistributed::getOptimizedCluster( ContextPtr local_context, const StorageMetadataPtr & metadata_snapshot, const ASTPtr & query_ptr) const { ClusterPtr cluster = getCluster(); const Settings & settings = local_context->getSettingsRef(); bool sharding_key_is_usable = settings.allow_nondeterministic_optimize_skip_unused_shards || sharding_key_is_deterministic; if (has_sharding_key && sharding_key_is_usable) { ClusterPtr optimized = skipUnusedShards(cluster, query_ptr, metadata_snapshot, local_context); if (optimized) return optimized; } UInt64 force = settings.force_optimize_skip_unused_shards; if (force) { WriteBufferFromOwnString exception_message; if (!has_sharding_key) exception_message << "No sharding key"; else if (!sharding_key_is_usable) exception_message << "Sharding key is not deterministic"; else exception_message << "Sharding key " << sharding_key_column_name << " is not used"; if (force == FORCE_OPTIMIZE_SKIP_UNUSED_SHARDS_ALWAYS) throw Exception(exception_message.str(), ErrorCodes::UNABLE_TO_SKIP_UNUSED_SHARDS); if (force == FORCE_OPTIMIZE_SKIP_UNUSED_SHARDS_HAS_SHARDING_KEY && has_sharding_key) throw Exception(exception_message.str(), ErrorCodes::UNABLE_TO_SKIP_UNUSED_SHARDS); } return {}; } IColumn::Selector StorageDistributed::createSelector(const ClusterPtr cluster, const ColumnWithTypeAndName & result) { const auto & slot_to_shard = cluster->getSlotToShard(); // If result.type is DataTypeLowCardinality, do shard according to its dictionaryType #define CREATE_FOR_TYPE(TYPE) \ if (typeid_cast(result.type.get())) \ return createBlockSelector(*result.column, slot_to_shard); \ else if (auto * type_low_cardinality = typeid_cast(result.type.get())) \ if (typeid_cast(type_low_cardinality->getDictionaryType().get())) \ return createBlockSelector(*result.column->convertToFullColumnIfLowCardinality(), slot_to_shard); CREATE_FOR_TYPE(UInt8) CREATE_FOR_TYPE(UInt16) CREATE_FOR_TYPE(UInt32) CREATE_FOR_TYPE(UInt64) CREATE_FOR_TYPE(Int8) CREATE_FOR_TYPE(Int16) CREATE_FOR_TYPE(Int32) CREATE_FOR_TYPE(Int64) #undef CREATE_FOR_TYPE throw Exception{"Sharding key expression does not evaluate to an integer type", ErrorCodes::TYPE_MISMATCH}; } /// Returns a new cluster with fewer shards if constant folding for `sharding_key_expr` is possible /// using constraints from "PREWHERE" and "WHERE" conditions, otherwise returns `nullptr` ClusterPtr StorageDistributed::skipUnusedShards( ClusterPtr cluster, const ASTPtr & query_ptr, const StorageMetadataPtr & metadata_snapshot, ContextPtr local_context) const { const auto & select = query_ptr->as(); if (!select.prewhere() && !select.where()) { return nullptr; } ASTPtr condition_ast; if (select.prewhere() && select.where()) { condition_ast = makeASTFunction("and", select.prewhere()->clone(), select.where()->clone()); } else { condition_ast = select.prewhere() ? select.prewhere()->clone() : select.where()->clone(); } replaceConstantExpressions(condition_ast, local_context, metadata_snapshot->getColumns().getAll(), shared_from_this(), metadata_snapshot); size_t limit = local_context->getSettingsRef().optimize_skip_unused_shards_limit; if (!limit || limit > SSIZE_MAX) { throw Exception("optimize_skip_unused_shards_limit out of range (0, {}]", ErrorCodes::ARGUMENT_OUT_OF_BOUND, SSIZE_MAX); } // To interpret limit==0 as limit is reached ++limit; const auto blocks = evaluateExpressionOverConstantCondition(condition_ast, sharding_key_expr, limit); if (!limit) { LOG_DEBUG(log, "Number of values for sharding key exceeds optimize_skip_unused_shards_limit={}, " "try to increase it, but note that this may increase query processing time.", local_context->getSettingsRef().optimize_skip_unused_shards_limit); return nullptr; } // Can't get definite answer if we can skip any shards if (!blocks) { return nullptr; } std::set shards; for (const auto & block : *blocks) { if (!block.has(sharding_key_column_name)) throw Exception("sharding_key_expr should evaluate as a single row", ErrorCodes::TOO_MANY_ROWS); const ColumnWithTypeAndName & result = block.getByName(sharding_key_column_name); const auto selector = createSelector(cluster, result); shards.insert(selector.begin(), selector.end()); } return cluster->getClusterWithMultipleShards({shards.begin(), shards.end()}); } ActionLock StorageDistributed::getActionLock(StorageActionBlockType type) { if (type == ActionLocks::DistributedSend) return monitors_blocker.cancel(); return {}; } void StorageDistributed::flushClusterNodesAllData(ContextPtr local_context) { /// Sync SYSTEM FLUSH DISTRIBUTED with TRUNCATE auto table_lock = lockForShare(local_context->getCurrentQueryId(), local_context->getSettingsRef().lock_acquire_timeout); std::vector> directory_monitors; { std::lock_guard lock(cluster_nodes_mutex); directory_monitors.reserve(cluster_nodes_data.size()); for (auto & node : cluster_nodes_data) directory_monitors.push_back(node.second.directory_monitor); } /// TODO: Maybe it should be executed in parallel for (auto & node : directory_monitors) node->flushAllData(); } void StorageDistributed::rename(const String & new_path_to_table_data, const StorageID & new_table_id) { assert(relative_data_path != new_path_to_table_data); if (!relative_data_path.empty()) renameOnDisk(new_path_to_table_data); renameInMemory(new_table_id); } size_t StorageDistributed::getRandomShardIndex(const Cluster::ShardsInfo & shards) { UInt32 total_weight = 0; for (const auto & shard : shards) total_weight += shard.weight; assert(total_weight > 0); size_t res; { std::lock_guard lock(rng_mutex); res = std::uniform_int_distribution(0, total_weight - 1)(rng); } for (auto i = 0ul, s = shards.size(); i < s; ++i) { if (shards[i].weight > res) return i; res -= shards[i].weight; } __builtin_unreachable(); } void StorageDistributed::renameOnDisk(const String & new_path_to_table_data) { for (const DiskPtr & disk : data_volume->getDisks()) { disk->moveDirectory(relative_data_path, new_path_to_table_data); auto new_path = disk->getPath() + new_path_to_table_data; LOG_DEBUG(log, "Updating path to {}", new_path); std::lock_guard lock(cluster_nodes_mutex); for (auto & node : cluster_nodes_data) node.second.directory_monitor->updatePath(new_path_to_table_data); } relative_data_path = new_path_to_table_data; } void StorageDistributed::delayInsertOrThrowIfNeeded() const { if (!distributed_settings.bytes_to_throw_insert && !distributed_settings.bytes_to_delay_insert) return; UInt64 total_bytes = *totalBytes(getContext()->getSettingsRef()); if (distributed_settings.bytes_to_throw_insert && total_bytes > distributed_settings.bytes_to_throw_insert) { ProfileEvents::increment(ProfileEvents::DistributedRejectedInserts); throw Exception(ErrorCodes::DISTRIBUTED_TOO_MANY_PENDING_BYTES, "Too many bytes pending for async INSERT: {} (bytes_to_throw_insert={})", formatReadableSizeWithBinarySuffix(total_bytes), formatReadableSizeWithBinarySuffix(distributed_settings.bytes_to_throw_insert)); } if (distributed_settings.bytes_to_delay_insert && total_bytes > distributed_settings.bytes_to_delay_insert) { /// Step is 5% of the delay and minimal one second. /// NOTE: max_delay_to_insert is in seconds, and step is in ms. const size_t step_ms = std::min(1., double(distributed_settings.max_delay_to_insert) * 1'000 * 0.05); UInt64 delayed_ms = 0; do { delayed_ms += step_ms; std::this_thread::sleep_for(std::chrono::milliseconds(step_ms)); } while (*totalBytes(getContext()->getSettingsRef()) > distributed_settings.bytes_to_delay_insert && delayed_ms < distributed_settings.max_delay_to_insert*1000); ProfileEvents::increment(ProfileEvents::DistributedDelayedInserts); ProfileEvents::increment(ProfileEvents::DistributedDelayedInsertsMilliseconds, delayed_ms); UInt64 new_total_bytes = *totalBytes(getContext()->getSettingsRef()); LOG_INFO(log, "Too many bytes pending for async INSERT: was {}, now {}, INSERT was delayed to {} ms", formatReadableSizeWithBinarySuffix(total_bytes), formatReadableSizeWithBinarySuffix(new_total_bytes), delayed_ms); if (new_total_bytes > distributed_settings.bytes_to_delay_insert) { ProfileEvents::increment(ProfileEvents::DistributedRejectedInserts); throw Exception(ErrorCodes::DISTRIBUTED_TOO_MANY_PENDING_BYTES, "Too many bytes pending for async INSERT: {} (bytes_to_delay_insert={})", formatReadableSizeWithBinarySuffix(new_total_bytes), formatReadableSizeWithBinarySuffix(distributed_settings.bytes_to_delay_insert)); } } } void registerStorageDistributed(StorageFactory & factory) { factory.registerStorage("Distributed", [](const StorageFactory::Arguments & args) { /** Arguments of engine is following: * - name of cluster in configuration; * - name of remote database; * - name of remote table; * - policy to store data in; * * Remote database may be specified in following form: * - identifier; * - constant expression with string result, like currentDatabase(); * -- string literal as specific case; * - empty string means 'use default database from cluster'. * * Distributed engine also supports SETTINGS clause. */ ASTs & engine_args = args.engine_args; if (engine_args.size() < 3 || engine_args.size() > 5) throw Exception( "Storage Distributed requires from 3 to 5 parameters - " "name of configuration section with list of remote servers, " "name of remote database, " "name of remote table, " "sharding key expression (optional), " "policy to store data in (optional).", ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH); String cluster_name = getClusterNameAndMakeLiteral(engine_args[0]); engine_args[1] = evaluateConstantExpressionOrIdentifierAsLiteral(engine_args[1], args.getLocalContext()); engine_args[2] = evaluateConstantExpressionOrIdentifierAsLiteral(engine_args[2], args.getLocalContext()); String remote_database = engine_args[1]->as().value.safeGet(); String remote_table = engine_args[2]->as().value.safeGet(); const auto & sharding_key = engine_args.size() >= 4 ? engine_args[3] : nullptr; const auto & storage_policy = engine_args.size() >= 5 ? engine_args[4]->as().value.safeGet() : "default"; /// Check that sharding_key exists in the table and has numeric type. if (sharding_key) { auto sharding_expr = buildShardingKeyExpression(sharding_key, args.getContext(), args.columns.getAllPhysical(), true); const Block & block = sharding_expr->getSampleBlock(); if (block.columns() != 1) throw Exception("Sharding expression must return exactly one column", ErrorCodes::INCORRECT_NUMBER_OF_COLUMNS); auto type = block.getByPosition(0).type; if (!type->isValueRepresentedByInteger()) throw Exception("Sharding expression has type " + type->getName() + ", but should be one of integer type", ErrorCodes::TYPE_MISMATCH); } /// TODO: move some arguments from the arguments to the SETTINGS. DistributedSettings distributed_settings; if (args.storage_def->settings) { distributed_settings.loadFromQuery(*args.storage_def); } if (distributed_settings.max_delay_to_insert < 1) throw Exception(ErrorCodes::ARGUMENT_OUT_OF_BOUND, "max_delay_to_insert cannot be less then 1"); if (distributed_settings.bytes_to_throw_insert && distributed_settings.bytes_to_delay_insert && distributed_settings.bytes_to_throw_insert <= distributed_settings.bytes_to_delay_insert) { throw Exception(ErrorCodes::ARGUMENT_OUT_OF_BOUND, "bytes_to_throw_insert cannot be less or equal to bytes_to_delay_insert (since it is handled first)"); } return StorageDistributed::create( args.table_id, args.columns, args.constraints, args.comment, remote_database, remote_table, cluster_name, args.getContext(), sharding_key, storage_policy, args.relative_data_path, distributed_settings, args.attach); }, { .supports_settings = true, .supports_parallel_insert = true, .source_access_type = AccessType::REMOTE, }); } }