#include "MergeTreeDataMergerMutator.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace CurrentMetrics { extern const Metric BackgroundMergesAndMutationsPoolTask; } namespace DB { namespace ErrorCodes { extern const int LOGICAL_ERROR; extern const int ABORTED; } /// Do not start to merge parts, if free space is less than sum size of parts times specified coefficient. /// This value is chosen to not allow big merges to eat all free space. Thus allowing small merges to proceed. static const double DISK_USAGE_COEFFICIENT_TO_SELECT = 2; /// To do merge, reserve amount of space equals to sum size of parts times specified coefficient. /// Must be strictly less than DISK_USAGE_COEFFICIENT_TO_SELECT, /// because between selecting parts to merge and doing merge, amount of free space could have decreased. static const double DISK_USAGE_COEFFICIENT_TO_RESERVE = 1.1; MergeTreeDataMergerMutator::MergeTreeDataMergerMutator(MergeTreeData & data_) : data(data_), log(&Poco::Logger::get(data.getLogName() + " (MergerMutator)")) { } UInt64 MergeTreeDataMergerMutator::getMaxSourcePartsSizeForMerge() const { size_t scheduled_tasks_count = CurrentMetrics::values[CurrentMetrics::BackgroundMergesAndMutationsPoolTask].load(std::memory_order_relaxed); auto max_tasks_count = data.getContext()->getMergeMutateExecutor()->getMaxTasksCount(); return getMaxSourcePartsSizeForMerge(max_tasks_count, scheduled_tasks_count); } UInt64 MergeTreeDataMergerMutator::getMaxSourcePartsSizeForMerge(size_t max_count, size_t scheduled_tasks_count) const { if (scheduled_tasks_count > max_count) { throw Exception(ErrorCodes::LOGICAL_ERROR, "Logical error: invalid argument passed to getMaxSourcePartsSize: scheduled_tasks_count = {} > max_count = {}", scheduled_tasks_count, max_count); } size_t free_entries = max_count - scheduled_tasks_count; const auto data_settings = data.getSettings(); /// Always allow maximum size if one or less pool entries is busy. /// One entry is probably the entry where this function is executed. /// This will protect from bad settings. UInt64 max_size = 0; if (scheduled_tasks_count <= 1 || free_entries >= data_settings->number_of_free_entries_in_pool_to_lower_max_size_of_merge) max_size = data_settings->max_bytes_to_merge_at_max_space_in_pool; else max_size = static_cast(interpolateExponential( data_settings->max_bytes_to_merge_at_min_space_in_pool, data_settings->max_bytes_to_merge_at_max_space_in_pool, static_cast(free_entries) / data_settings->number_of_free_entries_in_pool_to_lower_max_size_of_merge)); return std::min(max_size, static_cast(data.getStoragePolicy()->getMaxUnreservedFreeSpace() / DISK_USAGE_COEFFICIENT_TO_SELECT)); } UInt64 MergeTreeDataMergerMutator::getMaxSourcePartSizeForMutation() const { const auto data_settings = data.getSettings(); size_t occupied = CurrentMetrics::values[CurrentMetrics::BackgroundMergesAndMutationsPoolTask].load(std::memory_order_relaxed); /// DataPart can be store only at one disk. Get maximum reservable free space at all disks. UInt64 disk_space = data.getStoragePolicy()->getMaxUnreservedFreeSpace(); auto max_tasks_count = data.getContext()->getMergeMutateExecutor()->getMaxTasksCount(); /// Allow mutations only if there are enough threads, leave free threads for merges else if (occupied <= 1 || max_tasks_count - occupied >= data_settings->number_of_free_entries_in_pool_to_execute_mutation) return static_cast(disk_space / DISK_USAGE_COEFFICIENT_TO_RESERVE); return 0; } SelectPartsDecision MergeTreeDataMergerMutator::selectPartsToMerge( FutureMergedMutatedPartPtr future_part, bool aggressive, size_t max_total_size_to_merge, const AllowedMergingPredicate & can_merge_callback, bool merge_with_ttl_allowed, const MergeTreeTransactionPtr & txn, String * out_disable_reason) { MergeTreeData::DataPartsVector data_parts; if (txn) { /// Merge predicate (for simple MergeTree) allows to merge two parts only if both parts are visible for merge transaction. /// So at the first glance we could just get all active parts. /// Active parts include uncommitted parts, but it's ok and merge predicate handles it. /// However, it's possible that some transaction is trying to remove a part in the middle, for example, all_2_2_0. /// If parts all_1_1_0 and all_3_3_0 are active and visible for merge transaction, then we would try to merge them. /// But it's wrong, because all_2_2_0 may become active again if transaction will roll back. /// That's why we must include some outdated parts into `data_part`, more precisely, such parts that removal is not committed. MergeTreeData::DataPartsVector active_parts; MergeTreeData::DataPartsVector outdated_parts; { auto lock = data.lockParts(); active_parts = data.getDataPartsVectorForInternalUsage({MergeTreeData::DataPartState::Active}, lock); outdated_parts = data.getDataPartsVectorForInternalUsage({MergeTreeData::DataPartState::Outdated}, lock); } ActiveDataPartSet active_parts_set{data.format_version}; for (const auto & part : active_parts) active_parts_set.add(part->name); for (const auto & part : outdated_parts) { /// We don't need rolled back parts. /// NOTE When rolling back a transaction we set creation_csn to RolledBackCSN at first /// and then remove part from working set, so there's no race condition if (part->version.creation_csn == Tx::RolledBackCSN) continue; /// We don't need parts that are finally removed. /// NOTE There's a minor race condition: we may get UnknownCSN if a transaction has been just committed concurrently. /// But it's not a problem if we will add such part to `data_parts`. if (part->version.removal_csn != Tx::UnknownCSN) continue; active_parts_set.add(part->name); } /// Restore "active" parts set from selected active and outdated parts auto remove_pred = [&](const MergeTreeData::DataPartPtr & part) -> bool { return active_parts_set.getContainingPart(part->info) != part->name; }; std::erase_if(active_parts, remove_pred); std::erase_if(outdated_parts, remove_pred); std::merge(active_parts.begin(), active_parts.end(), outdated_parts.begin(), outdated_parts.end(), std::back_inserter(data_parts), MergeTreeData::LessDataPart()); } else { /// Simply get all active parts data_parts = data.getDataPartsVectorForInternalUsage(); } const auto data_settings = data.getSettings(); auto metadata_snapshot = data.getInMemoryMetadataPtr(); if (data_parts.empty()) { if (out_disable_reason) *out_disable_reason = "There are no parts in the table"; return SelectPartsDecision::CANNOT_SELECT; } time_t current_time = std::time(nullptr); IMergeSelector::PartsRanges parts_ranges; StoragePolicyPtr storage_policy = data.getStoragePolicy(); /// Volumes with stopped merges are extremely rare situation. /// Check it once and don't check each part (this is bad for performance). bool has_volumes_with_disabled_merges = storage_policy->hasAnyVolumeWithDisabledMerges(); const String * prev_partition_id = nullptr; /// Previous part only in boundaries of partition frame const MergeTreeData::DataPartPtr * prev_part = nullptr; /// collect min_age for each partition while iterating parts struct PartitionInfo { time_t min_age{std::numeric_limits::max()}; }; std::unordered_map partitions_info; size_t parts_selected_precondition = 0; for (const MergeTreeData::DataPartPtr & part : data_parts) { const String & partition_id = part->info.partition_id; if (!prev_partition_id || partition_id != *prev_partition_id) { if (parts_ranges.empty() || !parts_ranges.back().empty()) parts_ranges.emplace_back(); /// New partition frame. prev_partition_id = &partition_id; prev_part = nullptr; } /// Check predicate only for the first part in each range. if (!prev_part) { /* Parts can be merged with themselves for TTL needs for example. * So we have to check if this part is currently being inserted with quorum and so on and so forth. * Obviously we have to check it manually only for the first part * of each partition because it will be automatically checked for a pair of parts. */ if (!can_merge_callback(nullptr, part, txn.get(), out_disable_reason)) continue; /// This part can be merged only with next parts (no prev part exists), so start /// new interval if previous was not empty. if (!parts_ranges.back().empty()) parts_ranges.emplace_back(); } else { /// If we cannot merge with previous part we had to start new parts /// interval (in the same partition) if (!can_merge_callback(*prev_part, part, txn.get(), out_disable_reason)) { /// Now we have no previous part prev_part = nullptr; /// Mustn't be empty assert(!parts_ranges.back().empty()); /// Some parts cannot be merged with previous parts and also cannot be merged with themselves, /// for example, merge is already assigned for such parts, or they participate in quorum inserts /// and so on. /// Also we don't start new interval here (maybe all next parts cannot be merged and we don't want to have empty interval) if (!can_merge_callback(nullptr, part, txn.get(), out_disable_reason)) continue; /// Starting new interval in the same partition parts_ranges.emplace_back(); } } IMergeSelector::Part part_info; part_info.size = part->getBytesOnDisk(); part_info.age = current_time - part->modification_time; part_info.level = part->info.level; part_info.data = ∂ part_info.ttl_infos = &part->ttl_infos; part_info.compression_codec_desc = part->default_codec->getFullCodecDesc(); part_info.shall_participate_in_merges = has_volumes_with_disabled_merges ? part->shallParticipateInMerges(storage_policy) : true; auto & partition_info = partitions_info[partition_id]; partition_info.min_age = std::min(partition_info.min_age, part_info.age); ++parts_selected_precondition; parts_ranges.back().emplace_back(part_info); /// Check for consistency of data parts. If assertion is failed, it requires immediate investigation. if (prev_part) { if (part->info.contains((*prev_part)->info)) throw Exception(ErrorCodes::LOGICAL_ERROR, "Part {} contains previous part {}", part->name, (*prev_part)->name); if (!part->info.isDisjoint((*prev_part)->info)) throw Exception(ErrorCodes::LOGICAL_ERROR, "Part {} intersects previous part {}", part->name, (*prev_part)->name); } prev_part = ∂ } if (parts_selected_precondition == 0) { if (out_disable_reason) *out_disable_reason = "No parts satisfy preconditions for merge"; return SelectPartsDecision::CANNOT_SELECT; } IMergeSelector::PartsRange parts_to_merge; if (metadata_snapshot->hasAnyTTL() && merge_with_ttl_allowed && !ttl_merges_blocker.isCancelled()) { /// TTL delete is preferred to recompression TTLDeleteMergeSelector drop_ttl_selector( next_delete_ttl_merge_times_by_partition, current_time, data_settings->merge_with_ttl_timeout, true); /// The size of the completely expired part of TTL drop is not affected by the merge pressure and the size of the storage space parts_to_merge = drop_ttl_selector.select(parts_ranges, data_settings->max_bytes_to_merge_at_max_space_in_pool); if (!parts_to_merge.empty()) { future_part->merge_type = MergeType::TTLDelete; } else if (!data_settings->ttl_only_drop_parts) { TTLDeleteMergeSelector delete_ttl_selector( next_delete_ttl_merge_times_by_partition, current_time, data_settings->merge_with_ttl_timeout, false); parts_to_merge = delete_ttl_selector.select(parts_ranges, max_total_size_to_merge); if (!parts_to_merge.empty()) future_part->merge_type = MergeType::TTLDelete; } if (parts_to_merge.empty() && metadata_snapshot->hasAnyRecompressionTTL()) { TTLRecompressMergeSelector recompress_ttl_selector( next_recompress_ttl_merge_times_by_partition, current_time, data_settings->merge_with_recompression_ttl_timeout, metadata_snapshot->getRecompressionTTLs()); parts_to_merge = recompress_ttl_selector.select(parts_ranges, max_total_size_to_merge); if (!parts_to_merge.empty()) future_part->merge_type = MergeType::TTLRecompress; } } if (parts_to_merge.empty()) { SimpleMergeSelector::Settings merge_settings; /// Override value from table settings merge_settings.max_parts_to_merge_at_once = data_settings->max_parts_to_merge_at_once; if (!data_settings->min_age_to_force_merge_on_partition_only) merge_settings.min_age_to_force_merge = data_settings->min_age_to_force_merge_seconds; if (aggressive) merge_settings.base = 1; parts_to_merge = SimpleMergeSelector(merge_settings) .select(parts_ranges, max_total_size_to_merge); /// Do not allow to "merge" part with itself for regular merges, unless it is a TTL-merge where it is ok to remove some values with expired ttl if (parts_to_merge.size() == 1) throw Exception(ErrorCodes::LOGICAL_ERROR, "Logical error: merge selector returned only one part to merge"); if (parts_to_merge.empty()) { if (data_settings->min_age_to_force_merge_on_partition_only && data_settings->min_age_to_force_merge_seconds) { auto best_partition_it = std::max_element( partitions_info.begin(), partitions_info.end(), [](const auto & e1, const auto & e2) { return e1.second.min_age < e2.second.min_age; }); assert(best_partition_it != partitions_info.end()); if (static_cast(best_partition_it->second.min_age) >= data_settings->min_age_to_force_merge_seconds) return selectAllPartsToMergeWithinPartition( future_part, can_merge_callback, best_partition_it->first, true, metadata_snapshot, txn, out_disable_reason); } if (out_disable_reason) *out_disable_reason = "There is no need to merge parts according to merge selector algorithm"; return SelectPartsDecision::CANNOT_SELECT; } } MergeTreeData::DataPartsVector parts; parts.reserve(parts_to_merge.size()); for (IMergeSelector::Part & part_info : parts_to_merge) { const MergeTreeData::DataPartPtr & part = *static_cast(part_info.data); parts.push_back(part); } LOG_DEBUG(log, "Selected {} parts from {} to {}", parts.size(), parts.front()->name, parts.back()->name); future_part->assign(std::move(parts)); return SelectPartsDecision::SELECTED; } SelectPartsDecision MergeTreeDataMergerMutator::selectAllPartsToMergeWithinPartition( FutureMergedMutatedPartPtr future_part, const AllowedMergingPredicate & can_merge, const String & partition_id, bool final, const StorageMetadataPtr & metadata_snapshot, const MergeTreeTransactionPtr & txn, String * out_disable_reason, bool optimize_skip_merged_partitions) { MergeTreeData::DataPartsVector parts = selectAllPartsFromPartition(partition_id); if (parts.empty()) { if (out_disable_reason) *out_disable_reason = "There are no parts inside partition"; return SelectPartsDecision::CANNOT_SELECT; } if (!final && parts.size() == 1) { if (out_disable_reason) *out_disable_reason = "There is only one part inside partition"; return SelectPartsDecision::CANNOT_SELECT; } /// If final, optimize_skip_merged_partitions is true and we have only one part in partition with level > 0 /// than we don't select it to merge. But if there are some expired TTL then merge is needed if (final && optimize_skip_merged_partitions && parts.size() == 1 && parts[0]->info.level > 0 && (!metadata_snapshot->hasAnyTTL() || parts[0]->checkAllTTLCalculated(metadata_snapshot))) { if (out_disable_reason) *out_disable_reason = "Partition skipped due to optimize_skip_merged_partitions"; return SelectPartsDecision::NOTHING_TO_MERGE; } auto it = parts.begin(); auto prev_it = it; UInt64 sum_bytes = 0; while (it != parts.end()) { /// For the case of one part, we check that it can be merged "with itself". if ((it != parts.begin() || parts.size() == 1) && !can_merge(*prev_it, *it, txn.get(), out_disable_reason)) { return SelectPartsDecision::CANNOT_SELECT; } sum_bytes += (*it)->getBytesOnDisk(); prev_it = it; ++it; } auto available_disk_space = data.getStoragePolicy()->getMaxUnreservedFreeSpace(); /// Enough disk space to cover the new merge with a margin. auto required_disk_space = sum_bytes * DISK_USAGE_COEFFICIENT_TO_SELECT; if (available_disk_space <= required_disk_space) { time_t now = time(nullptr); if (now - disk_space_warning_time > 3600) { disk_space_warning_time = now; LOG_WARNING(log, "Won't merge parts from {} to {} because not enough free space: {} free and unreserved" ", {} required now (+{}% on overhead); suppressing similar warnings for the next hour", parts.front()->name, (*prev_it)->name, ReadableSize(available_disk_space), ReadableSize(sum_bytes), static_cast((DISK_USAGE_COEFFICIENT_TO_SELECT - 1.0) * 100)); } if (out_disable_reason) *out_disable_reason = fmt::format("Insufficient available disk space, required {}", ReadableSize(required_disk_space)); return SelectPartsDecision::CANNOT_SELECT; } LOG_DEBUG(log, "Selected {} parts from {} to {}", parts.size(), parts.front()->name, parts.back()->name); future_part->assign(std::move(parts)); return SelectPartsDecision::SELECTED; } MergeTreeData::DataPartsVector MergeTreeDataMergerMutator::selectAllPartsFromPartition(const String & partition_id) { MergeTreeData::DataPartsVector parts_from_partition; MergeTreeData::DataParts data_parts = data.getDataPartsForInternalUsage(); for (const auto & current_part : data_parts) { if (current_part->info.partition_id != partition_id) continue; parts_from_partition.push_back(current_part); } return parts_from_partition; } /// parts should be sorted. MergeTaskPtr MergeTreeDataMergerMutator::mergePartsToTemporaryPart( FutureMergedMutatedPartPtr future_part, const StorageMetadataPtr & metadata_snapshot, MergeList::Entry * merge_entry, std::unique_ptr projection_merge_list_element, TableLockHolder, time_t time_of_merge, ContextPtr context, ReservationSharedPtr space_reservation, bool deduplicate, const Names & deduplicate_by_columns, bool cleanup, const MergeTreeData::MergingParams & merging_params, const MergeTreeTransactionPtr & txn, bool need_prefix, IMergeTreeDataPart * parent_part, const String & suffix) { return std::make_shared( future_part, const_cast(metadata_snapshot), merge_entry, std::move(projection_merge_list_element), time_of_merge, context, space_reservation, deduplicate, deduplicate_by_columns, cleanup, merging_params, need_prefix, parent_part, suffix, txn, &data, this, &merges_blocker, &ttl_merges_blocker); } MutateTaskPtr MergeTreeDataMergerMutator::mutatePartToTemporaryPart( FutureMergedMutatedPartPtr future_part, StorageMetadataPtr metadata_snapshot, MutationCommandsConstPtr commands, MergeListEntry * merge_entry, time_t time_of_mutation, ContextPtr context, const MergeTreeTransactionPtr & txn, ReservationSharedPtr space_reservation, TableLockHolder & holder, bool need_prefix) { return std::make_shared( future_part, metadata_snapshot, commands, merge_entry, time_of_mutation, context, space_reservation, holder, txn, data, *this, merges_blocker, need_prefix ); } MergeTreeData::DataPartPtr MergeTreeDataMergerMutator::renameMergedTemporaryPart( MergeTreeData::MutableDataPartPtr & new_data_part, const MergeTreeData::DataPartsVector & parts, const MergeTreeTransactionPtr & txn, MergeTreeData::Transaction & out_transaction) { /// Some of source parts was possibly created in transaction, so non-transactional merge may break isolation. if (data.transactions_enabled.load(std::memory_order_relaxed) && !txn) throw Exception(ErrorCodes::ABORTED, "Cancelling merge, because it was done without starting transaction," "but transactions were enabled for this table"); /// Rename new part, add to the set and remove original parts. auto replaced_parts = data.renameTempPartAndReplace(new_data_part, out_transaction); /// Let's check that all original parts have been deleted and only them. if (replaced_parts.size() != parts.size()) { /** This is normal, although this happens rarely. * * The situation - was replaced 0 parts instead of N can be, for example, in the following case * - we had A part, but there was no B and C parts; * - A, B -> AB was in the queue, but it has not been done, because there is no B part; * - AB, C -> ABC was in the queue, but it has not been done, because there are no AB and C parts; * - we have completed the task of downloading a B part; * - we started to make A, B -> AB merge, since all parts appeared; * - we decided to download ABC part from another replica, since it was impossible to make merge AB, C -> ABC; * - ABC part appeared. When it was added, old A, B, C parts were deleted; * - AB merge finished. AB part was added. But this is an obsolete part. The log will contain the message `Obsolete part added`, * then we get here. * * When M > N parts could be replaced? * - new block was added in ReplicatedMergeTreeSink; * - it was added to working dataset in memory and renamed on filesystem; * - but ZooKeeper transaction that adds it to reference dataset in ZK failed; * - and it is failed due to connection loss, so we don't rollback working dataset in memory, * because we don't know if the part was added to ZK or not * (see ReplicatedMergeTreeSink) * - then method selectPartsToMerge selects a range and sees, that EphemeralLock for the block in this part is unlocked, * and so it is possible to merge a range skipping this part. * (NOTE: Merging with part that is not in ZK is not possible, see checks in 'createLogEntryToMergeParts'.) * - and after merge, this part will be removed in addition to parts that was merged. */ LOG_WARNING(log, "Unexpected number of parts removed when adding {}: {} instead of {}", new_data_part->name, replaced_parts.size(), parts.size()); } else { for (size_t i = 0; i < parts.size(); ++i) if (parts[i]->name != replaced_parts[i]->name) throw Exception(ErrorCodes::LOGICAL_ERROR, "Unexpected part removed when adding {}: {} instead of {}", new_data_part->name, replaced_parts[i]->name, parts[i]->name); } LOG_TRACE(log, "Merged {} parts: [{}, {}] -> {}", parts.size(), parts.front()->name, parts.back()->name, new_data_part->name); return new_data_part; } size_t MergeTreeDataMergerMutator::estimateNeededDiskSpace(const MergeTreeData::DataPartsVector & source_parts) { size_t res = 0; time_t current_time = std::time(nullptr); for (const MergeTreeData::DataPartPtr & part : source_parts) { /// Exclude expired parts time_t part_max_ttl = part->ttl_infos.part_max_ttl; if (part_max_ttl && part_max_ttl <= current_time) continue; res += part->getBytesOnDisk(); } return static_cast(res * DISK_USAGE_COEFFICIENT_TO_RESERVE); } }