#include "CacheDictionary.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include "CacheDictionary.inc.h" #include "DictionaryBlockInputStream.h" #include "DictionaryFactory.h" namespace ProfileEvents { extern const Event DictCacheKeysRequested; extern const Event DictCacheKeysRequestedMiss; extern const Event DictCacheKeysRequestedFound; extern const Event DictCacheKeysExpired; extern const Event DictCacheKeysNotFound; extern const Event DictCacheKeysHit; extern const Event DictCacheRequestTimeNs; extern const Event DictCacheRequests; extern const Event DictCacheLockWriteNs; extern const Event DictCacheLockReadNs; } namespace CurrentMetrics { extern const Metric DictCacheRequests; } namespace DB { namespace ErrorCodes { extern const int CACHE_DICTIONARY_UPDATE_FAIL; extern const int TYPE_MISMATCH; extern const int BAD_ARGUMENTS; extern const int UNSUPPORTED_METHOD; extern const int TOO_SMALL_BUFFER_SIZE; extern const int TIMEOUT_EXCEEDED; } inline size_t CacheDictionary::getCellIdx(const Key id) const { const auto hash = intHash64(id); const auto idx = hash & size_overlap_mask; return idx; } CacheDictionary::CacheDictionary( const std::string & database_, const std::string & name_, const DictionaryStructure & dict_struct_, DictionarySourcePtr source_ptr_, DictionaryLifetime dict_lifetime_, size_t strict_max_lifetime_seconds_, size_t size_, bool allow_read_expired_keys_, size_t max_update_queue_size_, size_t update_queue_push_timeout_milliseconds_, size_t query_wait_timeout_milliseconds_, size_t max_threads_for_updates_) : database(database_) , name(name_) , full_name{database_.empty() ? name_ : (database_ + "." + name_)} , dict_struct(dict_struct_) , source_ptr{std::move(source_ptr_)} , dict_lifetime(dict_lifetime_) , strict_max_lifetime_seconds(strict_max_lifetime_seconds_) , allow_read_expired_keys(allow_read_expired_keys_) , max_update_queue_size(max_update_queue_size_) , update_queue_push_timeout_milliseconds(update_queue_push_timeout_milliseconds_) , query_wait_timeout_milliseconds(query_wait_timeout_milliseconds_) , max_threads_for_updates(max_threads_for_updates_) , log(&Logger::get("ExternalDictionaries")) , size{roundUpToPowerOfTwoOrZero(std::max(size_, size_t(max_collision_length)))} , size_overlap_mask{this->size - 1} , cells{this->size} , rnd_engine(randomSeed()) , update_queue(max_update_queue_size_) , update_pool(max_threads_for_updates) { if (!this->source_ptr->supportsSelectiveLoad()) throw Exception{full_name + ": source cannot be used with CacheDictionary", ErrorCodes::UNSUPPORTED_METHOD}; createAttributes(); for (size_t i = 0; i < max_threads_for_updates; ++i) update_pool.scheduleOrThrowOnError([this] { updateThreadFunction(); }); } CacheDictionary::~CacheDictionary() { finished = true; update_queue.clear(); for (size_t i = 0; i < max_threads_for_updates; ++i) { auto empty_finishing_ptr = std::make_shared(std::vector()); update_queue.push(empty_finishing_ptr); } update_pool.wait(); } void CacheDictionary::toParent(const PaddedPODArray & ids, PaddedPODArray & out) const { const auto null_value = std::get(hierarchical_attribute->null_values); getItemsNumberImpl(*hierarchical_attribute, ids, out, [&](const size_t) { return null_value; }); } /// Allow to use single value in same way as array. static inline CacheDictionary::Key getAt(const PaddedPODArray & arr, const size_t idx) { return arr[idx]; } static inline CacheDictionary::Key getAt(const CacheDictionary::Key & value, const size_t) { return value; } template void CacheDictionary::isInImpl(const PaddedPODArray & child_ids, const AncestorType & ancestor_ids, PaddedPODArray & out) const { /// Transform all children to parents until ancestor id or null_value will be reached. size_t out_size = out.size(); memset(out.data(), 0xFF, out_size); /// 0xFF means "not calculated" const auto null_value = std::get(hierarchical_attribute->null_values); PaddedPODArray children(out_size, 0); PaddedPODArray parents(child_ids.begin(), child_ids.end()); while (true) { size_t out_idx = 0; size_t parents_idx = 0; size_t new_children_idx = 0; while (out_idx < out_size) { /// Already calculated if (out[out_idx] != 0xFF) { ++out_idx; continue; } /// No parent if (parents[parents_idx] == null_value) { out[out_idx] = 0; } /// Found ancestor else if (parents[parents_idx] == getAt(ancestor_ids, parents_idx)) { out[out_idx] = 1; } /// Loop detected else if (children[new_children_idx] == parents[parents_idx]) { out[out_idx] = 1; } /// Found intermediate parent, add this value to search at next loop iteration else { children[new_children_idx] = parents[parents_idx]; ++new_children_idx; } ++out_idx; ++parents_idx; } if (new_children_idx == 0) break; /// Transform all children to its parents. children.resize(new_children_idx); parents.resize(new_children_idx); toParent(children, parents); } } void CacheDictionary::isInVectorVector( const PaddedPODArray & child_ids, const PaddedPODArray & ancestor_ids, PaddedPODArray & out) const { isInImpl(child_ids, ancestor_ids, out); } void CacheDictionary::isInVectorConstant(const PaddedPODArray & child_ids, const Key ancestor_id, PaddedPODArray & out) const { isInImpl(child_ids, ancestor_id, out); } void CacheDictionary::isInConstantVector(const Key child_id, const PaddedPODArray & ancestor_ids, PaddedPODArray & out) const { /// Special case with single child value. const auto null_value = std::get(hierarchical_attribute->null_values); PaddedPODArray child(1, child_id); PaddedPODArray parent(1); std::vector ancestors(1, child_id); /// Iteratively find all ancestors for child. while (true) { toParent(child, parent); if (parent[0] == null_value) break; child[0] = parent[0]; ancestors.push_back(parent[0]); } /// Assuming short hierarchy, so linear search is Ok. for (size_t i = 0, out_size = out.size(); i < out_size; ++i) out[i] = std::find(ancestors.begin(), ancestors.end(), ancestor_ids[i]) != ancestors.end(); } void CacheDictionary::getString(const std::string & attribute_name, const PaddedPODArray & ids, ColumnString * out) const { auto & attribute = getAttribute(attribute_name); checkAttributeType(full_name, attribute_name, attribute.type, AttributeUnderlyingType::utString); const auto null_value = StringRef{std::get(attribute.null_values)}; getItemsString(attribute, ids, out, [&](const size_t) { return null_value; }); } void CacheDictionary::getString( const std::string & attribute_name, const PaddedPODArray & ids, const ColumnString * const def, ColumnString * const out) const { auto & attribute = getAttribute(attribute_name); checkAttributeType(full_name, attribute_name, attribute.type, AttributeUnderlyingType::utString); getItemsString(attribute, ids, out, [&](const size_t row) { return def->getDataAt(row); }); } void CacheDictionary::getString( const std::string & attribute_name, const PaddedPODArray & ids, const String & def, ColumnString * const out) const { auto & attribute = getAttribute(attribute_name); checkAttributeType(full_name, attribute_name, attribute.type, AttributeUnderlyingType::utString); getItemsString(attribute, ids, out, [&](const size_t) { return StringRef{def}; }); } /// returns cell_idx (always valid for replacing), 'cell is valid' flag, 'cell is outdated' flag /// true false found and valid /// false true not found (something outdated, maybe our cell) /// false false not found (other id stored with valid data) /// true true impossible /// /// todo: split this func to two: find_for_get and find_for_set CacheDictionary::FindResult CacheDictionary::findCellIdx(const Key & id, const CellMetadata::time_point_t now) const { auto pos = getCellIdx(id); auto oldest_id = pos; auto oldest_time = CellMetadata::time_point_t::max(); const auto stop = pos + max_collision_length; for (; pos < stop; ++pos) { const auto cell_idx = pos & size_overlap_mask; const auto & cell = cells[cell_idx]; if (cell.id != id) { /// maybe we already found nearest expired cell (try minimize collision_length on insert) if (oldest_time > now && oldest_time > cell.expiresAt()) { oldest_time = cell.expiresAt(); oldest_id = cell_idx; } continue; } if (cell.expiresAt() < now) { return {cell_idx, false, true}; } return {cell_idx, true, false}; } return {oldest_id, false, false}; } void CacheDictionary::has(const PaddedPODArray & ids, PaddedPODArray & out) const { /// There are three types of ids. /// - Valid ids. These ids are presented in local cache and their lifetime is not expired. /// - CacheExpired ids. Ids that are in local cache, but their values are rotted (lifetime is expired). /// - CacheNotFound ids. We have to go to external storage to know its value. /// Mapping: -> { all indices `i` of `ids` such that `ids[i]` = } std::unordered_map> cache_expired_ids; std::unordered_map> cache_not_found_ids; size_t cache_hit = 0; const auto rows = ext::size(ids); { const ProfilingScopedReadRWLock read_lock{rw_lock, ProfileEvents::DictCacheLockReadNs}; const auto now = std::chrono::system_clock::now(); /// fetch up-to-date values, decide which ones require update for (const auto row : ext::range(0, rows)) { const auto id = ids[row]; const auto find_result = findCellIdx(id, now); const auto & cell_idx = find_result.cell_idx; auto insert_to_answer_routine = [&] () { out[row] = !cells[cell_idx].isDefault(); }; if (!find_result.valid) { if (find_result.outdated) { /// Protection of reading very expired keys. if (now > cells[find_result.cell_idx].strict_max) { cache_not_found_ids[id].push_back(row); continue; } cache_expired_ids[id].push_back(row); if (allow_read_expired_keys) insert_to_answer_routine(); } else { cache_not_found_ids[id].push_back(row); } } else { ++cache_hit; insert_to_answer_routine(); } } } ProfileEvents::increment(ProfileEvents::DictCacheKeysExpired, cache_expired_ids.size()); ProfileEvents::increment(ProfileEvents::DictCacheKeysNotFound, cache_not_found_ids.size()); ProfileEvents::increment(ProfileEvents::DictCacheKeysHit, cache_hit); query_count.fetch_add(rows, std::memory_order_relaxed); hit_count.fetch_add(rows - cache_expired_ids.size() - cache_not_found_ids.size(), std::memory_order_release); if (cache_not_found_ids.empty()) { /// Nothing to update - return; if (cache_expired_ids.empty()) return; if (allow_read_expired_keys) { std::vector required_expired_ids; required_expired_ids.reserve(cache_expired_ids.size()); std::transform( std::begin(cache_expired_ids), std::end(cache_expired_ids), std::back_inserter(required_expired_ids), [](auto & pair) { return pair.first; }); /// Callbacks are empty because we don't want to receive them after an unknown period of time. auto update_unit_ptr = std::make_shared(required_expired_ids); tryPushToUpdateQueueOrThrow(update_unit_ptr); /// Update is async - no need to wait. return; } } /// At this point we have two situations. /// There may be both types of keys: cache_expired_ids and cache_not_found_ids. /// We will update them all synchronously. std::vector required_ids; required_ids.reserve(cache_not_found_ids.size() + cache_expired_ids.size()); std::transform( std::begin(cache_not_found_ids), std::end(cache_not_found_ids), std::back_inserter(required_ids), [](auto & pair) { return pair.first; }); std::transform( std::begin(cache_expired_ids), std::end(cache_expired_ids), std::back_inserter(required_ids), [](auto & pair) { return pair.first; }); auto on_cell_updated = [&] (const Key id, const size_t) { for (const auto row : cache_not_found_ids[id]) out[row] = true; for (const auto row : cache_expired_ids[id]) out[row] = true; }; auto on_id_not_found = [&] (const Key id, const size_t) { for (const auto row : cache_not_found_ids[id]) out[row] = false; for (const auto row : cache_expired_ids[id]) out[row] = true; }; auto update_unit_ptr = std::make_shared(required_ids, on_cell_updated, on_id_not_found); tryPushToUpdateQueueOrThrow(update_unit_ptr); waitForCurrentUpdateFinish(update_unit_ptr); } void CacheDictionary::createAttributes() { const auto attributes_size = dict_struct.attributes.size(); attributes.reserve(attributes_size); bytes_allocated += size * sizeof(CellMetadata); bytes_allocated += attributes_size * sizeof(attributes.front()); for (const auto & attribute : dict_struct.attributes) { attribute_index_by_name.emplace(attribute.name, attributes.size()); attributes.push_back(createAttributeWithType(attribute.underlying_type, attribute.null_value)); if (attribute.hierarchical) { hierarchical_attribute = &attributes.back(); if (hierarchical_attribute->type != AttributeUnderlyingType::utUInt64) throw Exception{full_name + ": hierarchical attribute must be UInt64.", ErrorCodes::TYPE_MISMATCH}; } } } CacheDictionary::Attribute CacheDictionary::createAttributeWithType(const AttributeUnderlyingType type, const Field & null_value) { Attribute attr{type, {}, {}}; switch (type) { #define DISPATCH(TYPE) \ case AttributeUnderlyingType::ut##TYPE: \ attr.null_values = TYPE(null_value.get>()); /* NOLINT */ \ attr.arrays = std::make_unique>(size); /* NOLINT */ \ bytes_allocated += size * sizeof(TYPE); \ break; DISPATCH(UInt8) DISPATCH(UInt16) DISPATCH(UInt32) DISPATCH(UInt64) DISPATCH(UInt128) DISPATCH(Int8) DISPATCH(Int16) DISPATCH(Int32) DISPATCH(Int64) DISPATCH(Decimal32) DISPATCH(Decimal64) DISPATCH(Decimal128) DISPATCH(Float32) DISPATCH(Float64) #undef DISPATCH case AttributeUnderlyingType::utString: attr.null_values = null_value.get(); attr.arrays = std::make_unique>(size); bytes_allocated += size * sizeof(StringRef); if (!string_arena) string_arena = std::make_unique(); break; } return attr; } void CacheDictionary::setDefaultAttributeValue(Attribute & attribute, const Key idx) const { switch (attribute.type) { case AttributeUnderlyingType::utUInt8: std::get>(attribute.arrays)[idx] = std::get(attribute.null_values); break; case AttributeUnderlyingType::utUInt16: std::get>(attribute.arrays)[idx] = std::get(attribute.null_values); break; case AttributeUnderlyingType::utUInt32: std::get>(attribute.arrays)[idx] = std::get(attribute.null_values); break; case AttributeUnderlyingType::utUInt64: std::get>(attribute.arrays)[idx] = std::get(attribute.null_values); break; case AttributeUnderlyingType::utUInt128: std::get>(attribute.arrays)[idx] = std::get(attribute.null_values); break; case AttributeUnderlyingType::utInt8: std::get>(attribute.arrays)[idx] = std::get(attribute.null_values); break; case AttributeUnderlyingType::utInt16: std::get>(attribute.arrays)[idx] = std::get(attribute.null_values); break; case AttributeUnderlyingType::utInt32: std::get>(attribute.arrays)[idx] = std::get(attribute.null_values); break; case AttributeUnderlyingType::utInt64: std::get>(attribute.arrays)[idx] = std::get(attribute.null_values); break; case AttributeUnderlyingType::utFloat32: std::get>(attribute.arrays)[idx] = std::get(attribute.null_values); break; case AttributeUnderlyingType::utFloat64: std::get>(attribute.arrays)[idx] = std::get(attribute.null_values); break; case AttributeUnderlyingType::utDecimal32: std::get>(attribute.arrays)[idx] = std::get(attribute.null_values); break; case AttributeUnderlyingType::utDecimal64: std::get>(attribute.arrays)[idx] = std::get(attribute.null_values); break; case AttributeUnderlyingType::utDecimal128: std::get>(attribute.arrays)[idx] = std::get(attribute.null_values); break; case AttributeUnderlyingType::utString: { const auto & null_value_ref = std::get(attribute.null_values); auto & string_ref = std::get>(attribute.arrays)[idx]; if (string_ref.data != null_value_ref.data()) { if (string_ref.data) string_arena->free(const_cast(string_ref.data), string_ref.size); string_ref = StringRef{null_value_ref}; } break; } } } void CacheDictionary::setAttributeValue(Attribute & attribute, const Key idx, const Field & value) const { switch (attribute.type) { case AttributeUnderlyingType::utUInt8: std::get>(attribute.arrays)[idx] = value.get(); break; case AttributeUnderlyingType::utUInt16: std::get>(attribute.arrays)[idx] = value.get(); break; case AttributeUnderlyingType::utUInt32: std::get>(attribute.arrays)[idx] = value.get(); break; case AttributeUnderlyingType::utUInt64: std::get>(attribute.arrays)[idx] = value.get(); break; case AttributeUnderlyingType::utUInt128: std::get>(attribute.arrays)[idx] = value.get(); break; case AttributeUnderlyingType::utInt8: std::get>(attribute.arrays)[idx] = value.get(); break; case AttributeUnderlyingType::utInt16: std::get>(attribute.arrays)[idx] = value.get(); break; case AttributeUnderlyingType::utInt32: std::get>(attribute.arrays)[idx] = value.get(); break; case AttributeUnderlyingType::utInt64: std::get>(attribute.arrays)[idx] = value.get(); break; case AttributeUnderlyingType::utFloat32: std::get>(attribute.arrays)[idx] = value.get(); break; case AttributeUnderlyingType::utFloat64: std::get>(attribute.arrays)[idx] = value.get(); break; case AttributeUnderlyingType::utDecimal32: std::get>(attribute.arrays)[idx] = value.get(); break; case AttributeUnderlyingType::utDecimal64: std::get>(attribute.arrays)[idx] = value.get(); break; case AttributeUnderlyingType::utDecimal128: std::get>(attribute.arrays)[idx] = value.get(); break; case AttributeUnderlyingType::utString: { const auto & string = value.get(); auto & string_ref = std::get>(attribute.arrays)[idx]; const auto & null_value_ref = std::get(attribute.null_values); /// free memory unless it points to a null_value if (string_ref.data && string_ref.data != null_value_ref.data()) string_arena->free(const_cast(string_ref.data), string_ref.size); const auto str_size = string.size(); if (str_size != 0) { auto string_ptr = string_arena->alloc(str_size + 1); std::copy(string.data(), string.data() + str_size + 1, string_ptr); string_ref = StringRef{string_ptr, str_size}; } else string_ref = {}; break; } } } CacheDictionary::Attribute & CacheDictionary::getAttribute(const std::string & attribute_name) const { const auto it = attribute_index_by_name.find(attribute_name); if (it == std::end(attribute_index_by_name)) throw Exception{full_name + ": no such attribute '" + attribute_name + "'", ErrorCodes::BAD_ARGUMENTS}; return attributes[it->second]; } bool CacheDictionary::isEmptyCell(const UInt64 idx) const { return (idx != zero_cell_idx && cells[idx].id == 0) || (cells[idx].data == ext::safe_bit_cast(CellMetadata::time_point_t())); } PaddedPODArray CacheDictionary::getCachedIds() const { const ProfilingScopedReadRWLock read_lock{rw_lock, ProfileEvents::DictCacheLockReadNs}; PaddedPODArray array; for (size_t idx = 0; idx < cells.size(); ++idx) { auto & cell = cells[idx]; if (!isEmptyCell(idx) && !cells[idx].isDefault()) { array.push_back(cell.id); } } return array; } BlockInputStreamPtr CacheDictionary::getBlockInputStream(const Names & column_names, size_t max_block_size) const { using BlockInputStreamType = DictionaryBlockInputStream; return std::make_shared(shared_from_this(), max_block_size, getCachedIds(), column_names); } std::exception_ptr CacheDictionary::getLastException() const { const ProfilingScopedReadRWLock read_lock{rw_lock, ProfileEvents::DictCacheLockReadNs}; return last_exception; } void registerDictionaryCache(DictionaryFactory & factory) { auto create_layout = [=](const std::string & full_name, const DictionaryStructure & dict_struct, const Poco::Util::AbstractConfiguration & config, const std::string & config_prefix, DictionarySourcePtr source_ptr) -> DictionaryPtr { if (dict_struct.key) throw Exception{"'key' is not supported for dictionary of layout 'cache'", ErrorCodes::UNSUPPORTED_METHOD}; if (dict_struct.range_min || dict_struct.range_max) throw Exception{full_name + ": elements .structure.range_min and .structure.range_max should be defined only " "for a dictionary of layout 'range_hashed'", ErrorCodes::BAD_ARGUMENTS}; const auto & layout_prefix = config_prefix + ".layout"; const size_t size = config.getUInt64(layout_prefix + ".cache.size_in_cells"); if (size == 0) throw Exception{full_name + ": dictionary of layout 'cache' cannot have 0 cells", ErrorCodes::TOO_SMALL_BUFFER_SIZE}; const bool require_nonempty = config.getBool(config_prefix + ".require_nonempty", false); if (require_nonempty) throw Exception{full_name + ": dictionary of layout 'cache' cannot have 'require_nonempty' attribute set", ErrorCodes::BAD_ARGUMENTS}; const String database = config.getString(config_prefix + ".database", ""); const String name = config.getString(config_prefix + ".name"); const DictionaryLifetime dict_lifetime{config, config_prefix + ".lifetime"}; const size_t strict_max_lifetime_seconds = config.getUInt64(layout_prefix + ".cache.strict_max_lifetime_seconds", static_cast(dict_lifetime.max_sec)); const size_t max_update_queue_size = config.getUInt64(layout_prefix + ".cache.max_update_queue_size", 100000); if (max_update_queue_size == 0) throw Exception{name + ": dictionary of layout 'cache' cannot have empty update queue of size 0", ErrorCodes::TOO_SMALL_BUFFER_SIZE}; const bool allow_read_expired_keys = config.getBool(layout_prefix + ".cache.allow_read_expired_keys", false); const size_t update_queue_push_timeout_milliseconds = config.getUInt64(layout_prefix + ".cache.update_queue_push_timeout_milliseconds", 10); if (update_queue_push_timeout_milliseconds < 10) throw Exception{name + ": dictionary of layout 'cache' have too little update_queue_push_timeout", ErrorCodes::BAD_ARGUMENTS}; const size_t query_wait_timeout_milliseconds = config.getUInt64(layout_prefix + ".cache.query_wait_timeout_milliseconds", 60000); const size_t max_threads_for_updates = config.getUInt64(layout_prefix + ".max_threads_for_updates", 4); if (max_threads_for_updates == 0) throw Exception{name + ": dictionary of layout 'cache' cannot have zero threads for updates.", ErrorCodes::BAD_ARGUMENTS}; return std::make_unique( database, name, dict_struct, std::move(source_ptr), dict_lifetime, strict_max_lifetime_seconds, size, allow_read_expired_keys, max_update_queue_size, update_queue_push_timeout_milliseconds, query_wait_timeout_milliseconds, max_threads_for_updates); }; factory.registerLayout("cache", create_layout, false); } void CacheDictionary::updateThreadFunction() { setThreadName("AsyncUpdater"); while (!finished) { UpdateUnitPtr first_popped; update_queue.pop(first_popped); if (finished) break; /// Here we pop as many unit pointers from update queue as we can. /// We fix current size to avoid livelock (or too long waiting), /// when this thread pops from the queue and other threads push to the queue. const size_t current_queue_size = update_queue.size(); if (current_queue_size > 0) LOG_TRACE(log, "Performing bunch of keys update in cache dictionary with " << current_queue_size + 1 << " keys"); std::vector update_request; update_request.reserve(current_queue_size + 1); update_request.emplace_back(first_popped); UpdateUnitPtr current_unit_ptr; while (!update_request.empty() && update_queue.tryPop(current_unit_ptr)) update_request.emplace_back(std::move(current_unit_ptr)); BunchUpdateUnit bunch_update_unit(update_request); try { /// Update a bunch of ids. update(bunch_update_unit); /// Notify all threads about finished updating the bunch of ids /// where their own ids were included. std::unique_lock lock(update_mutex); for (auto & unit_ptr: update_request) unit_ptr->is_done = true; is_update_finished.notify_all(); } catch (...) { std::unique_lock lock(update_mutex); /// It is a big trouble, because one bad query can make other threads fail with not relative exception. /// So at this point all threads (and queries) will receive the same exception. for (auto & unit_ptr: update_request) unit_ptr->current_exception = std::current_exception(); is_update_finished.notify_all(); } } } void CacheDictionary::waitForCurrentUpdateFinish(UpdateUnitPtr & update_unit_ptr) const { std::unique_lock update_lock(update_mutex); size_t timeout_for_wait = 100000; bool result = is_update_finished.wait_for( update_lock, std::chrono::milliseconds(timeout_for_wait), [&] {return update_unit_ptr->is_done || update_unit_ptr->current_exception; }); if (!result) { std::lock_guard callback_lock(update_unit_ptr->callback_mutex); /* * We acquire a lock here and store false to special variable to avoid SEGFAULT's. * Consider timeout for wait had expired and main query's thread ended with exception * or some other error. But the UpdateUnit with callbacks is left in the queue. * It has these callback that capture god knows what from the current thread * (most of the variables lies on the stack of finished thread) that * intended to do a synchronous update. AsyncUpdate thread can touch deallocated memory and explode. * */ update_unit_ptr->can_use_callback = false; throw DB::Exception( "Dictionary " + getName() + " source seems unavailable, because " + toString(timeout_for_wait) + " timeout exceeded.", ErrorCodes::TIMEOUT_EXCEEDED); } if (update_unit_ptr->current_exception) std::rethrow_exception(update_unit_ptr->current_exception); } void CacheDictionary::tryPushToUpdateQueueOrThrow(UpdateUnitPtr & update_unit_ptr) const { if (!update_queue.tryPush(update_unit_ptr, update_queue_push_timeout_milliseconds)) throw DB::Exception( "Cannot push to internal update queue in dictionary " + getFullName() + ". Timelimit of " + std::to_string(update_queue_push_timeout_milliseconds) + " ms. exceeded. Current queue size is " + std::to_string(update_queue.size()), ErrorCodes::CACHE_DICTIONARY_UPDATE_FAIL); } void CacheDictionary::update(BunchUpdateUnit & bunch_update_unit) const { CurrentMetrics::Increment metric_increment{CurrentMetrics::DictCacheRequests}; ProfileEvents::increment(ProfileEvents::DictCacheKeysRequested, bunch_update_unit.getRequestedIds().size()); std::unordered_map remaining_ids{bunch_update_unit.getRequestedIds().size()}; for (const auto id : bunch_update_unit.getRequestedIds()) remaining_ids.insert({id, 0}); const auto now = std::chrono::system_clock::now(); /// Non const because it will be unlocked. ProfilingScopedWriteRWLock write_lock{rw_lock, ProfileEvents::DictCacheLockWriteNs}; if (now > backoff_end_time.load()) { try { if (error_count) { /// Recover after error: we have to clone the source here because /// it could keep connections which should be reset after error. source_ptr = source_ptr->clone(); } Stopwatch watch; /// To perform parallel loading. BlockInputStreamPtr stream = nullptr; { ProfilingScopedWriteUnlocker unlocker(write_lock); stream = source_ptr->loadIds(bunch_update_unit.getRequestedIds()); } stream->readPrefix(); while (true) { Block block; { ProfilingScopedWriteUnlocker unlocker(write_lock); block = stream->read(); if (!block) break; } const auto id_column = typeid_cast(block.safeGetByPosition(0).column.get()); if (!id_column) throw Exception{name + ": id column has type different from UInt64.", ErrorCodes::TYPE_MISMATCH}; const auto & ids = id_column->getData(); /// cache column pointers const auto column_ptrs = ext::map( ext::range(0, attributes.size()), [&block](size_t i) { return block.safeGetByPosition(i + 1).column.get(); }); for (const auto i : ext::range(0, ids.size())) { const auto id = ids[i]; const auto find_result = findCellIdx(id, now); const auto & cell_idx = find_result.cell_idx; auto & cell = cells[cell_idx]; for (const auto attribute_idx : ext::range(0, attributes.size())) { const auto & attribute_column = *column_ptrs[attribute_idx]; auto & attribute = attributes[attribute_idx]; setAttributeValue(attribute, cell_idx, attribute_column[i]); } /// if cell id is zero and zero does not map to this cell, then the cell is unused if (cell.id == 0 && cell_idx != zero_cell_idx) element_count.fetch_add(1, std::memory_order_relaxed); cell.id = id; if (dict_lifetime.min_sec != 0 && dict_lifetime.max_sec != 0) { std::uniform_int_distribution distribution{dict_lifetime.min_sec, dict_lifetime.max_sec}; cell.setExpiresAt(now + std::chrono::seconds{distribution(rnd_engine)}); } else cell.setExpiresAt(std::chrono::time_point::max()); bunch_update_unit.informCallersAboutPresentId(id, cell_idx); /// mark corresponding id as found remaining_ids[id] = 1; } } stream->readSuffix(); error_count = 0; last_exception = std::exception_ptr{}; backoff_end_time = std::chrono::system_clock::time_point{}; ProfileEvents::increment(ProfileEvents::DictCacheRequestTimeNs, watch.elapsed()); } catch (...) { ++error_count; last_exception = std::current_exception(); backoff_end_time = now + std::chrono::seconds(calculateDurationWithBackoff(rnd_engine, error_count)); tryLogException(last_exception, log, "Could not update cache dictionary '" + getFullName() + "', next update is scheduled at " + ext::to_string(backoff_end_time.load())); } } size_t not_found_num = 0, found_num = 0; /// Check which ids have not been found and require setting null_value for (const auto & id_found_pair : remaining_ids) { if (id_found_pair.second) { ++found_num; continue; } ++not_found_num; const auto id = id_found_pair.first; const auto find_result = findCellIdx(id, now); const auto & cell_idx = find_result.cell_idx; auto & cell = cells[cell_idx]; if (error_count) { if (find_result.outdated) { /// We have expired data for that `id` so we can continue using it. bool was_default = cell.isDefault(); cell.setExpiresAt(backoff_end_time); if (was_default) cell.setDefault(); if (was_default) bunch_update_unit.informCallersAboutAbsentId(id, cell_idx); else bunch_update_unit.informCallersAboutPresentId(id, cell_idx); continue; } /// We don't have expired data for that `id` so all we can do is to rethrow `last_exception`. std::rethrow_exception(last_exception); } /// Check if cell had not been occupied before and increment element counter if it hadn't if (cell.id == 0 && cell_idx != zero_cell_idx) element_count.fetch_add(1, std::memory_order_relaxed); cell.id = id; if (dict_lifetime.min_sec != 0 && dict_lifetime.max_sec != 0) { std::uniform_int_distribution distribution{dict_lifetime.min_sec, dict_lifetime.max_sec}; cell.setExpiresAt(now + std::chrono::seconds{distribution(rnd_engine)}); cell.strict_max = now + std::chrono::seconds{strict_max_lifetime_seconds}; } else { cell.setExpiresAt(std::chrono::time_point::max()); cell.strict_max = now + std::chrono::seconds{strict_max_lifetime_seconds}; } /// Set null_value for each attribute cell.setDefault(); for (auto & attribute : attributes) setDefaultAttributeValue(attribute, cell_idx); /// inform caller that the cell has not been found bunch_update_unit.informCallersAboutAbsentId(id, cell_idx); } ProfileEvents::increment(ProfileEvents::DictCacheKeysRequestedMiss, not_found_num); ProfileEvents::increment(ProfileEvents::DictCacheKeysRequestedFound, found_num); ProfileEvents::increment(ProfileEvents::DictCacheRequests); } }