#include #include #include #include #include #include #include #include #include #include #include #include #include namespace DB { namespace ErrorCodes { extern const int ILLEGAL_TYPE_OF_ARGUMENT; } template class FunctionMinSampleSize : public IFunction { public: static constexpr auto name = Impl::name; static FunctionPtr create(ContextPtr) { return std::make_shared>(); } String getName() const override { return name; } size_t getNumberOfArguments() const override { return Impl::num_args; } ColumnNumbers getArgumentsThatAreAlwaysConstant() const override { return ColumnNumbers(std::begin(Impl::const_args), std::end(Impl::const_args)); } bool useDefaultImplementationForNulls() const override { return false; } bool useDefaultImplementationForConstants() const override { return true; } bool isSuitableForShortCircuitArgumentsExecution(const DataTypesWithConstInfo & /*arguments*/) const override { return false; } static DataTypePtr getReturnType() { auto float_64_type = std::make_shared>(); DataTypes types{ float_64_type, float_64_type, float_64_type, }; Strings names{ "minimum_sample_size", "detect_range_lower", "detect_range_upper", }; return std::make_shared(std::move(types), std::move(names)); } DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override { Impl::validateArguments(arguments); return getReturnType(); } ColumnPtr executeImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr &, size_t input_rows_count) const override { return Impl::execute(arguments, input_rows_count); } }; static bool isBetweenZeroAndOne(Float64 v) { return v >= 0.0 && v <= 1.0 && fabs(v - 0.0) >= DBL_EPSILON && fabs(v - 1.0) >= DBL_EPSILON; } struct ContinousImpl { static constexpr auto name = "minSampleSizeContinous"; static constexpr size_t num_args = 5; static constexpr size_t const_args[] = {2, 3, 4}; static void validateArguments(const DataTypes & arguments) { for (size_t i = 0; i < arguments.size(); ++i) { if (!isNativeNumber(arguments[i])) { throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "The {}th Argument of function {} must be a number.", i + 1, name); } } } static ColumnPtr execute(const ColumnsWithTypeAndName & arguments, size_t input_rows_count) { auto float_64_type = std::make_shared(); auto baseline_argument = arguments[0]; baseline_argument.column = baseline_argument.column->convertToFullColumnIfConst(); auto baseline_column_untyped = castColumnAccurate(baseline_argument, float_64_type); const auto * baseline_column = checkAndGetColumn>(*baseline_column_untyped); const auto & baseline_column_data = baseline_column->getData(); auto sigma_argument = arguments[1]; sigma_argument.column = sigma_argument.column->convertToFullColumnIfConst(); auto sigma_column_untyped = castColumnAccurate(sigma_argument, float_64_type); const auto * sigma_column = checkAndGetColumn>(*sigma_column_untyped); const auto & sigma_column_data = sigma_column->getData(); const IColumn & col_mde = *arguments[2].column; const IColumn & col_power = *arguments[3].column; const IColumn & col_alpha = *arguments[4].column; auto res_min_sample_size = ColumnFloat64::create(); auto & data_min_sample_size = res_min_sample_size->getData(); data_min_sample_size.reserve(input_rows_count); auto res_detect_lower = ColumnFloat64::create(); auto & data_detect_lower = res_detect_lower->getData(); data_detect_lower.reserve(input_rows_count); auto res_detect_upper = ColumnFloat64::create(); auto & data_detect_upper = res_detect_upper->getData(); data_detect_upper.reserve(input_rows_count); /// Minimal Detectable Effect const Float64 mde = col_mde.getFloat64(0); /// Sufficient statistical power to detect a treatment effect const Float64 power = col_power.getFloat64(0); /// Significance level const Float64 alpha = col_alpha.getFloat64(0); boost::math::normal_distribution<> nd(0.0, 1.0); for (size_t row_num = 0; row_num < input_rows_count; ++row_num) { /// Mean of control-metric Float64 baseline = baseline_column_data[row_num]; /// Standard deviation of conrol-metric Float64 sigma = sigma_column_data[row_num]; if (!std::isfinite(baseline) || !std::isfinite(sigma) || !isBetweenZeroAndOne(mde) || !isBetweenZeroAndOne(power) || !isBetweenZeroAndOne(alpha)) { data_min_sample_size.emplace_back(std::numeric_limits::quiet_NaN()); data_detect_lower.emplace_back(std::numeric_limits::quiet_NaN()); data_detect_upper.emplace_back(std::numeric_limits::quiet_NaN()); continue; } Float64 delta = baseline * mde; using namespace boost::math; /// https://towardsdatascience.com/required-sample-size-for-a-b-testing-6f6608dd330a /// \frac{2\sigma^{2} * (Z_{1 - alpha /2} + Z_{power})^{2}}{\Delta^{2}} Float64 min_sample_size = 2 * std::pow(sigma, 2) * std::pow(quantile(nd, 1.0 - alpha / 2) + quantile(nd, power), 2) / std::pow(delta, 2); data_min_sample_size.emplace_back(min_sample_size); data_detect_lower.emplace_back(baseline - delta); data_detect_upper.emplace_back(baseline + delta); } return ColumnTuple::create(Columns{std::move(res_min_sample_size), std::move(res_detect_lower), std::move(res_detect_upper)}); } }; struct ConversionImpl { static constexpr auto name = "minSampleSizeConversion"; static constexpr size_t num_args = 4; static constexpr size_t const_args[] = {1, 2, 3}; static void validateArguments(const DataTypes & arguments) { size_t arguments_size = arguments.size(); for (size_t i = 0; i < arguments_size; ++i) { if (!isFloat(arguments[i])) { throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "The {}th argument of function {} must be a float.", i + 1, name); } } } static ColumnPtr execute(const ColumnsWithTypeAndName & arguments, size_t input_rows_count) { auto first_argument_column = castColumnAccurate(arguments[0], std::make_shared()); if (const ColumnConst * const col_p1_const = checkAndGetColumnConst>(first_argument_column.get())) { const Float64 left_value = col_p1_const->template getValue(); return process(arguments, &left_value, input_rows_count); } else if (const ColumnVector * const col_p1 = checkAndGetColumn>(first_argument_column.get())) { return process(arguments, col_p1->getData().data(), input_rows_count); } else { throw Exception(ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT, "The first argument of function {} must be a float.", name); } } template static ColumnPtr process(const ColumnsWithTypeAndName & arguments, const Float64 * col_p1, const size_t input_rows_count) { const IColumn & col_mde = *arguments[1].column; const IColumn & col_power = *arguments[2].column; const IColumn & col_alpha = *arguments[3].column; auto res_min_sample_size = ColumnFloat64::create(); auto & data_min_sample_size = res_min_sample_size->getData(); data_min_sample_size.reserve(input_rows_count); auto res_detect_lower = ColumnFloat64::create(); auto & data_detect_lower = res_detect_lower->getData(); data_detect_lower.reserve(input_rows_count); auto res_detect_upper = ColumnFloat64::create(); auto & data_detect_upper = res_detect_upper->getData(); data_detect_upper.reserve(input_rows_count); /// Minimal Detectable Effect const Float64 mde = col_mde.getFloat64(0); /// Sufficient statistical power to detect a treatment effect const Float64 power = col_power.getFloat64(0); /// Significance level const Float64 alpha = col_alpha.getFloat64(0); boost::math::normal_distribution<> nd(0.0, 1.0); for (size_t row_num = 0; row_num < input_rows_count; ++row_num) { /// Proportion of control-metric Float64 p1; if constexpr (const_p1) { p1 = col_p1[0]; } else if constexpr (!const_p1) { p1 = col_p1[row_num]; } if (!std::isfinite(p1) || !isBetweenZeroAndOne(mde) || !isBetweenZeroAndOne(power) || !isBetweenZeroAndOne(alpha)) { data_min_sample_size.emplace_back(std::numeric_limits::quiet_NaN()); data_detect_lower.emplace_back(std::numeric_limits::quiet_NaN()); data_detect_upper.emplace_back(std::numeric_limits::quiet_NaN()); continue; } Float64 q1 = 1.0 - p1; Float64 p2 = p1 + mde; Float64 q2 = 1.0 - p2; Float64 p_bar = (p1 + p2) / 2.0; Float64 q_bar = 1.0 - p_bar; using namespace boost::math; /// https://towardsdatascience.com/required-sample-size-for-a-b-testing-6f6608dd330a /// \frac{(Z_{1-alpha/2} * \sqrt{2*\bar{p}*\bar{q}} + Z_{power} * \sqrt{p1*q1+p2*q2})^{2}}{\Delta^{2}} Float64 min_sample_size = std::pow( quantile(nd, 1.0 - alpha / 2.0) * std::sqrt(2.0 * p_bar * q_bar) + quantile(nd, power) * std::sqrt(p1 * q1 + p2 * q2), 2) / std::pow(mde, 2); data_min_sample_size.emplace_back(min_sample_size); data_detect_lower.emplace_back(p1 - mde); data_detect_upper.emplace_back(p1 + mde); } return ColumnTuple::create(Columns{std::move(res_min_sample_size), std::move(res_detect_lower), std::move(res_detect_upper)}); } }; REGISTER_FUNCTION(MinSampleSize) { factory.registerFunction>(); factory.registerFunction>(); } }