#include namespace DB { MergeTreeMinMaxGranule::MergeTreeMinMaxGranule(const MergeTreeMinMaxIndex & index) : MergeTreeIndexGranule(), emp(true), index(index) { parallelogram.reserve(index.columns.size()); } void MergeTreeMinMaxGranule::serializeBinary(WriteBuffer & ostr) const { if (empty()) throw Exception( "Attempt to write empty minmax index `" + index.name + "`", ErrorCodes::LOGICAL_ERROR); for (size_t i = 0; i < index.columns.size(); ++i) { const DataTypePtr & type = index.data_types[i]; type->serializeBinary(parallelogram[i].left, ostr); type->serializeBinary(parallelogram[i].right, ostr); } } void MergeTreeMinMaxGranule::deserializeBinary(ReadBuffer & istr) { for (size_t i = 0; i < index.columns.size(); ++i) { const DataTypePtr & type = index.data_types[i]; Field min_val; type->deserializeBinary(min_val, istr); Field max_val; type->deserializeBinary(max_val, istr); } emp = true; } void MergeTreeMinMaxGranule::update(const Block & block, size_t * pos, size_t limit) { size_t rows_read = 0; for (size_t i = 0; i < index.columns.size(); ++i) { auto column = block.getByName(index.columns[i]).column; size_t cur; /// TODO: more effective (index + getExtremes??) for (cur = 0; cur < limit && cur + *pos < column->size(); ++cur) { Field field; column->get(i, field); if (parallelogram.size() < i) { parallelogram.emplace_back(field, true, field, true); } else { parallelogram[i].left = std::min(parallelogram[i].left, field); parallelogram[i].right = std::max(parallelogram[i].right, field); } } rows_read = cur; } *pos += rows_read; if (rows_read > 0) emp = false; }; MinMaxCondition::MinMaxCondition( const SelectQueryInfo &query, const Context &context, const MergeTreeMinMaxIndex &index) : IndexCondition(), index(index), condition(query, context, index.columns, index.expr) {}; bool MinMaxCondition::alwaysUnknownOrTrue() const { return condition.alwaysUnknownOrTrue(); } bool MinMaxCondition::mayBeTrueOnGranule(MergeTreeIndexGranulePtr idx_granule) const { std::shared_ptr granule = std::dynamic_pointer_cast(idx_granule); if (!granule) { throw Exception( "Minmax index condition got wrong granule", ErrorCodes::LOGICAL_ERROR); } return condition.mayBeTrueInParallelogram(granule->parallelogram, index.data_types); } MergeTreeIndexGranulePtr MergeTreeMinMaxIndex::createIndexGranule() const { return std::make_shared(*this); } IndexConditionPtr MergeTreeMinMaxIndex::createIndexCondition( const SelectQueryInfo & query, const Context & context) const { return std::make_shared(query, context, *this); }; std::unique_ptr MergeTreeMinMaxIndexCreator( const MergeTreeData & data, std::shared_ptr node, const Context & context) { if (node->name.empty()) throw Exception("Index must have unique name", ErrorCodes::INCORRECT_QUERY); if (node->type->arguments) throw Exception("Minmax index have not any arguments", ErrorCodes::INCORRECT_QUERY); ASTPtr expr_list = MergeTreeData::extractKeyExpressionList(node->expr->clone()); auto syntax = SyntaxAnalyzer(context, {}).analyze( expr_list, data.getColumns().getAllPhysical()); auto minmax_expr = ExpressionAnalyzer(expr_list, syntax, context).getActions(false); auto minmax = std::make_unique( node->name, std::move(minmax_expr), node->granularity.get()); const auto & columns_with_types = minmax->expr->getRequiredColumnsWithTypes(); for (const auto & column : columns_with_types) { minmax->columns.emplace_back(column.name); minmax->data_types.emplace_back(column.type); } return minmax; } }