#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace ProfileEvents { extern const Event StorageBufferFlush; extern const Event StorageBufferErrorOnFlush; extern const Event StorageBufferPassedAllMinThresholds; extern const Event StorageBufferPassedTimeMaxThreshold; extern const Event StorageBufferPassedRowsMaxThreshold; extern const Event StorageBufferPassedBytesMaxThreshold; } namespace CurrentMetrics { extern const Metric StorageBufferRows; extern const Metric StorageBufferBytes; } namespace DB { namespace ErrorCodes { extern const int INFINITE_LOOP; extern const int NUMBER_OF_ARGUMENTS_DOESNT_MATCH; } StorageBuffer::StorageBuffer(const std::string & name_, const NamesAndTypesList & columns_, const NamesAndTypesList & materialized_columns_, const NamesAndTypesList & alias_columns_, const ColumnDefaults & column_defaults_, Context & context_, size_t num_shards_, const Thresholds & min_thresholds_, const Thresholds & max_thresholds_, const String & destination_database_, const String & destination_table_, bool allow_materialized_) : IStorage{columns_, materialized_columns_, alias_columns_, column_defaults_}, name(name_), context(context_), num_shards(num_shards_), buffers(num_shards_), min_thresholds(min_thresholds_), max_thresholds(max_thresholds_), destination_database(destination_database_), destination_table(destination_table_), no_destination(destination_database.empty() && destination_table.empty()), allow_materialized(allow_materialized_), log(&Logger::get("StorageBuffer (" + name + ")")) { } /// Reads from one buffer (from one block) under its mutex. class BufferBlockInputStream : public IProfilingBlockInputStream { public: BufferBlockInputStream(const Names & column_names_, StorageBuffer::Buffer & buffer_, const StorageBuffer & storage_) : column_names(column_names_.begin(), column_names_.end()), buffer(buffer_), storage(storage_) {} String getName() const override { return "Buffer"; } Block getHeader() const override { return storage.getSampleBlockForColumns(column_names); }; protected: Block readImpl() override { Block res; if (has_been_read) return res; has_been_read = true; std::lock_guard lock(buffer.mutex); if (!buffer.data.rows()) return res; for (const auto & name : column_names) res.insert(buffer.data.getByName(name)); return res; } private: Names column_names; StorageBuffer::Buffer & buffer; const StorageBuffer & storage; bool has_been_read = false; }; BlockInputStreams StorageBuffer::read( const Names & column_names, const SelectQueryInfo & query_info, const Context & context, QueryProcessingStage::Enum & processed_stage, size_t max_block_size, unsigned num_streams) { processed_stage = QueryProcessingStage::FetchColumns; BlockInputStreams streams_from_dst; if (!no_destination) { auto destination = context.getTable(destination_database, destination_table); if (destination.get() == this) throw Exception("Destination table is myself. Read will cause infinite loop.", ErrorCodes::INFINITE_LOOP); streams_from_dst = destination->read(column_names, query_info, context, processed_stage, max_block_size, num_streams); } BlockInputStreams streams_from_buffers; streams_from_buffers.reserve(num_shards); for (auto & buf : buffers) streams_from_buffers.push_back(std::make_shared(column_names, buf, *this)); /** If the sources from the table were processed before some non-initial stage of query execution, * then sources from the buffers must also be wrapped in the processing pipeline before the same stage. */ if (processed_stage > QueryProcessingStage::FetchColumns) for (auto & stream : streams_from_buffers) stream = InterpreterSelectQuery(query_info.query, context, {}, processed_stage, 0, stream).execute().in; streams_from_dst.insert(streams_from_dst.end(), streams_from_buffers.begin(), streams_from_buffers.end()); return streams_from_dst; } static void appendBlock(const Block & from, Block & to) { if (!to) throw Exception("Cannot append to empty block", ErrorCodes::LOGICAL_ERROR); assertBlocksHaveEqualStructure(from, to, "Buffer"); from.checkNumberOfRows(); to.checkNumberOfRows(); size_t rows = from.rows(); size_t bytes = from.bytes(); CurrentMetrics::add(CurrentMetrics::StorageBufferRows, rows); CurrentMetrics::add(CurrentMetrics::StorageBufferBytes, bytes); size_t old_rows = to.rows(); try { for (size_t column_no = 0, columns = to.columns(); column_no < columns; ++column_no) { const IColumn & col_from = *from.getByPosition(column_no).column.get(); MutableColumnPtr col_to = to.getByPosition(column_no).column->mutate(); col_to->insertRangeFrom(col_from, 0, rows); to.getByPosition(column_no).column = std::move(col_to); } } catch (...) { /// Rollback changes. try { /// Avoid "memory limit exceeded" exceptions during rollback. TemporarilyDisableMemoryTracker temporarily_disable_memory_tracker; for (size_t column_no = 0, columns = to.columns(); column_no < columns; ++column_no) { ColumnPtr & col_to = to.getByPosition(column_no).column; if (col_to->size() != old_rows) col_to = col_to->mutate()->cut(0, old_rows); } } catch (...) { /// In case when we cannot rollback, do not leave incorrect state in memory. std::terminate(); } throw; } } class BufferBlockOutputStream : public IBlockOutputStream { public: explicit BufferBlockOutputStream(StorageBuffer & storage_) : storage(storage_) {} Block getHeader() const override { return storage.getSampleBlock(); } void write(const Block & block) override { if (!block) return; size_t rows = block.rows(); if (!rows) return; StoragePtr destination; if (!storage.no_destination) { destination = storage.context.tryGetTable(storage.destination_database, storage.destination_table); if (destination) { if (destination.get() == &storage) throw Exception("Destination table is myself. Write will cause infinite loop.", ErrorCodes::INFINITE_LOOP); /// Check table structure. try { destination->check(block, true); } catch (Exception & e) { e.addMessage("(when looking at destination table " + storage.destination_database + "." + storage.destination_table + ")"); throw; } } } size_t bytes = block.bytes(); /// If the block already exceeds the maximum limit, then we skip the buffer. if (rows > storage.max_thresholds.rows || bytes > storage.max_thresholds.bytes) { if (!storage.no_destination) { LOG_TRACE(storage.log, "Writing block with " << rows << " rows, " << bytes << " bytes directly."); storage.writeBlockToDestination(block, destination); } return; } /// We distribute the load on the shards by the stream number. const auto start_shard_num = Poco::ThreadNumber::get() % storage.num_shards; /// We loop through the buffers, trying to lock mutex. No more than one lap. auto shard_num = start_shard_num; StorageBuffer::Buffer * least_busy_buffer = nullptr; std::unique_lock least_busy_lock; size_t least_busy_shard_rows = 0; for (size_t try_no = 0; try_no < storage.num_shards; ++try_no) { std::unique_lock lock(storage.buffers[shard_num].mutex, std::try_to_lock_t()); if (lock.owns_lock()) { size_t num_rows = storage.buffers[shard_num].data.rows(); if (!least_busy_buffer || num_rows < least_busy_shard_rows) { least_busy_buffer = &storage.buffers[shard_num]; least_busy_lock = std::move(lock); least_busy_shard_rows = num_rows; } } shard_num = (shard_num + 1) % storage.num_shards; } /// If you still can not lock anything at once, then we'll wait on mutex. if (!least_busy_buffer) insertIntoBuffer(block, storage.buffers[start_shard_num], std::unique_lock(storage.buffers[start_shard_num].mutex)); else insertIntoBuffer(block, *least_busy_buffer, std::move(least_busy_lock)); } private: StorageBuffer & storage; void insertIntoBuffer(const Block & block, StorageBuffer::Buffer & buffer, std::unique_lock && lock) { time_t current_time = time(nullptr); /// Sort the columns in the block. This is necessary to make it easier to concatenate the blocks later. Block sorted_block = block.sortColumns(); if (!buffer.data) { buffer.data = sorted_block.cloneEmpty(); } else if (storage.checkThresholds(buffer, current_time, sorted_block.rows(), sorted_block.bytes())) { /** If, after inserting the buffer, the constraints are exceeded, then we will reset the buffer. * This also protects against unlimited consumption of RAM, since if it is impossible to write to the table, * an exception will be thrown, and new data will not be added to the buffer. */ lock.unlock(); storage.flushBuffer(buffer, true); lock.lock(); } if (!buffer.first_write_time) buffer.first_write_time = current_time; appendBlock(sorted_block, buffer.data); } }; BlockOutputStreamPtr StorageBuffer::write(const ASTPtr & /*query*/, const Settings & /*settings*/) { return std::make_shared(*this); } void StorageBuffer::startup() { if (context.getSettingsRef().limits.readonly) { LOG_WARNING(log, "Storage " << getName() << " is run with readonly settings, it will not be able to insert data." << " Set apropriate system_profile to fix this."); } flush_thread = std::thread(&StorageBuffer::flushThread, this); } void StorageBuffer::shutdown() { shutdown_event.set(); if (flush_thread.joinable()) flush_thread.join(); try { optimize(nullptr /*query*/, {} /*partition*/, false /*final*/, false /*deduplicate*/, context); } catch (...) { tryLogCurrentException(__PRETTY_FUNCTION__); } } /** NOTE If you do OPTIMIZE after insertion, * it does not guarantee, that all data will be in destination table at the time of next SELECT just after OPTIMIZE. * * Because in case if there was already running flushBuffer method, * then call to flushBuffer inside OPTIMIZE will see empty buffer and return quickly, * but at the same time, the already running flushBuffer method possibly is not finished, * so next SELECT will observe missing data. * * This kind of race condition make very hard to implement proper tests. */ bool StorageBuffer::optimize(const ASTPtr & /*query*/, const ASTPtr & partition, bool final, bool deduplicate, const Context & /*context*/) { if (partition) throw Exception("Partition cannot be specified when optimizing table of type Buffer", ErrorCodes::NOT_IMPLEMENTED); if (final) throw Exception("FINAL cannot be specified when optimizing table of type Buffer", ErrorCodes::NOT_IMPLEMENTED); if (deduplicate) throw Exception("DEDUPLICATE cannot be specified when optimizing table of type Buffer", ErrorCodes::NOT_IMPLEMENTED); flushAllBuffers(false); return true; } bool StorageBuffer::checkThresholds(const Buffer & buffer, time_t current_time, size_t additional_rows, size_t additional_bytes) const { time_t time_passed = 0; if (buffer.first_write_time) time_passed = current_time - buffer.first_write_time; size_t rows = buffer.data.rows() + additional_rows; size_t bytes = buffer.data.bytes() + additional_bytes; return checkThresholdsImpl(rows, bytes, time_passed); } bool StorageBuffer::checkThresholdsImpl(size_t rows, size_t bytes, time_t time_passed) const { if (time_passed > min_thresholds.time && rows > min_thresholds.rows && bytes > min_thresholds.bytes) { ProfileEvents::increment(ProfileEvents::StorageBufferPassedAllMinThresholds); return true; } if (time_passed > max_thresholds.time) { ProfileEvents::increment(ProfileEvents::StorageBufferPassedTimeMaxThreshold); return true; } if (rows > max_thresholds.rows) { ProfileEvents::increment(ProfileEvents::StorageBufferPassedRowsMaxThreshold); return true; } if (bytes > max_thresholds.bytes) { ProfileEvents::increment(ProfileEvents::StorageBufferPassedBytesMaxThreshold); return true; } return false; } void StorageBuffer::flushAllBuffers(const bool check_thresholds) { for (auto & buf : buffers) flushBuffer(buf, check_thresholds); } void StorageBuffer::flushBuffer(Buffer & buffer, bool check_thresholds) { Block block_to_write; time_t current_time = time(nullptr); size_t rows = 0; size_t bytes = 0; time_t time_passed = 0; std::lock_guard lock(buffer.mutex); block_to_write = buffer.data.cloneEmpty(); rows = buffer.data.rows(); bytes = buffer.data.bytes(); if (buffer.first_write_time) time_passed = current_time - buffer.first_write_time; if (check_thresholds) { if (!checkThresholdsImpl(rows, bytes, time_passed)) return; } else { if (rows == 0) return; } buffer.data.swap(block_to_write); buffer.first_write_time = 0; CurrentMetrics::sub(CurrentMetrics::StorageBufferRows, block_to_write.rows()); CurrentMetrics::sub(CurrentMetrics::StorageBufferBytes, block_to_write.bytes()); ProfileEvents::increment(ProfileEvents::StorageBufferFlush); LOG_TRACE(log, "Flushing buffer with " << rows << " rows, " << bytes << " bytes, age " << time_passed << " seconds."); if (no_destination) return; /** For simplicity, buffer is locked during write. * We could unlock buffer temporary, but it would lead to too many difficulties: * - data, that is written, will not be visible for SELECTs; * - new data could be appended to buffer, and in case of exception, we must merge it with old data, that has not been written; * - this could lead to infinite memory growth. */ try { writeBlockToDestination(block_to_write, context.tryGetTable(destination_database, destination_table)); } catch (...) { ProfileEvents::increment(ProfileEvents::StorageBufferErrorOnFlush); /// Return the block to its place in the buffer. CurrentMetrics::add(CurrentMetrics::StorageBufferRows, block_to_write.rows()); CurrentMetrics::add(CurrentMetrics::StorageBufferBytes, block_to_write.bytes()); buffer.data.swap(block_to_write); if (!buffer.first_write_time) buffer.first_write_time = current_time; /// After a while, the next write attempt will happen. throw; } } void StorageBuffer::writeBlockToDestination(const Block & block, StoragePtr table) { if (no_destination || !block) return; if (!table) { LOG_ERROR(log, "Destination table " << destination_database << "." << destination_table << " doesn't exist. Block of data is discarded."); return; } auto insert = std::make_shared(); insert->database = destination_database; insert->table = destination_table; /** We will insert columns that are the intersection set of columns of the buffer table and the subordinate table. * This will support some of the cases (but not all) when the table structure does not match. */ Block structure_of_destination_table = allow_materialized ? table->getSampleBlock() : table->getSampleBlockNonMaterialized(); Names columns_intersection; columns_intersection.reserve(block.columns()); for (size_t i : ext::range(0, structure_of_destination_table.columns())) { auto dst_col = structure_of_destination_table.getByPosition(i); if (block.has(dst_col.name)) { if (!block.getByName(dst_col.name).type->equals(*dst_col.type)) { LOG_ERROR(log, "Destination table " << destination_database << "." << destination_table << " have different type of column " << dst_col.name << " (" << block.getByName(dst_col.name).type->getName() << " != " << dst_col.type->getName() << "). Block of data is discarded."); return; } columns_intersection.push_back(dst_col.name); } } if (columns_intersection.empty()) { LOG_ERROR(log, "Destination table " << destination_database << "." << destination_table << " have no common columns with block in buffer. Block of data is discarded."); return; } if (columns_intersection.size() != block.columns()) LOG_WARNING(log, "Not all columns from block in buffer exist in destination table " << destination_database << "." << destination_table << ". Some columns are discarded."); auto list_of_columns = std::make_shared(); insert->columns = list_of_columns; list_of_columns->children.reserve(columns_intersection.size()); for (const String & column : columns_intersection) list_of_columns->children.push_back(std::make_shared(column, ASTIdentifier::Column)); InterpreterInsertQuery interpreter{insert, context, allow_materialized}; auto block_io = interpreter.execute(); block_io.out->writePrefix(); block_io.out->write(block); block_io.out->writeSuffix(); } void StorageBuffer::flushThread() { setThreadName("BufferFlush"); do { try { flushAllBuffers(true); } catch (...) { tryLogCurrentException(__PRETTY_FUNCTION__); } } while (!shutdown_event.tryWait(1000)); } void StorageBuffer::alter(const AlterCommands & params, const String & database_name, const String & table_name, const Context & context) { for (const auto & param : params) if (param.type == AlterCommand::MODIFY_PRIMARY_KEY) throw Exception("Storage engine " + getName() + " doesn't support primary key.", ErrorCodes::NOT_IMPLEMENTED); auto lock = lockStructureForAlter(__PRETTY_FUNCTION__); /// So that no blocks of the old structure remain. optimize({} /*query*/, {} /*partition_id*/, false /*final*/, false /*deduplicate*/, context); params.apply(columns, materialized_columns, alias_columns, column_defaults); context.getDatabase(database_name)->alterTable( context, table_name, columns, materialized_columns, alias_columns, column_defaults, {}); } void registerStorageBuffer(StorageFactory & factory) { /** Buffer(db, table, num_buckets, min_time, max_time, min_rows, max_rows, min_bytes, max_bytes) * * db, table - in which table to put data from buffer. * num_buckets - level of parallelism. * min_time, max_time, min_rows, max_rows, min_bytes, max_bytes - conditions for flushing the buffer. */ factory.registerStorage("Buffer", [](const StorageFactory::Arguments & args) { ASTs & engine_args = args.engine_args; if (engine_args.size() != 9) throw Exception("Storage Buffer requires 9 parameters: " " destination_database, destination_table, num_buckets, min_time, max_time, min_rows, max_rows, min_bytes, max_bytes.", ErrorCodes::NUMBER_OF_ARGUMENTS_DOESNT_MATCH); engine_args[0] = evaluateConstantExpressionOrIdentifierAsLiteral(engine_args[0], args.local_context); engine_args[1] = evaluateConstantExpressionOrIdentifierAsLiteral(engine_args[1], args.local_context); String destination_database = static_cast(*engine_args[0]).value.safeGet(); String destination_table = static_cast(*engine_args[1]).value.safeGet(); UInt64 num_buckets = applyVisitor(FieldVisitorConvertToNumber(), typeid_cast(*engine_args[2]).value); Int64 min_time = applyVisitor(FieldVisitorConvertToNumber(), typeid_cast(*engine_args[3]).value); Int64 max_time = applyVisitor(FieldVisitorConvertToNumber(), typeid_cast(*engine_args[4]).value); UInt64 min_rows = applyVisitor(FieldVisitorConvertToNumber(), typeid_cast(*engine_args[5]).value); UInt64 max_rows = applyVisitor(FieldVisitorConvertToNumber(), typeid_cast(*engine_args[6]).value); UInt64 min_bytes = applyVisitor(FieldVisitorConvertToNumber(), typeid_cast(*engine_args[7]).value); UInt64 max_bytes = applyVisitor(FieldVisitorConvertToNumber(), typeid_cast(*engine_args[8]).value); return StorageBuffer::create( args.table_name, args.columns, args.materialized_columns, args.alias_columns, args.column_defaults, args.context, num_buckets, StorageBuffer::Thresholds{min_time, min_rows, min_bytes}, StorageBuffer::Thresholds{max_time, max_rows, max_bytes}, destination_database, destination_table, static_cast(args.local_context.getSettingsRef().insert_allow_materialized_columns)); }); } }