#include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace DB { namespace ErrorCodes { extern const int LOGICAL_ERROR; extern const int SET_SIZE_LIMIT_EXCEEDED; extern const int TYPE_MISMATCH; extern const int INCORRECT_ELEMENT_OF_SET; extern const int NUMBER_OF_COLUMNS_DOESNT_MATCH; } template void NO_INLINE Set::insertFromBlockImpl( Method & method, const ColumnRawPtrs & key_columns, size_t rows, SetVariants & variants, ConstNullMapPtr null_map, ColumnUInt8::Container * out_filter) { if (null_map) { if (out_filter) insertFromBlockImplCase(method, key_columns, rows, variants, null_map, out_filter); else insertFromBlockImplCase(method, key_columns, rows, variants, null_map, out_filter); } else { if (out_filter) insertFromBlockImplCase(method, key_columns, rows, variants, null_map, out_filter); else insertFromBlockImplCase(method, key_columns, rows, variants, null_map, out_filter); } } template void NO_INLINE Set::insertFromBlockImplCase( Method & method, const ColumnRawPtrs & key_columns, size_t rows, SetVariants & variants, ConstNullMapPtr null_map, ColumnUInt8::Container * out_filter) { typename Method::State state; state.init(key_columns); /// For all rows for (size_t i = 0; i < rows; ++i) { if (has_null_map && (*null_map)[i]) continue; /// Obtain a key to insert to the set typename Method::Key key = state.getKey(key_columns, keys_size, i, key_sizes); typename Method::Data::iterator it; bool inserted; method.data.emplace(key, it, inserted); if (inserted) method.onNewKey(*it, keys_size, variants.string_pool); if (build_filter) (*out_filter)[i] = inserted; } } void Set::setHeader(const Block & block) { std::unique_lock lock(rwlock); if (!empty()) return; keys_size = block.columns(); ColumnRawPtrs key_columns; key_columns.reserve(keys_size); data_types.reserve(keys_size); /// The constant columns to the right of IN are not supported directly. For this, they first materialize. Columns materialized_columns; /// Remember the columns we will work with for (size_t i = 0; i < keys_size; ++i) { key_columns.emplace_back(block.safeGetByPosition(i).column.get()); data_types.emplace_back(block.safeGetByPosition(i).type); if (ColumnPtr converted = key_columns.back()->convertToFullColumnIfConst()) { materialized_columns.emplace_back(converted); key_columns.back() = materialized_columns.back().get(); } } /// We will insert to the Set only keys, where all components are not NULL. ColumnPtr null_map_holder; ConstNullMapPtr null_map{}; extractNestedColumnsAndNullMap(key_columns, null_map_holder, null_map); if (fill_set_elements) { /// Create empty columns with set values in advance. /// It is needed because set may be empty, so method 'insertFromBlock' will be never called. set_elements.reserve(keys_size); for (const auto & type : data_types) set_elements.emplace_back(removeNullable(type)->createColumn()); } /// Choose data structure to use for the set. data.init(data.chooseMethod(key_columns, key_sizes)); } bool Set::insertFromBlock(const Block & block) { std::unique_lock lock(rwlock); if (empty()) throw Exception("Method Set::setHeader must be called before Set::insertFromBlock", ErrorCodes::LOGICAL_ERROR); ColumnRawPtrs key_columns; key_columns.reserve(keys_size); /// The constant columns to the right of IN are not supported directly. For this, they first materialize. Columns materialized_columns; /// Remember the columns we will work with for (size_t i = 0; i < keys_size; ++i) { key_columns.emplace_back(block.safeGetByPosition(i).column.get()); if (ColumnPtr converted = key_columns.back()->convertToFullColumnIfConst()) { materialized_columns.emplace_back(converted); key_columns.back() = materialized_columns.back().get(); } } size_t rows = block.rows(); /// We will insert to the Set only keys, where all components are not NULL. ColumnPtr null_map_holder; ConstNullMapPtr null_map{}; extractNestedColumnsAndNullMap(key_columns, null_map_holder, null_map); /// Filter to extract distinct values from the block. ColumnUInt8::MutablePtr filter; if (fill_set_elements) filter = ColumnUInt8::create(block.rows()); switch (data.type) { case SetVariants::Type::EMPTY: break; #define M(NAME) \ case SetVariants::Type::NAME: \ insertFromBlockImpl(*data.NAME, key_columns, rows, data, null_map, filter ? &filter->getData() : nullptr); \ break; APPLY_FOR_SET_VARIANTS(M) #undef M } if (fill_set_elements) { for (size_t i = 0; i < keys_size; ++i) { auto filtered_column = block.getByPosition(i).column->filter(filter->getData(), rows); if (set_elements[i]->empty()) set_elements[i] = filtered_column; else set_elements[i]->assumeMutableRef().insertRangeFrom(*filtered_column, 0, filtered_column->size()); } } return limits.check(getTotalRowCount(), getTotalByteCount(), "IN-set", ErrorCodes::SET_SIZE_LIMIT_EXCEEDED); } static Field extractValueFromNode(ASTPtr & node, const IDataType & type, const Context & context) { if (ASTLiteral * lit = typeid_cast(node.get())) { return convertFieldToType(lit->value, type); } else if (typeid_cast(node.get())) { std::pair value_raw = evaluateConstantExpression(node, context); return convertFieldToType(value_raw.first, type, value_raw.second.get()); } else throw Exception("Incorrect element of set. Must be literal or constant expression.", ErrorCodes::INCORRECT_ELEMENT_OF_SET); } void Set::createFromAST(const DataTypes & types, ASTPtr node, const Context & context) { /// Will form a block with values from the set. Block header; size_t num_columns = types.size(); for (size_t i = 0; i < num_columns; ++i) header.insert(ColumnWithTypeAndName(types[i]->createColumn(), types[i], "_" + toString(i))); setHeader(header); MutableColumns columns = header.cloneEmptyColumns(); DataTypePtr tuple_type; Row tuple_values; ASTExpressionList & list = typeid_cast(*node); for (auto & elem : list.children) { if (num_columns == 1) { Field value = extractValueFromNode(elem, *types[0], context); if (!value.isNull()) columns[0]->insert(value); } else if (ASTFunction * func = typeid_cast(elem.get())) { Field function_result; const TupleBackend * tuple = nullptr; if (func->name != "tuple") { if (!tuple_type) tuple_type = std::make_shared(types); function_result = extractValueFromNode(elem, *tuple_type, context); if (function_result.getType() != Field::Types::Tuple) throw Exception("Invalid type of set. Expected tuple, got " + String(function_result.getTypeName()), ErrorCodes::INCORRECT_ELEMENT_OF_SET); tuple = &function_result.get().toUnderType(); } size_t tuple_size = tuple ? tuple->size() : func->arguments->children.size(); if (tuple_size != num_columns) throw Exception("Incorrect size of tuple in set: " + toString(tuple_size) + " instead of " + toString(num_columns), ErrorCodes::INCORRECT_ELEMENT_OF_SET); if (tuple_values.empty()) tuple_values.resize(tuple_size); size_t i = 0; for (; i < tuple_size; ++i) { Field value = tuple ? (*tuple)[i] : extractValueFromNode(func->arguments->children[i], *types[i], context); /// If at least one of the elements of the tuple has an impossible (outside the range of the type) value, then the entire tuple too. if (value.isNull()) break; tuple_values[i] = value; } if (i == tuple_size) for (i = 0; i < tuple_size; ++i) columns[i]->insert(tuple_values[i]); } else throw Exception("Incorrect element of set", ErrorCodes::INCORRECT_ELEMENT_OF_SET); } Block block = header.cloneWithColumns(std::move(columns)); insertFromBlock(block); } ColumnPtr Set::execute(const Block & block, bool negative) const { size_t num_key_columns = block.columns(); if (0 == num_key_columns) throw Exception("Logical error: no columns passed to Set::execute method.", ErrorCodes::LOGICAL_ERROR); auto res = ColumnUInt8::create(); ColumnUInt8::Container & vec_res = res->getData(); vec_res.resize(block.safeGetByPosition(0).column->size()); std::shared_lock lock(rwlock); /// If the set is empty. if (data_types.empty()) { if (negative) memset(vec_res.data(), 1, vec_res.size()); else memset(vec_res.data(), 0, vec_res.size()); return res; } if (data_types.size() != num_key_columns) { std::stringstream message; message << "Number of columns in section IN doesn't match. " << num_key_columns << " at left, " << data_types.size() << " at right."; throw Exception(message.str(), ErrorCodes::NUMBER_OF_COLUMNS_DOESNT_MATCH); } /// Remember the columns we will work with. Also check that the data types are correct. ColumnRawPtrs key_columns; key_columns.reserve(num_key_columns); /// The constant columns to the left of IN are not supported directly. For this, they first materialize. Columns materialized_columns; for (size_t i = 0; i < num_key_columns; ++i) { key_columns.push_back(block.safeGetByPosition(i).column.get()); if (!removeNullable(data_types[i])->equals(*removeNullable(block.safeGetByPosition(i).type))) throw Exception("Types of column " + toString(i + 1) + " in section IN don't match: " + data_types[i]->getName() + " on the right, " + block.safeGetByPosition(i).type->getName() + " on the left.", ErrorCodes::TYPE_MISMATCH); if (ColumnPtr converted = key_columns.back()->convertToFullColumnIfConst()) { materialized_columns.emplace_back(converted); key_columns.back() = materialized_columns.back().get(); } } /// We will check existence in Set only for keys, where all components are not NULL. ColumnPtr null_map_holder; ConstNullMapPtr null_map{}; extractNestedColumnsAndNullMap(key_columns, null_map_holder, null_map); executeOrdinary(key_columns, vec_res, negative, null_map); return res; } template void NO_INLINE Set::executeImpl( Method & method, const ColumnRawPtrs & key_columns, ColumnUInt8::Container & vec_res, bool negative, size_t rows, ConstNullMapPtr null_map) const { if (null_map) executeImplCase(method, key_columns, vec_res, negative, rows, null_map); else executeImplCase(method, key_columns, vec_res, negative, rows, null_map); } template void NO_INLINE Set::executeImplCase( Method & method, const ColumnRawPtrs & key_columns, ColumnUInt8::Container & vec_res, bool negative, size_t rows, ConstNullMapPtr null_map) const { typename Method::State state; state.init(key_columns); /// NOTE Optimization is not used for consecutive identical values. /// For all rows for (size_t i = 0; i < rows; ++i) { if (has_null_map && (*null_map)[i]) vec_res[i] = negative; else { /// Build the key typename Method::Key key = state.getKey(key_columns, keys_size, i, key_sizes); vec_res[i] = negative ^ method.data.has(key); } } } void Set::executeOrdinary( const ColumnRawPtrs & key_columns, ColumnUInt8::Container & vec_res, bool negative, ConstNullMapPtr null_map) const { size_t rows = key_columns[0]->size(); switch (data.type) { case SetVariants::Type::EMPTY: break; #define M(NAME) \ case SetVariants::Type::NAME: \ executeImpl(*data.NAME, key_columns, vec_res, negative, rows, null_map); \ break; APPLY_FOR_SET_VARIANTS(M) #undef M } } MergeTreeSetIndex::MergeTreeSetIndex(const Columns & set_elements, std::vector && index_mapping_) : indexes_mapping(std::move(index_mapping_)) { std::sort(indexes_mapping.begin(), indexes_mapping.end(), [](const KeyTuplePositionMapping & l, const KeyTuplePositionMapping & r) { return std::forward_as_tuple(l.key_index, l.tuple_index) < std::forward_as_tuple(r.key_index, r.tuple_index); }); indexes_mapping.erase(std::unique( indexes_mapping.begin(), indexes_mapping.end(), [](const KeyTuplePositionMapping & l, const KeyTuplePositionMapping & r) { return l.key_index == r.key_index; }), indexes_mapping.end()); size_t tuple_size = indexes_mapping.size(); ordered_set.resize(tuple_size); for (size_t i = 0; i < tuple_size; ++i) ordered_set[i] = set_elements[indexes_mapping[i].tuple_index]; Block block_to_sort; SortDescription sort_description; for (size_t i = 0; i < tuple_size; ++i) { block_to_sort.insert({ ordered_set[i], nullptr, "" }); sort_description.emplace_back(i, 1, 1); } sortBlock(block_to_sort, sort_description); for (size_t i = 0; i < tuple_size; ++i) ordered_set[i] = block_to_sort.getByPosition(i).column; } /** Return the BoolMask where: * 1: the intersection of the set and the range is non-empty * 2: the range contains elements not in the set */ BoolMask MergeTreeSetIndex::mayBeTrueInRange(const std::vector & key_ranges, const DataTypes & data_types) { size_t tuple_size = indexes_mapping.size(); using FieldWithInfinityTuple = std::vector; FieldWithInfinityTuple left_point; FieldWithInfinityTuple right_point; left_point.reserve(tuple_size); right_point.reserve(tuple_size); bool invert_left_infinities = false; bool invert_right_infinities = false; for (size_t i = 0; i < tuple_size; ++i) { std::optional new_range = KeyCondition::applyMonotonicFunctionsChainToRange( key_ranges[indexes_mapping[i].key_index], indexes_mapping[i].functions, data_types[indexes_mapping[i].key_index]); if (!new_range) return {true, true}; /** A range that ends in (x, y, ..., +inf) exclusive is the same as a range * that ends in (x, y, ..., -inf) inclusive and vice versa for the left bound. */ if (new_range->left_bounded) { if (!new_range->left_included) invert_left_infinities = true; left_point.push_back(FieldWithInfinity(new_range->left)); } else { if (invert_left_infinities) left_point.push_back(FieldWithInfinity::getPlusinfinity()); else left_point.push_back(FieldWithInfinity::getMinusInfinity()); } if (new_range->right_bounded) { if (!new_range->right_included) invert_right_infinities = true; right_point.push_back(FieldWithInfinity(new_range->right)); } else { if (invert_right_infinities) right_point.push_back(FieldWithInfinity::getMinusInfinity()); else right_point.push_back(FieldWithInfinity::getPlusinfinity()); } } /// This allows to construct tuple in 'ordered_set' at specified index for comparison with range. auto indices = ext::range(0, ordered_set.at(0)->size()); auto extract_tuple = [tuple_size, this](size_t i) { /// Inefficient. FieldWithInfinityTuple res; res.reserve(tuple_size); for (size_t j = 0; j < tuple_size; ++j) res.emplace_back((*ordered_set[j])[i]); return res; }; auto compare = [&extract_tuple](size_t i, const FieldWithInfinityTuple & rhs) { return extract_tuple(i) < rhs; }; /** Because each parallelogram maps to a contiguous sequence of elements * layed out in the lexicographically increasing order, the set intersects the range * if and only if either bound coincides with an element or at least one element * is between the lower bounds */ auto left_lower = std::lower_bound(indices.begin(), indices.end(), left_point, compare); auto right_lower = std::lower_bound(indices.begin(), indices.end(), right_point, compare); return { left_lower != right_lower || (left_lower != indices.end() && extract_tuple(*left_lower) == left_point) || (right_lower != indices.end() && extract_tuple(*right_lower) == right_point), true }; } }