#include #include #include #include "Common/Stopwatch.h" #include #include namespace ProfileEvents { extern const Event SlowRead; extern const Event ReadBackoff; } namespace ErrorCodes { extern const int LOGICAL_ERROR; } namespace DB { std::vector IMergeTreeReadPool::fillPerPartInfo(const RangesInDataParts & parts) { std::vector per_part_sum_marks; Block sample_block = storage_snapshot->metadata->getSampleBlock(); is_part_on_remote_disk.resize(parts.size()); for (const auto i : collections::range(0, parts.size())) { const auto & part = parts[i]; #ifndef NDEBUG assertSortedAndNonIntersecting(part.ranges); #endif bool part_on_remote_disk = part.data_part->isStoredOnRemoteDisk(); is_part_on_remote_disk[i] = part_on_remote_disk; do_not_steal_tasks |= part_on_remote_disk; /// Read marks for every data part. size_t sum_marks = 0; for (const auto & range : part.ranges) sum_marks += range.end - range.begin; per_part_sum_marks.push_back(sum_marks); auto task_columns = getReadTaskColumns( LoadedMergeTreeDataPartInfoForReader(part.data_part), storage_snapshot, column_names, virtual_column_names, prewhere_info, /*with_subcolumns=*/ true); auto size_predictor = !predict_block_size_bytes ? nullptr : IMergeTreeSelectAlgorithm::getSizePredictor(part.data_part, task_columns, sample_block); auto & per_part = per_part_params.emplace_back(); per_part.data_part = part; per_part.size_predictor = std::move(size_predictor); /// will be used to distinguish between PREWHERE and WHERE columns when applying filter const auto & required_column_names = task_columns.columns.getNames(); per_part.column_name_set = {required_column_names.begin(), required_column_names.end()}; per_part.task_columns = std::move(task_columns); } return per_part_sum_marks; } MergeTreeReadPool::MergeTreeReadPool( size_t threads_, size_t sum_marks_, size_t min_marks_for_concurrent_read_, RangesInDataParts && parts_, const StorageSnapshotPtr & storage_snapshot_, const PrewhereInfoPtr & prewhere_info_, const Names & column_names_, const Names & virtual_column_names_, const BackoffSettings & backoff_settings_, size_t preferred_block_size_bytes_, bool do_not_steal_tasks_) : IMergeTreeReadPool( storage_snapshot_, column_names_, virtual_column_names_, min_marks_for_concurrent_read_, prewhere_info_, std::move(parts_), (preferred_block_size_bytes_ > 0), do_not_steal_tasks_) , backoff_settings{backoff_settings_} , backoff_state{threads_} { /// parts don't contain duplicate MergeTreeDataPart's. const auto per_part_sum_marks = fillPerPartInfo(parts_ranges); fillPerThreadInfo(threads_, sum_marks_, per_part_sum_marks, parts_ranges); } MergeTreeReadTaskPtr MergeTreeReadPool::getTask(size_t thread) { const std::lock_guard lock{mutex}; /// If number of threads was lowered due to backoff, then will assign work only for maximum 'backoff_state.current_threads' threads. if (thread >= backoff_state.current_threads) return nullptr; if (remaining_thread_tasks.empty()) return nullptr; const auto tasks_remaining_for_this_thread = !threads_tasks[thread].sum_marks_in_parts.empty(); if (!tasks_remaining_for_this_thread && do_not_steal_tasks) return nullptr; /// Steal task if nothing to do and it's not prohibited auto thread_idx = thread; if (!tasks_remaining_for_this_thread) { auto it = remaining_thread_tasks.lower_bound(backoff_state.current_threads); // Grab the entire tasks of a thread which is killed by backoff if (it != remaining_thread_tasks.end()) { threads_tasks[thread] = std::move(threads_tasks[*it]); remaining_thread_tasks.erase(it); remaining_thread_tasks.insert(thread); } else // Try steal tasks from the next thread { it = remaining_thread_tasks.upper_bound(thread); if (it == remaining_thread_tasks.end()) it = remaining_thread_tasks.begin(); thread_idx = *it; } } auto & thread_tasks = threads_tasks[thread_idx]; auto & thread_task = thread_tasks.parts_and_ranges.back(); const auto part_idx = thread_task.part_idx; auto & part = per_part_params[part_idx].data_part; auto & marks_in_part = thread_tasks.sum_marks_in_parts.back(); size_t need_marks; if (is_part_on_remote_disk[part_idx]) /// For better performance with remote disks need_marks = marks_in_part; else /// Get whole part to read if it is small enough. need_marks = std::min(marks_in_part, min_marks_for_concurrent_read); /// Do not leave too little rows in part for next time. if (marks_in_part > need_marks && marks_in_part - need_marks < min_marks_for_concurrent_read) need_marks = marks_in_part; MarkRanges ranges_to_get_from_part; /// Get whole part to read if it is small enough. if (marks_in_part <= need_marks) { ranges_to_get_from_part = thread_task.ranges; marks_in_part = 0; thread_tasks.parts_and_ranges.pop_back(); thread_tasks.sum_marks_in_parts.pop_back(); if (thread_tasks.sum_marks_in_parts.empty()) remaining_thread_tasks.erase(thread_idx); } else { /// Loop through part ranges. while (need_marks > 0 && !thread_task.ranges.empty()) { auto & range = thread_task.ranges.front(); const size_t marks_in_range = range.end - range.begin; const size_t marks_to_get_from_range = std::min(marks_in_range, need_marks); ranges_to_get_from_part.emplace_back(range.begin, range.begin + marks_to_get_from_range); range.begin += marks_to_get_from_range; if (range.begin == range.end) thread_task.ranges.pop_front(); marks_in_part -= marks_to_get_from_range; need_marks -= marks_to_get_from_range; } } const auto & per_part = per_part_params[part_idx]; auto curr_task_size_predictor = !per_part.size_predictor ? nullptr : std::make_unique(*per_part.size_predictor); /// make a copy return std::make_unique( part.data_part, ranges_to_get_from_part, part.part_index_in_query, per_part.column_name_set, per_part.task_columns, prewhere_info && prewhere_info->remove_prewhere_column, std::move(curr_task_size_predictor)); } Block MergeTreeReadPool::getHeader() const { return storage_snapshot->getSampleBlockForColumns(column_names); } void MergeTreeReadPool::profileFeedback(ReadBufferFromFileBase::ProfileInfo info) { if (backoff_settings.min_read_latency_ms == 0 || do_not_steal_tasks) return; if (info.nanoseconds < backoff_settings.min_read_latency_ms * 1000000) return; std::lock_guard lock(mutex); if (backoff_state.current_threads <= backoff_settings.min_concurrency) return; size_t throughput = info.bytes_read * 1000000000 / info.nanoseconds; if (throughput >= backoff_settings.max_throughput) return; if (backoff_state.time_since_prev_event.elapsed() < backoff_settings.min_interval_between_events_ms * 1000000) return; backoff_state.time_since_prev_event.restart(); ++backoff_state.num_events; ProfileEvents::increment(ProfileEvents::SlowRead); LOG_DEBUG(log, "Slow read, event №{}: read {} bytes in {} sec., {}/s.", backoff_state.num_events, info.bytes_read, info.nanoseconds / 1e9, ReadableSize(throughput)); if (backoff_state.num_events < backoff_settings.min_events) return; backoff_state.num_events = 0; --backoff_state.current_threads; ProfileEvents::increment(ProfileEvents::ReadBackoff); LOG_DEBUG(log, "Will lower number of threads to {}", backoff_state.current_threads); } void MergeTreeReadPool::fillPerThreadInfo( size_t threads, size_t sum_marks, std::vector per_part_sum_marks, const RangesInDataParts & parts) { threads_tasks.resize(threads); if (parts.empty()) return; struct PartInfo { RangesInDataPart part; size_t sum_marks; size_t part_idx; }; using PartsInfo = std::vector; std::queue parts_queue; { /// Group parts by disk name. /// We try minimize the number of threads concurrently read from the same disk. /// It improves the performance for JBOD architecture. std::map> parts_per_disk; for (size_t i = 0; i < parts.size(); ++i) { PartInfo part_info{parts[i], per_part_sum_marks[i], i}; if (parts[i].data_part->isStoredOnDisk()) parts_per_disk[parts[i].data_part->getDataPartStorage().getDiskName()].push_back(std::move(part_info)); else parts_per_disk[""].push_back(std::move(part_info)); } for (auto & info : parts_per_disk) parts_queue.push(std::move(info.second)); } const size_t min_marks_per_thread = (sum_marks - 1) / threads + 1; for (size_t i = 0; i < threads && !parts_queue.empty(); ++i) { auto need_marks = min_marks_per_thread; while (need_marks > 0 && !parts_queue.empty()) { auto & current_parts = parts_queue.front(); RangesInDataPart & part = current_parts.back().part; size_t & marks_in_part = current_parts.back().sum_marks; const auto part_idx = current_parts.back().part_idx; /// Do not get too few rows from part. if (marks_in_part >= min_marks_for_concurrent_read && need_marks < min_marks_for_concurrent_read) need_marks = min_marks_for_concurrent_read; /// Do not leave too few rows in part for next time. if (marks_in_part > need_marks && marks_in_part - need_marks < min_marks_for_concurrent_read) need_marks = marks_in_part; MarkRanges ranges_to_get_from_part; size_t marks_in_ranges = need_marks; /// Get whole part to read if it is small enough. if (marks_in_part <= need_marks) { ranges_to_get_from_part = part.ranges; marks_in_ranges = marks_in_part; need_marks -= marks_in_part; current_parts.pop_back(); if (current_parts.empty()) parts_queue.pop(); } else { /// Loop through part ranges. while (need_marks > 0) { if (part.ranges.empty()) throw Exception(ErrorCodes::LOGICAL_ERROR, "Unexpected end of ranges while spreading marks among threads"); MarkRange & range = part.ranges.front(); const size_t marks_in_range = range.end - range.begin; const size_t marks_to_get_from_range = std::min(marks_in_range, need_marks); ranges_to_get_from_part.emplace_back(range.begin, range.begin + marks_to_get_from_range); range.begin += marks_to_get_from_range; marks_in_part -= marks_to_get_from_range; need_marks -= marks_to_get_from_range; if (range.begin == range.end) part.ranges.pop_front(); } } threads_tasks[i].parts_and_ranges.push_back({ part_idx, ranges_to_get_from_part }); threads_tasks[i].sum_marks_in_parts.push_back(marks_in_ranges); if (marks_in_ranges != 0) remaining_thread_tasks.insert(i); } /// Before processing next thread, change disk if possible. /// Different threads will likely start reading from different disk, /// which may improve read parallelism for JBOD. /// It also may be helpful in case we have backoff threads. /// Backoff threads will likely to reduce load for different disks, not the same one. if (parts_queue.size() > 1) { parts_queue.push(std::move(parts_queue.front())); parts_queue.pop(); } } } MergeTreeReadPoolParallelReplicas::~MergeTreeReadPoolParallelReplicas() = default; Block MergeTreeReadPoolParallelReplicas::getHeader() const { return storage_snapshot->getSampleBlockForColumns(extension.colums_to_read); } MergeTreeReadTaskPtr MergeTreeReadPoolParallelReplicas::getTask(size_t thread) { /// This parameter is needed only to satisfy the interface UNUSED(thread); std::lock_guard lock(mutex); if (no_more_tasks_available) return nullptr; if (buffered_ranges.empty()) { auto result = extension.callback(ParallelReadRequest{ .replica_num = extension.number_of_current_replica, .min_number_of_marks = min_marks_for_concurrent_read * threads}); if (!result || result->finish) { no_more_tasks_available = true; return nullptr; } buffered_ranges = std::move(result->description); } if (buffered_ranges.empty()) throw Exception(ErrorCodes::LOGICAL_ERROR, "No tasks to read. This is a bug"); auto & current_task = buffered_ranges.front(); RangesInDataPart part; size_t part_idx = 0; for (size_t index = 0; index < per_part_params.size(); ++index) { auto & other_part = per_part_params[index]; if (other_part.data_part.data_part->info == current_task.info) { part = other_part.data_part; part_idx = index; break; } } MarkRanges ranges_to_read; size_t current_sum_marks = 0; while (current_sum_marks < min_marks_for_concurrent_read && !current_task.ranges.empty()) { auto diff = min_marks_for_concurrent_read - current_sum_marks; auto range = current_task.ranges.front(); if (range.getNumberOfMarks() > diff) { auto new_range = range; new_range.end = range.begin + diff; range.begin += diff; current_task.ranges.front() = range; ranges_to_read.push_back(new_range); current_sum_marks += new_range.getNumberOfMarks(); continue; } ranges_to_read.push_back(range); current_sum_marks += range.getNumberOfMarks(); current_task.ranges.pop_front(); } if (current_task.ranges.empty()) buffered_ranges.pop_front(); const auto & per_part = per_part_params[part_idx]; auto curr_task_size_predictor = !per_part.size_predictor ? nullptr : std::make_unique(*per_part.size_predictor); /// make a copy return std::make_unique( part.data_part, ranges_to_read, part.part_index_in_query, per_part.column_name_set, per_part.task_columns, prewhere_info && prewhere_info->remove_prewhere_column, std::move(curr_task_size_predictor)); } MarkRanges MergeTreeInOrderReadPoolParallelReplicas::getNewTask(RangesInDataPartDescription description) { std::lock_guard lock(mutex); auto get_from_buffer = [&]() -> std::optional { for (auto & desc : buffered_tasks) { if (desc.info == description.info && !desc.ranges.empty()) { auto result = std::move(desc.ranges); desc.ranges = MarkRanges{}; return result; } } return std::nullopt; }; if (auto result = get_from_buffer(); result) return result.value(); if (no_more_tasks) return {}; auto response = extension.callback(ParallelReadRequest{ .mode = mode, .replica_num = extension.number_of_current_replica, .min_number_of_marks = min_marks_for_concurrent_read * request.size(), .description = request, }); if (!response || response->description.empty() || response->finish) { no_more_tasks = true; return {}; } /// Fill the buffer for (size_t i = 0; i < request.size(); ++i) { auto & new_ranges = response->description[i].ranges; auto & old_ranges = buffered_tasks[i].ranges; std::move(new_ranges.begin(), new_ranges.end(), std::back_inserter(old_ranges)); } if (auto result = get_from_buffer(); result) return result.value(); return {}; } }