#pragma once #include #include #include namespace DB { /// Для агрегации по SipHash или конкатенации нескольких полей. struct UInt128 { UInt64 first; UInt64 second; bool operator== (const UInt128 rhs) const { return first == rhs.first && second == rhs.second; } bool operator!= (const UInt128 rhs) const { return first != rhs.first || second != rhs.second; } bool operator== (const UInt64 rhs) const { return first == rhs && second == 0; } bool operator!= (const UInt64 rhs) const { return first != rhs || second != 0; } UInt128 & operator= (const UInt64 rhs) { first = rhs; second = 0; return *this; } }; struct UInt128Hash { DefaultHash hash64; size_t operator()(UInt128 x) const { return hash64(hash64(x.first) ^ x.second); } }; #if defined(__x86_64__) struct UInt128HashCRC32 { size_t operator()(UInt128 x) const { UInt64 crc = -1ULL; asm("crc32q %[x], %[crc]\n" : [crc] "+r" (crc) : [x] "rm" (x.first)); asm("crc32q %[x], %[crc]\n" : [crc] "+r" (crc) : [x] "rm" (x.second)); return crc; } }; #else /// На других платформах используем не обязательно CRC32. NOTE Это может сбить с толку. struct UInt128HashCRC32 : public UInt128Hash {}; #endif struct UInt128TrivialHash { size_t operator()(UInt128 x) const { return x.first; } }; inline void readBinary(UInt128 & x, ReadBuffer & buf) { readPODBinary(x, buf); } inline void writeBinary(const UInt128 & x, WriteBuffer & buf) { writePODBinary(x, buf); } /** Используется при агрегации, для укладки большого количества ключей постоянной длины в хэш-таблицу. */ struct UInt256 { UInt64 a; UInt64 b; UInt64 c; UInt64 d; bool operator== (const UInt256 rhs) const { return a == rhs.a && b == rhs.b && c == rhs.c && d == rhs.d; /* Так получается не лучше. return 0xFFFF == _mm_movemask_epi8(_mm_and_si128( _mm_cmpeq_epi8( _mm_loadu_si128(reinterpret_cast(&a)), _mm_loadu_si128(reinterpret_cast(&rhs.a))), _mm_cmpeq_epi8( _mm_loadu_si128(reinterpret_cast(&c)), _mm_loadu_si128(reinterpret_cast(&rhs.c)))));*/ } bool operator!= (const UInt256 rhs) const { return !operator==(rhs); } bool operator== (const UInt64 rhs) const { return a == rhs && b == 0 && c == 0 && d == 0; } bool operator!= (const UInt64 rhs) const { return !operator==(rhs); } UInt256 & operator= (const UInt64 rhs) { a = rhs; b = 0; c = 0; d = 0; return *this; } }; #if defined(__x86_64__) struct UInt256HashCRC32 { size_t operator()(UInt256 x) const { UInt64 crc = -1ULL; asm("crc32q %[x], %[crc]\n" : [crc] "+r" (crc) : [x] "rm" (x.a)); asm("crc32q %[x], %[crc]\n" : [crc] "+r" (crc) : [x] "rm" (x.b)); asm("crc32q %[x], %[crc]\n" : [crc] "+r" (crc) : [x] "rm" (x.c)); asm("crc32q %[x], %[crc]\n" : [crc] "+r" (crc) : [x] "rm" (x.d)); return crc; } }; #else /// На других платформах используем не обязательно CRC32. NOTE Это может сбить с толку. struct UInt256HashCRC32 { DefaultHash hash64; size_t operator()(UInt256 x) const { /// TODO Это не оптимально. return hash64(hash64(hash64(hash64(x.a) ^ x.b) ^ x.c) ^ x.d); } }; #endif inline void readBinary(UInt256 & x, ReadBuffer & buf) { readPODBinary(x, buf); } inline void writeBinary(const UInt256 & x, WriteBuffer & buf) { writePODBinary(x, buf); } }