/**************************** vectorf256.h ******************************* * Author: Agner Fog * Date created: 2012-05-30 * Last modified: 2014-10-22 * Version: 1.16 * Project: vector classes * Description: * Header file defining 256-bit floating point vector classes as interface * to intrinsic functions in x86 microprocessors with AVX instruction set. * * Instructions: * Use Gnu, Intel or Microsoft C++ compiler. Compile for the desired * instruction set, which must be at least AVX. * * The following vector classes are defined here: * Vec8f Vector of 8 single precision floating point numbers * Vec8fb Vector of 8 Booleans for use with Vec8f * Vec4d Vector of 4 double precision floating point numbers * Vec4db Vector of 4 Booleans for use with Vec4d * * Each vector object is represented internally in the CPU as a 256-bit register. * This header file defines operators and functions for these vectors. * * For example: * Vec4d a(1., 2., 3., 4.), b(5., 6., 7., 8.), c; * c = a + b; // now c contains (6., 8., 10., 12.) * * For detailed instructions, see VectorClass.pdf * * (c) Copyright 2012 - 2014 GNU General Public License http://www.gnu.org/licenses *****************************************************************************/ // check combination of header files #if defined (VECTORF256_H) #if VECTORF256_H != 2 #error Two different versions of vectorf256.h included #endif #else #define VECTORF256_H 2 #if INSTRSET < 7 // AVX required #error Please compile for the AVX instruction set or higher #endif #include "vectorf128.h" // Define 128-bit vectors /***************************************************************************** * * select functions * *****************************************************************************/ // Select between two __m256 sources, element by element. Used in various functions // and operators. Corresponds to this pseudocode: // for (int i = 0; i < 8; i++) result[i] = s[i] ? a[i] : b[i]; // Each element in s must be either 0 (false) or 0xFFFFFFFF (true). static inline __m256 selectf (__m256 const & s, __m256 const & a, __m256 const & b) { return _mm256_blendv_ps (b, a, s); } // Same, with two __m256d sources. // and operators. Corresponds to this pseudocode: // for (int i = 0; i < 4; i++) result[i] = s[i] ? a[i] : b[i]; // Each element in s must be either 0 (false) or 0xFFFFFFFFFFFFFFFF (true). No other // values are allowed. static inline __m256d selectd (__m256d const & s, __m256d const & a, __m256d const & b) { return _mm256_blendv_pd (b, a, s); } /***************************************************************************** * * Generate compile-time constant vector * *****************************************************************************/ // Generate a constant vector of 8 integers stored in memory, // load as __m256 template static inline __m256 constant8f() { static const union { int i[8]; __m256 ymm; } u = {{i0,i1,i2,i3,i4,i5,i6,i7}}; return u.ymm; } /***************************************************************************** * * Join two 128-bit vectors * *****************************************************************************/ #define set_m128r(lo,hi) _mm256_insertf128_ps(_mm256_castps128_ps256(lo),(hi),1) // _mm256_set_m128(hi,lo); // not defined in all versions of immintrin.h /***************************************************************************** * * Vec8fb: Vector of 8 Booleans for use with Vec8f * *****************************************************************************/ class Vec8fb { protected: __m256 ymm; // Float vector public: // Default constructor: Vec8fb() { } // Constructor to build from all elements: Vec8fb(bool b0, bool b1, bool b2, bool b3, bool b4, bool b5, bool b6, bool b7) { #if INSTRSET >= 8 // AVX2 ymm = _mm256_castsi256_ps(_mm256_setr_epi32(-(int)b0, -(int)b1, -(int)b2, -(int)b3, -(int)b4, -(int)b5, -(int)b6, -(int)b7)); #else __m128 blo = _mm_castsi128_ps(_mm_setr_epi32(-(int)b0, -(int)b1, -(int)b2, -(int)b3)); __m128 bhi = _mm_castsi128_ps(_mm_setr_epi32(-(int)b4, -(int)b5, -(int)b6, -(int)b7)); ymm = set_m128r(blo,bhi); #endif } // Constructor to build from two Vec4fb: Vec8fb(Vec4fb const & a0, Vec4fb const & a1) { ymm = set_m128r(a0, a1); } // Constructor to convert from type __m256 used in intrinsics: Vec8fb(__m256 const & x) { ymm = x; } // Assignment operator to convert from type __m256 used in intrinsics: Vec8fb & operator = (__m256 const & x) { ymm = x; return *this; } // Constructor to broadcast the same value into all elements: Vec8fb(bool b) { #if INSTRSET >= 8 // AVX2 ymm = _mm256_castsi256_ps(_mm256_set1_epi32(-(int)b)); #else __m128 b1 = _mm_castsi128_ps(_mm_set1_epi32(-(int)b)); //ymm = _mm256_set_m128(b1,b1); ymm = set_m128r(b1,b1); #endif } // Assignment operator to broadcast scalar value: Vec8fb & operator = (bool b) { *this = Vec8fb(b); return *this; } private: // Prevent constructing from int, etc. Vec8fb(int b); Vec8fb & operator = (int x); public: // Type cast operator to convert to __m256 used in intrinsics operator __m256() const { return ymm; } #if defined (VECTORI256_H) #if VECTORI256_H >= 2 // AVX2 version // Constructor to convert from type Vec8ib used as Boolean for integer vectors Vec8fb(Vec8ib const & x) { ymm = _mm256_castsi256_ps(x); } // Assignment operator to convert from type Vec8ib used as Boolean for integer vectors Vec8fb & operator = (Vec8ib const & x) { ymm = _mm256_castsi256_ps(x); return *this; } #ifndef FIX_CLANG_VECTOR_ALIAS_AMBIGUITY // Type cast operator to convert to type Vec8ib used as Boolean for integer vectors operator Vec8ib() const { return _mm256_castps_si256(ymm); } #endif #else // Constructor to convert from type Vec8ib used as Boolean for integer vectors Vec8fb(Vec8ib const & x) { ymm = set_m128r(_mm_castsi128_ps(x.get_low()), _mm_castsi128_ps(x.get_high())); } // Assignment operator to convert from type Vec8ib used as Boolean for integer vectors Vec8fb & operator = (Vec8ib const & x) { ymm = set_m128r(_mm_castsi128_ps(x.get_low()), _mm_castsi128_ps(x.get_high())); return *this; } // Type cast operator to convert to type Vec8ib used as Boolean for integer vectors operator Vec8ib() const { return Vec8i(_mm_castps_si128(get_low()), _mm_castps_si128(get_high())); } #endif #endif // VECTORI256_H // Member function to change a single element in vector // Note: This function is inefficient. Use load function if changing more than one element Vec8fb const & insert(uint32_t index, bool value) { static const int32_t maskl[16] = {0,0,0,0,0,0,0,0,-1,0,0,0,0,0,0,0}; __m256 mask = _mm256_loadu_ps((float const*)(maskl+8-(index & 7))); // mask with FFFFFFFF at index position if (value) { ymm = _mm256_or_ps(ymm,mask); } else { ymm = _mm256_andnot_ps(mask,ymm); } return *this; } // Member function extract a single element from vector bool extract(uint32_t index) const { union { float f[8]; int32_t i[8]; } u; _mm256_storeu_ps(u.f, ymm); return u.i[index & 7] != 0; } // Extract a single element. Operator [] can only read an element, not write. bool operator [] (uint32_t index) const { return extract(index); } // Member functions to split into two Vec4fb: Vec4fb get_low() const { return _mm256_castps256_ps128(ymm); } Vec4fb get_high() const { return _mm256_extractf128_ps(ymm,1); } static int size () { return 8; } }; /***************************************************************************** * * Operators for Vec8fb * *****************************************************************************/ // vector operator & : bitwise and static inline Vec8fb operator & (Vec8fb const & a, Vec8fb const & b) { return _mm256_and_ps(a, b); } static inline Vec8fb operator && (Vec8fb const & a, Vec8fb const & b) { return a & b; } // vector operator &= : bitwise and static inline Vec8fb & operator &= (Vec8fb & a, Vec8fb const & b) { a = a & b; return a; } // vector operator | : bitwise or static inline Vec8fb operator | (Vec8fb const & a, Vec8fb const & b) { return _mm256_or_ps(a, b); } static inline Vec8fb operator || (Vec8fb const & a, Vec8fb const & b) { return a | b; } // vector operator |= : bitwise or static inline Vec8fb & operator |= (Vec8fb & a, Vec8fb const & b) { a = a | b; return a; } // vector operator ^ : bitwise xor static inline Vec8fb operator ^ (Vec8fb const & a, Vec8fb const & b) { return _mm256_xor_ps(a, b); } // vector operator ^= : bitwise xor static inline Vec8fb & operator ^= (Vec8fb & a, Vec8fb const & b) { a = a ^ b; return a; } // vector operator ~ : bitwise not static inline Vec8fb operator ~ (Vec8fb const & a) { return _mm256_xor_ps(a, constant8f<-1,-1,-1,-1,-1,-1,-1,-1>()); } // vector operator ! : logical not // (operator ! is less efficient than operator ~. Use only where not // all bits in an element are the same) static inline Vec8fb operator ! (Vec8fb const & a) { return Vec8fb( !Vec8ib(a)); } // Functions for Vec8fb // andnot: a & ~ b static inline Vec8fb andnot(Vec8fb const & a, Vec8fb const & b) { return _mm256_andnot_ps(b, a); } /***************************************************************************** * * Horizontal Boolean functions * *****************************************************************************/ // horizontal_and. Returns true if all bits are 1 static inline bool horizontal_and (Vec8fb const & a) { return _mm256_testc_ps(a,constant8f<-1,-1,-1,-1,-1,-1,-1,-1>()) != 0; } // horizontal_or. Returns true if at least one bit is 1 static inline bool horizontal_or (Vec8fb const & a) { return ! _mm256_testz_ps(a,a); } /***************************************************************************** * * Vec4db: Vector of 4 Booleans for use with Vec4d * *****************************************************************************/ class Vec4db { protected: __m256d ymm; // double vector public: // Default constructor: Vec4db() { } // Constructor to build from all elements: Vec4db(bool b0, bool b1, bool b2, bool b3) { #if INSTRSET >= 8 // AVX2 ymm = _mm256_castsi256_pd(_mm256_setr_epi64x(-(int64_t)b0, -(int64_t)b1, -(int64_t)b2, -(int64_t)b3)); #else __m128 blo = _mm_castsi128_ps(_mm_setr_epi32(-(int)b0, -(int)b0, -(int)b1, -(int)b1)); __m128 bhi = _mm_castsi128_ps(_mm_setr_epi32(-(int)b2, -(int)b2, -(int)b3, -(int)b3)); ymm = _mm256_castps_pd(set_m128r(bhi,blo)); #endif } // Constructor to build from two Vec2db: Vec4db(Vec2db const & a0, Vec2db const & a1) { ymm = _mm256_castps_pd(set_m128r(_mm_castpd_ps(a0),_mm_castpd_ps(a1))); //ymm = _mm256_set_m128d(a1, a0); } // Constructor to convert from type __m256d used in intrinsics: Vec4db(__m256d const & x) { ymm = x; } // Assignment operator to convert from type __m256d used in intrinsics: Vec4db & operator = (__m256d const & x) { ymm = x; return *this; } // Constructor to broadcast the same value into all elements: Vec4db(bool b) { #if INSTRSET >= 8 // AVX2 ymm = _mm256_castsi256_pd(_mm256_set1_epi64x(-(int64_t)b)); #else __m128 b1 = _mm_castsi128_ps(_mm_set1_epi32(-(int)b)); ymm = _mm256_castps_pd(set_m128r(b1,b1)); #endif } // Assignment operator to broadcast scalar value: Vec4db & operator = (bool b) { ymm = _mm256_castsi256_pd(_mm256_set1_epi32(-int32_t(b))); return *this; } private: // Prevent constructing from int, etc. Vec4db(int b); Vec4db & operator = (int x); public: // Type cast operator to convert to __m256d used in intrinsics operator __m256d() const { return ymm; } #ifdef VECTORI256_H #if VECTORI256_H == 2 // 256 bit integer vectors are available, AVX2 // Constructor to convert from type Vec4qb used as Boolean for integer vectors Vec4db(Vec4qb const & x) { ymm = _mm256_castsi256_pd(x); } // Assignment operator to convert from type Vec4qb used as Boolean for integer vectors Vec4db & operator = (Vec4qb const & x) { ymm = _mm256_castsi256_pd(x); return *this; } #ifndef FIX_CLANG_VECTOR_ALIAS_AMBIGUITY // Type cast operator to convert to type Vec4qb used as Boolean for integer vectors operator Vec4qb() const { return _mm256_castpd_si256(ymm); } #endif #else // 256 bit integer vectors emulated without AVX2 // Constructor to convert from type Vec4qb used as Boolean for integer vectors Vec4db(Vec4qb const & x) { *this = Vec4db(_mm_castsi128_pd(x.get_low()), _mm_castsi128_pd(x.get_high())); } // Assignment operator to convert from type Vec4qb used as Boolean for integer vectors Vec4db & operator = (Vec4qb const & x) { *this = Vec4db(_mm_castsi128_pd(x.get_low()), _mm_castsi128_pd(x.get_high())); return *this; } // Type cast operator to convert to type Vec4qb used as Boolean for integer vectors operator Vec4qb() const { return Vec4q(_mm_castpd_si128(get_low()), _mm_castpd_si128(get_high())); } #endif #endif // VECTORI256_H // Member function to change a single element in vector // Note: This function is inefficient. Use load function if changing more than one element Vec4db const & insert(uint32_t index, bool value) { static const int32_t maskl[16] = {0,0,0,0,0,0,0,0,-1,-1,0,0,0,0,0,0}; __m256d mask = _mm256_loadu_pd((double const*)(maskl+8-(index&3)*2)); // mask with FFFFFFFFFFFFFFFF at index position if (value) { ymm = _mm256_or_pd(ymm,mask); } else { ymm = _mm256_andnot_pd(mask,ymm); } return *this; } // Member function extract a single element from vector bool extract(uint32_t index) const { union { double f[8]; int32_t i[16]; } u; _mm256_storeu_pd(u.f, ymm); return u.i[(index & 3) * 2 + 1] != 0; } // Extract a single element. Operator [] can only read an element, not write. bool operator [] (uint32_t index) const { return extract(index); } // Member functions to split into two Vec4fb: Vec2db get_low() const { return _mm256_castpd256_pd128(ymm); } Vec2db get_high() const { return _mm256_extractf128_pd(ymm,1); } static int size () { return 4; } }; /***************************************************************************** * * Operators for Vec4db * *****************************************************************************/ // vector operator & : bitwise and static inline Vec4db operator & (Vec4db const & a, Vec4db const & b) { return _mm256_and_pd(a, b); } static inline Vec4db operator && (Vec4db const & a, Vec4db const & b) { return a & b; } // vector operator &= : bitwise and static inline Vec4db & operator &= (Vec4db & a, Vec4db const & b) { a = a & b; return a; } // vector operator | : bitwise or static inline Vec4db operator | (Vec4db const & a, Vec4db const & b) { return _mm256_or_pd(a, b); } static inline Vec4db operator || (Vec4db const & a, Vec4db const & b) { return a | b; } // vector operator |= : bitwise or static inline Vec4db & operator |= (Vec4db & a, Vec4db const & b) { a = a | b; return a; } // vector operator ^ : bitwise xor static inline Vec4db operator ^ (Vec4db const & a, Vec4db const & b) { return _mm256_xor_pd(a, b); } // vector operator ^= : bitwise xor static inline Vec4db & operator ^= (Vec4db & a, Vec4db const & b) { a = a ^ b; return a; } // vector operator ~ : bitwise not static inline Vec4db operator ~ (Vec4db const & a) { return _mm256_xor_pd(a, _mm256_castps_pd (constant8f<-1,-1,-1,-1,-1,-1,-1,-1>())); } // vector operator ! : logical not // (operator ! is less efficient than operator ~. Use only where not // all bits in an element are the same) static inline Vec4db operator ! (Vec4db const & a) { return Vec4db( ! Vec4qb(a)); } // Functions for Vec8fb // andnot: a & ~ b static inline Vec4db andnot(Vec4db const & a, Vec4db const & b) { return _mm256_andnot_pd(b, a); } /***************************************************************************** * * Horizontal Boolean functions * *****************************************************************************/ // horizontal_and. Returns true if all bits are 1 static inline bool horizontal_and (Vec4db const & a) { #if defined (VECTORI256_H) && VECTORI256_H > 1 // 256 bit integer vectors are available, AVX2 return horizontal_and(Vec256b(_mm256_castpd_si256(a))); #else // split into 128 bit vectors return horizontal_and(a.get_low() & a.get_high()); #endif } // horizontal_or. Returns true if at least one bit is 1 static inline bool horizontal_or (Vec4db const & a) { #if defined (VECTORI256_H) && VECTORI256_H > 1 // 256 bit integer vectors are available, AVX2 return horizontal_or(Vec256b(_mm256_castpd_si256(a))); #else // split into 128 bit vectors return horizontal_or(a.get_low() | a.get_high()); #endif } /***************************************************************************** * * Vec8f: Vector of 8 single precision floating point values * *****************************************************************************/ class Vec8f { protected: __m256 ymm; // Float vector public: // Default constructor: Vec8f() { } // Constructor to broadcast the same value into all elements: Vec8f(float f) { ymm = _mm256_set1_ps(f); } // Constructor to build from all elements: Vec8f(float f0, float f1, float f2, float f3, float f4, float f5, float f6, float f7) { ymm = _mm256_setr_ps(f0, f1, f2, f3, f4, f5, f6, f7); } // Constructor to build from two Vec4f: Vec8f(Vec4f const & a0, Vec4f const & a1) { ymm = set_m128r(a0, a1); //ymm = _mm256_set_m128(a1, a0); } // Constructor to convert from type __m256 used in intrinsics: Vec8f(__m256 const & x) { ymm = x; } // Assignment operator to convert from type __m256 used in intrinsics: Vec8f & operator = (__m256 const & x) { ymm = x; return *this; } // Type cast operator to convert to __m256 used in intrinsics operator __m256() const { return ymm; } // Member function to load from array (unaligned) Vec8f & load(float const * p) { ymm = _mm256_loadu_ps(p); return *this; } // Member function to load from array, aligned by 32 // You may use load_a instead of load if you are certain that p points to an address // divisible by 32. Vec8f & load_a(float const * p) { ymm = _mm256_load_ps(p); return *this; } // Member function to store into array (unaligned) void store(float * p) const { _mm256_storeu_ps(p, ymm); } // Member function to store into array, aligned by 32 // You may use store_a instead of store if you are certain that p points to an address // divisible by 32. void store_a(float * p) const { _mm256_store_ps(p, ymm); } // Partial load. Load n elements and set the rest to 0 Vec8f & load_partial(int n, float const * p) { if (n > 0 && n <= 4) { *this = Vec8f(Vec4f().load_partial(n, p), _mm_setzero_ps()); // ymm = _mm256_castps128_ps256(Vec4f().load_partial(p)); (this doesn't work on MS compiler due to sloppy definition of the cast) } else if (n > 4 && n <= 8) { *this = Vec8f(Vec4f().load(p), Vec4f().load_partial(n - 4, p + 4)); } else { ymm = _mm256_setzero_ps(); } return *this; } // Partial store. Store n elements void store_partial(int n, float * p) const { if (n <= 4) { get_low().store_partial(n, p); } else if (n <= 8) { get_low().store(p); get_high().store_partial(n - 4, p + 4); } } // cut off vector to n elements. The last 8-n elements are set to zero Vec8f & cutoff(int n) { if (uint32_t(n) >= 8) return *this; static const union { int32_t i[16]; float f[16]; } mask = {{-1,-1,-1,-1,-1,-1,-1,-1,0,0,0,0,0,0,0,0}}; *this = Vec8fb(*this) & Vec8fb(Vec8f().load(mask.f + 8 - n)); return *this; } // Member function to change a single element in vector // Note: This function is inefficient. Use load function if changing more than one element Vec8f const & insert(uint32_t index, float value) { __m256 v0 = _mm256_broadcast_ss(&value); switch (index) { case 0: ymm = _mm256_blend_ps (ymm, v0, 1); break; case 1: ymm = _mm256_blend_ps (ymm, v0, 2); break; case 2: ymm = _mm256_blend_ps (ymm, v0, 4); break; case 3: ymm = _mm256_blend_ps (ymm, v0, 8); break; case 4: ymm = _mm256_blend_ps (ymm, v0, 0x10); break; case 5: ymm = _mm256_blend_ps (ymm, v0, 0x20); break; case 6: ymm = _mm256_blend_ps (ymm, v0, 0x40); break; default: ymm = _mm256_blend_ps (ymm, v0, 0x80); break; } return *this; } // Member function extract a single element from vector float extract(uint32_t index) const { float x[8]; store(x); return x[index & 7]; } // Extract a single element. Use store function if extracting more than one element. // Operator [] can only read an element, not write. float operator [] (uint32_t index) const { return extract(index); } // Member functions to split into two Vec4f: Vec4f get_low() const { return _mm256_castps256_ps128(ymm); } Vec4f get_high() const { return _mm256_extractf128_ps(ymm,1); } static int size () { return 8; } }; /***************************************************************************** * * Operators for Vec8f * *****************************************************************************/ // vector operator + : add element by element static inline Vec8f operator + (Vec8f const & a, Vec8f const & b) { return _mm256_add_ps(a, b); } // vector operator + : add vector and scalar static inline Vec8f operator + (Vec8f const & a, float b) { return a + Vec8f(b); } static inline Vec8f operator + (float a, Vec8f const & b) { return Vec8f(a) + b; } // vector operator += : add static inline Vec8f & operator += (Vec8f & a, Vec8f const & b) { a = a + b; return a; } // postfix operator ++ static inline Vec8f operator ++ (Vec8f & a, int) { Vec8f a0 = a; a = a + 1.0f; return a0; } // prefix operator ++ static inline Vec8f & operator ++ (Vec8f & a) { a = a + 1.0f; return a; } // vector operator - : subtract element by element static inline Vec8f operator - (Vec8f const & a, Vec8f const & b) { return _mm256_sub_ps(a, b); } // vector operator - : subtract vector and scalar static inline Vec8f operator - (Vec8f const & a, float b) { return a - Vec8f(b); } static inline Vec8f operator - (float a, Vec8f const & b) { return Vec8f(a) - b; } // vector operator - : unary minus // Change sign bit, even for 0, INF and NAN static inline Vec8f operator - (Vec8f const & a) { return _mm256_xor_ps(a, constant8f<(int)0x80000000,(int)0x80000000,(int)0x80000000,(int)0x80000000,(int)0x80000000,(int)0x80000000,(int)0x80000000,(int)0x80000000> ()); } // vector operator -= : subtract static inline Vec8f & operator -= (Vec8f & a, Vec8f const & b) { a = a - b; return a; } // postfix operator -- static inline Vec8f operator -- (Vec8f & a, int) { Vec8f a0 = a; a = a - 1.0f; return a0; } // prefix operator -- static inline Vec8f & operator -- (Vec8f & a) { a = a - 1.0f; return a; } // vector operator * : multiply element by element static inline Vec8f operator * (Vec8f const & a, Vec8f const & b) { return _mm256_mul_ps(a, b); } // vector operator * : multiply vector and scalar static inline Vec8f operator * (Vec8f const & a, float b) { return a * Vec8f(b); } static inline Vec8f operator * (float a, Vec8f const & b) { return Vec8f(a) * b; } // vector operator *= : multiply static inline Vec8f & operator *= (Vec8f & a, Vec8f const & b) { a = a * b; return a; } // vector operator / : divide all elements by same integer static inline Vec8f operator / (Vec8f const & a, Vec8f const & b) { return _mm256_div_ps(a, b); } // vector operator / : divide vector and scalar static inline Vec8f operator / (Vec8f const & a, float b) { return a / Vec8f(b); } static inline Vec8f operator / (float a, Vec8f const & b) { return Vec8f(a) / b; } // vector operator /= : divide static inline Vec8f & operator /= (Vec8f & a, Vec8f const & b) { a = a / b; return a; } // vector operator == : returns true for elements for which a == b static inline Vec8fb operator == (Vec8f const & a, Vec8f const & b) { return _mm256_cmp_ps(a, b, 0); } // vector operator != : returns true for elements for which a != b static inline Vec8fb operator != (Vec8f const & a, Vec8f const & b) { return _mm256_cmp_ps(a, b, 4); } // vector operator < : returns true for elements for which a < b static inline Vec8fb operator < (Vec8f const & a, Vec8f const & b) { return _mm256_cmp_ps(a, b, 1); } // vector operator <= : returns true for elements for which a <= b static inline Vec8fb operator <= (Vec8f const & a, Vec8f const & b) { return _mm256_cmp_ps(a, b, 2); } // vector operator > : returns true for elements for which a > b static inline Vec8fb operator > (Vec8f const & a, Vec8f const & b) { return b < a; } // vector operator >= : returns true for elements for which a >= b static inline Vec8fb operator >= (Vec8f const & a, Vec8f const & b) { return b <= a; } // Bitwise logical operators // vector operator & : bitwise and static inline Vec8f operator & (Vec8f const & a, Vec8f const & b) { return _mm256_and_ps(a, b); } // vector operator &= : bitwise and static inline Vec8f & operator &= (Vec8f & a, Vec8f const & b) { a = a & b; return a; } // vector operator & : bitwise and of Vec8f and Vec8fb static inline Vec8f operator & (Vec8f const & a, Vec8fb const & b) { return _mm256_and_ps(a, b); } static inline Vec8f operator & (Vec8fb const & a, Vec8f const & b) { return _mm256_and_ps(a, b); } // vector operator | : bitwise or static inline Vec8f operator | (Vec8f const & a, Vec8f const & b) { return _mm256_or_ps(a, b); } // vector operator |= : bitwise or static inline Vec8f & operator |= (Vec8f & a, Vec8f const & b) { a = a | b; return a; } // vector operator ^ : bitwise xor static inline Vec8f operator ^ (Vec8f const & a, Vec8f const & b) { return _mm256_xor_ps(a, b); } // vector operator ^= : bitwise xor static inline Vec8f & operator ^= (Vec8f & a, Vec8f const & b) { a = a ^ b; return a; } // vector operator ! : logical not. Returns Boolean vector static inline Vec8fb operator ! (Vec8f const & a) { return a == Vec8f(0.0f); } /***************************************************************************** * * Functions for Vec8f * *****************************************************************************/ // Select between two operands. Corresponds to this pseudocode: // for (int i = 0; i < 8; i++) result[i] = s[i] ? a[i] : b[i]; // Each byte in s must be either 0 (false) or 0xFFFFFFFF (true). No other values are allowed. static inline Vec8f select (Vec8fb const & s, Vec8f const & a, Vec8f const & b) { return _mm256_blendv_ps (b, a, s); } // Conditional add: For all vector elements i: result[i] = f[i] ? (a[i] + b[i]) : a[i] static inline Vec8f if_add (Vec8fb const & f, Vec8f const & a, Vec8f const & b) { return a + (Vec8f(f) & b); } // Conditional multiply: For all vector elements i: result[i] = f[i] ? (a[i] * b[i]) : a[i] static inline Vec8f if_mul (Vec8fb const & f, Vec8f const & a, Vec8f const & b) { return a * select(f, b, 1.f); } // General arithmetic functions, etc. // Horizontal add: Calculates the sum of all vector elements. static inline float horizontal_add (Vec8f const & a) { __m256 t1 = _mm256_hadd_ps(a,a); __m256 t2 = _mm256_hadd_ps(t1,t1); __m128 t3 = _mm256_extractf128_ps(t2,1); __m128 t4 = _mm_add_ss(_mm256_castps256_ps128(t2),t3); return _mm_cvtss_f32(t4); } // function max: a > b ? a : b static inline Vec8f max(Vec8f const & a, Vec8f const & b) { return _mm256_max_ps(a,b); } // function min: a < b ? a : b static inline Vec8f min(Vec8f const & a, Vec8f const & b) { return _mm256_min_ps(a,b); } // function abs: absolute value // Removes sign bit, even for -0.0f, -INF and -NAN static inline Vec8f abs(Vec8f const & a) { __m256 mask = constant8f<0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF,0x7FFFFFFF> (); return _mm256_and_ps(a,mask); } // function sqrt: square root static inline Vec8f sqrt(Vec8f const & a) { return _mm256_sqrt_ps(a); } // function square: a * a static inline Vec8f square(Vec8f const & a) { return a * a; } // pow(Vec8f, int): template static Vec8f pow(Vec8f const & a, TT n); // Raise floating point numbers to integer power n template <> inline Vec8f pow(Vec8f const & x0, int n) { return pow_template_i(x0, n); } // allow conversion from unsigned int template <> inline Vec8f pow(Vec8f const & x0, uint32_t n) { return pow_template_i(x0, (int)n); } // Raise floating point numbers to integer power n, where n is a compile-time constant template static inline Vec8f pow_n(Vec8f const & a) { if (n < 0) return Vec8f(1.0f) / pow_n<-n>(a); if (n == 0) return Vec8f(1.0f); if (n >= 256) return pow(a, n); Vec8f x = a; // a^(2^i) Vec8f y; // accumulator const int lowest = n - (n & (n-1));// lowest set bit in n if (n & 1) y = x; if (n < 2) return y; x = x*x; // x^2 if (n & 2) { if (lowest == 2) y = x; else y *= x; } if (n < 4) return y; x = x*x; // x^4 if (n & 4) { if (lowest == 4) y = x; else y *= x; } if (n < 8) return y; x = x*x; // x^8 if (n & 8) { if (lowest == 8) y = x; else y *= x; } if (n < 16) return y; x = x*x; // x^16 if (n & 16) { if (lowest == 16) y = x; else y *= x; } if (n < 32) return y; x = x*x; // x^32 if (n & 32) { if (lowest == 32) y = x; else y *= x; } if (n < 64) return y; x = x*x; // x^64 if (n & 64) { if (lowest == 64) y = x; else y *= x; } if (n < 128) return y; x = x*x; // x^128 if (n & 128) { if (lowest == 128) y = x; else y *= x; } return y; } template static inline Vec8f pow(Vec8f const & a, Const_int_t) { return pow_n(a); } // function round: round to nearest integer (even). (result as float vector) static inline Vec8f round(Vec8f const & a) { return _mm256_round_ps(a, 0); } // function truncate: round towards zero. (result as float vector) static inline Vec8f truncate(Vec8f const & a) { return _mm256_round_ps(a, 3); } // function floor: round towards minus infinity. (result as float vector) static inline Vec8f floor(Vec8f const & a) { return _mm256_round_ps(a, 1); } // function ceil: round towards plus infinity. (result as float vector) static inline Vec8f ceil(Vec8f const & a) { return _mm256_round_ps(a, 2); } #ifdef VECTORI256_H // 256 bit integer vectors are available #if VECTORI256_H > 1 // AVX2 // function round_to_int: round to nearest integer (even). (result as integer vector) static inline Vec8i round_to_int(Vec8f const & a) { // Note: assume MXCSR control register is set to rounding return _mm256_cvtps_epi32(a); } // function truncate_to_int: round towards zero. (result as integer vector) static inline Vec8i truncate_to_int(Vec8f const & a) { return _mm256_cvttps_epi32(a); } // function to_float: convert integer vector to float vector static inline Vec8f to_float(Vec8i const & a) { return _mm256_cvtepi32_ps(a); } #else // no AVX2 // function round_to_int: round to nearest integer (even). (result as integer vector) static inline Vec8i round_to_int(Vec8f const & a) { // Note: assume MXCSR control register is set to rounding return Vec8i(_mm_cvtps_epi32(a.get_low()), _mm_cvtps_epi32(a.get_high())); } // function truncate_to_int: round towards zero. (result as integer vector) static inline Vec8i truncate_to_int(Vec8f const & a) { return Vec8i(_mm_cvttps_epi32(a.get_low()), _mm_cvttps_epi32(a.get_high())); } // function to_float: convert integer vector to float vector static inline Vec8f to_float(Vec8i const & a) { return Vec8f(_mm_cvtepi32_ps(a.get_low()), _mm_cvtepi32_ps(a.get_high())); } #endif #endif // VECTORI256_H // Fused multiply and add functions // Multiply and add static inline Vec8f mul_add(Vec8f const & a, Vec8f const & b, Vec8f const & c) { #ifdef __FMA__ return _mm256_fmadd_ps(a, b, c); #elif defined (__FMA4__) return _mm256_macc_ps(a, b, c); #else return a * b + c; #endif } // Multiply and subtract static inline Vec8f mul_sub(Vec8f const & a, Vec8f const & b, Vec8f const & c) { #ifdef __FMA__ return _mm256_fmsub_ps(a, b, c); #elif defined (__FMA4__) return _mm256_msub_ps(a, b, c); #else return a * b - c; #endif } // Multiply and inverse subtract static inline Vec8f nmul_add(Vec8f const & a, Vec8f const & b, Vec8f const & c) { #ifdef __FMA__ return _mm256_fnmadd_ps(a, b, c); #elif defined (__FMA4__) return _mm256_nmacc_ps(a, b, c); #else return c - a * b; #endif } // Multiply and subtract with extra precision on the intermediate calculations, // even if FMA instructions not supported, using Veltkamp-Dekker split static inline Vec8f mul_sub_x(Vec8f const & a, Vec8f const & b, Vec8f const & c) { #ifdef __FMA__ return _mm256_fmsub_ps(a, b, c); #elif defined (__FMA4__) return _mm256_msub_ps(a, b, c); #else // calculate a * b - c with extra precision const int b12 = -(1 << 12); // mask to remove lower 12 bits Vec8f upper_mask = constant8f(); Vec8f a_high = a & upper_mask; // split into high and low parts Vec8f b_high = b & upper_mask; Vec8f a_low = a - a_high; Vec8f b_low = b - b_high; Vec8f r1 = a_high * b_high; // this product is exact Vec8f r2 = r1 - c; // subtract c from high product Vec8f r3 = r2 + (a_high * b_low + b_high * a_low) + a_low * b_low; // add rest of product return r3; // + ((r2 - r1) + c); #endif } // Approximate math functions // approximate reciprocal (Faster than 1.f / a. relative accuracy better than 2^-11) static inline Vec8f approx_recipr(Vec8f const & a) { return _mm256_rcp_ps(a); } // approximate reciprocal squareroot (Faster than 1.f / sqrt(a). Relative accuracy better than 2^-11) static inline Vec8f approx_rsqrt(Vec8f const & a) { return _mm256_rsqrt_ps(a); } // Math functions using fast bit manipulation #ifdef VECTORI256_H // 256 bit integer vectors are available, AVX2 // Extract the exponent as an integer // exponent(a) = floor(log2(abs(a))); // exponent(1.0f) = 0, exponent(0.0f) = -127, exponent(INF) = +128, exponent(NAN) = +128 static inline Vec8i exponent(Vec8f const & a) { #if VECTORI256_H > 1 // AVX2 Vec8ui t1 = _mm256_castps_si256(a);// reinterpret as 32-bit integer Vec8ui t2 = t1 << 1; // shift out sign bit Vec8ui t3 = t2 >> 24; // shift down logical to position 0 Vec8i t4 = Vec8i(t3) - 0x7F; // subtract bias from exponent return t4; #else // no AVX2 return Vec8i(exponent(a.get_low()), exponent(a.get_high())); #endif } #endif // Extract the fraction part of a floating point number // a = 2^exponent(a) * fraction(a), except for a = 0 // fraction(1.0f) = 1.0f, fraction(5.0f) = 1.25f static inline Vec8f fraction(Vec8f const & a) { #if defined (VECTORI256_H) && VECTORI256_H > 2 // 256 bit integer vectors are available, AVX2 Vec8ui t1 = _mm256_castps_si256(a); // reinterpret as 32-bit integer Vec8ui t2 = (t1 & 0x007FFFFF) | 0x3F800000; // set exponent to 0 + bias return _mm256_castsi256_ps(t2); #else return Vec8f(fraction(a.get_low()), fraction(a.get_high())); #endif } #ifdef VECTORI256_H // 256 bit integer vectors are available, AVX2 // Fast calculation of pow(2,n) with n integer // n = 0 gives 1.0f // n >= 128 gives +INF // n <= -127 gives 0.0f // This function will never produce denormals, and never raise exceptions static inline Vec8f exp2(Vec8i const & n) { #if VECTORI256_H > 1 // AVX2 Vec8i t1 = max(n, -0x7F); // limit to allowed range Vec8i t2 = min(t1, 0x80); Vec8i t3 = t2 + 0x7F; // add bias Vec8i t4 = t3 << 23; // put exponent into position 23 return _mm256_castsi256_ps(t4); // reinterpret as float #else return Vec8f(exp2(n.get_low()), exp2(n.get_high())); #endif } //static inline Vec8f exp2(Vec8f const & x); // defined in vectormath_exp.h #endif // VECTORI256_H // Categorization functions // Function sign_bit: gives true for elements that have the sign bit set // even for -0.0f, -INF and -NAN // Note that sign_bit(Vec8f(-0.0f)) gives true, while Vec8f(-0.0f) < Vec8f(0.0f) gives false // (the underscore in the name avoids a conflict with a macro in Intel's mathimf.h) static inline Vec8fb sign_bit(Vec8f const & a) { #if defined (VECTORI256_H) && VECTORI256_H > 1 // 256 bit integer vectors are available, AVX2 Vec8i t1 = _mm256_castps_si256(a); // reinterpret as 32-bit integer Vec8i t2 = t1 >> 31; // extend sign bit return _mm256_castsi256_ps(t2); // reinterpret as 32-bit Boolean #else return Vec8fb(sign_bit(a.get_low()), sign_bit(a.get_high())); #endif } // Function sign_combine: changes the sign of a when b has the sign bit set // same as select(sign_bit(b), -a, a) static inline Vec8f sign_combine(Vec8f const & a, Vec8f const & b) { Vec8f signmask = constant8f<(int)0x80000000,(int)0x80000000,(int)0x80000000,(int)0x80000000,(int)0x80000000,(int)0x80000000,(int)0x80000000,(int)0x80000000>(); // -0.0 return a ^ (b & signmask); } // Function is_finite: gives true for elements that are normal, denormal or zero, // false for INF and NAN // (the underscore in the name avoids a conflict with a macro in Intel's mathimf.h) static inline Vec8fb is_finite(Vec8f const & a) { #if defined (VECTORI256_H) && VECTORI256_H > 1 // 256 bit integer vectors are available, AVX2 Vec8i t1 = _mm256_castps_si256(a); // reinterpret as 32-bit integer Vec8i t2 = t1 << 1; // shift out sign bit Vec8ib t3 = Vec8i(t2 & 0xFF000000) != 0xFF000000; // exponent field is not all 1s return t3; #else return Vec8fb(is_finite(a.get_low()), is_finite(a.get_high())); #endif } // Function is_inf: gives true for elements that are +INF or -INF // false for finite numbers and NAN // (the underscore in the name avoids a conflict with a macro in Intel's mathimf.h) static inline Vec8fb is_inf(Vec8f const & a) { #if defined (VECTORI256_H) && VECTORI256_H > 1 // 256 bit integer vectors are available, AVX2 Vec8i t1 = _mm256_castps_si256(a); // reinterpret as 32-bit integer Vec8i t2 = t1 << 1; // shift out sign bit return t2 == 0xFF000000; // exponent is all 1s, fraction is 0 #else return Vec8fb(is_inf(a.get_low()), is_inf(a.get_high())); #endif } // Function is_nan: gives true for elements that are +NAN or -NAN // false for finite numbers and +/-INF // (the underscore in the name avoids a conflict with a macro in Intel's mathimf.h) static inline Vec8fb is_nan(Vec8f const & a) { #if defined (VECTORI256_H) && VECTORI256_H > 1 // 256 bit integer vectors are available, AVX2 Vec8i t1 = _mm256_castps_si256(a); // reinterpret as 32-bit integer Vec8i t2 = t1 << 1; // shift out sign bit Vec8i t3 = 0xFF000000; // exponent mask Vec8i t4 = t2 & t3; // exponent Vec8i t5 = _mm256_andnot_si256(t3,t2);// fraction return Vec8ib(t4 == t3 && t5 != 0);// exponent = all 1s and fraction != 0 #else return Vec8fb(is_nan(a.get_low()), is_nan(a.get_high())); #endif } // Function is_subnormal: gives true for elements that are denormal (subnormal) // false for finite numbers, zero, NAN and INF static inline Vec8fb is_subnormal(Vec8f const & a) { #if defined (VECTORI256_H) && VECTORI256_H > 1 // 256 bit integer vectors are available, AVX2 Vec8i t1 = _mm256_castps_si256(a); // reinterpret as 32-bit integer Vec8i t2 = t1 << 1; // shift out sign bit Vec8i t3 = 0xFF000000; // exponent mask Vec8i t4 = t2 & t3; // exponent Vec8i t5 = _mm256_andnot_si256(t3,t2);// fraction return Vec8ib(t4 == 0 && t5 != 0); // exponent = 0 and fraction != 0 #else return Vec8fb(is_subnormal(a.get_low()), is_subnormal(a.get_high())); #endif } // Function is_zero_or_subnormal: gives true for elements that are zero or subnormal (denormal) // false for finite numbers, NAN and INF static inline Vec8fb is_zero_or_subnormal(Vec8f const & a) { #if defined (VECTORI256_H) && VECTORI256_H > 1 // 256 bit integer vectors are available, AVX2 Vec8i t = _mm256_castps_si256(a); // reinterpret as 32-bit integer t &= 0x7F800000; // isolate exponent return t == 0; // exponent = 0 #else return Vec8fb(is_zero_or_subnormal(a.get_low()), is_zero_or_subnormal(a.get_high())); #endif } // Function infinite4f: returns a vector where all elements are +INF static inline Vec8f infinite8f() { return constant8f<0x7F800000,0x7F800000,0x7F800000,0x7F800000,0x7F800000,0x7F800000,0x7F800000,0x7F800000>(); } // Function nan4f: returns a vector where all elements are +NAN (quiet) static inline Vec8f nan8f(int n = 0x10) { return _mm256_castsi256_ps(_mm256_set1_epi32(0x7FC00000 + n)); } // change signs on vectors Vec8f // Each index i0 - i7 is 1 for changing sign on the corresponding element, 0 for no change template static inline Vec8f change_sign(Vec8f const & a) { if ((i0 | i1 | i2 | i3 | i4 | i5 | i6 | i7) == 0) return a; __m256 mask = constant8f (); return _mm256_xor_ps(a, mask); } /***************************************************************************** * * Vec4d: Vector of 4 double precision floating point values * *****************************************************************************/ class Vec4d { protected: __m256d ymm; // double vector public: // Default constructor: Vec4d() { } // Constructor to broadcast the same value into all elements: Vec4d(double d) { ymm = _mm256_set1_pd(d); } // Constructor to build from all elements: Vec4d(double d0, double d1, double d2, double d3) { ymm = _mm256_setr_pd(d0, d1, d2, d3); } // Constructor to build from two Vec2d: Vec4d(Vec2d const & a0, Vec2d const & a1) { ymm = _mm256_castps_pd(set_m128r(_mm_castpd_ps(a0), _mm_castpd_ps(a1))); //ymm = _mm256_set_m128d(a1, a0); } // Constructor to convert from type __m256d used in intrinsics: Vec4d(__m256d const & x) { ymm = x; } // Assignment operator to convert from type __m256d used in intrinsics: Vec4d & operator = (__m256d const & x) { ymm = x; return *this; } // Type cast operator to convert to __m256d used in intrinsics operator __m256d() const { return ymm; } // Member function to load from array (unaligned) Vec4d & load(double const * p) { ymm = _mm256_loadu_pd(p); return *this; } // Member function to load from array, aligned by 32 // You may use load_a instead of load if you are certain that p points to an address // divisible by 32 Vec4d & load_a(double const * p) { ymm = _mm256_load_pd(p); return *this; } // Member function to store into array (unaligned) void store(double * p) const { _mm256_storeu_pd(p, ymm); } // Member function to store into array, aligned by 32 // You may use store_a instead of store if you are certain that p points to an address // divisible by 32 void store_a(double * p) const { _mm256_store_pd(p, ymm); } // Partial load. Load n elements and set the rest to 0 Vec4d & load_partial(int n, double const * p) { if (n > 0 && n <= 2) { *this = Vec4d(Vec2d().load_partial(n, p), _mm_setzero_pd()); } else if (n > 2 && n <= 4) { *this = Vec4d(Vec2d().load(p), Vec2d().load_partial(n - 2, p + 2)); } else { ymm = _mm256_setzero_pd(); } return *this; } // Partial store. Store n elements void store_partial(int n, double * p) const { if (n <= 2) { get_low().store_partial(n, p); } else if (n <= 4) { get_low().store(p); get_high().store_partial(n - 2, p + 2); } } // cut off vector to n elements. The last 4-n elements are set to zero Vec4d & cutoff(int n) { ymm = _mm256_castps_pd(Vec8f(_mm256_castpd_ps(ymm)).cutoff(n*2)); return *this; } // Member function to change a single element in vector // Note: This function is inefficient. Use load function if changing more than one element Vec4d const & insert(uint32_t index, double value) { __m256d v0 = _mm256_broadcast_sd(&value); switch (index) { case 0: ymm = _mm256_blend_pd (ymm, v0, 1); break; case 1: ymm = _mm256_blend_pd (ymm, v0, 2); break; case 2: ymm = _mm256_blend_pd (ymm, v0, 4); break; default: ymm = _mm256_blend_pd (ymm, v0, 8); break; } return *this; } // Member function extract a single element from vector double extract(uint32_t index) const { double x[4]; store(x); return x[index & 3]; } // Extract a single element. Use store function if extracting more than one element. // Operator [] can only read an element, not write. double operator [] (uint32_t index) const { return extract(index); } // Member functions to split into two Vec2d: Vec2d get_low() const { return _mm256_castpd256_pd128(ymm); } Vec2d get_high() const { return _mm256_extractf128_pd(ymm,1); } static int size () { return 4; } }; /***************************************************************************** * * Operators for Vec4d * *****************************************************************************/ // vector operator + : add element by element static inline Vec4d operator + (Vec4d const & a, Vec4d const & b) { return _mm256_add_pd(a, b); } // vector operator + : add vector and scalar static inline Vec4d operator + (Vec4d const & a, double b) { return a + Vec4d(b); } static inline Vec4d operator + (double a, Vec4d const & b) { return Vec4d(a) + b; } // vector operator += : add static inline Vec4d & operator += (Vec4d & a, Vec4d const & b) { a = a + b; return a; } // postfix operator ++ static inline Vec4d operator ++ (Vec4d & a, int) { Vec4d a0 = a; a = a + 1.0; return a0; } // prefix operator ++ static inline Vec4d & operator ++ (Vec4d & a) { a = a + 1.0; return a; } // vector operator - : subtract element by element static inline Vec4d operator - (Vec4d const & a, Vec4d const & b) { return _mm256_sub_pd(a, b); } // vector operator - : subtract vector and scalar static inline Vec4d operator - (Vec4d const & a, double b) { return a - Vec4d(b); } static inline Vec4d operator - (double a, Vec4d const & b) { return Vec4d(a) - b; } // vector operator - : unary minus // Change sign bit, even for 0, INF and NAN static inline Vec4d operator - (Vec4d const & a) { return _mm256_xor_pd(a, _mm256_castps_pd(constant8f<0,(int)0x80000000,0,(int)0x80000000,0,(int)0x80000000,0,(int)0x80000000> ())); } // vector operator -= : subtract static inline Vec4d & operator -= (Vec4d & a, Vec4d const & b) { a = a - b; return a; } // postfix operator -- static inline Vec4d operator -- (Vec4d & a, int) { Vec4d a0 = a; a = a - 1.0; return a0; } // prefix operator -- static inline Vec4d & operator -- (Vec4d & a) { a = a - 1.0; return a; } // vector operator * : multiply element by element static inline Vec4d operator * (Vec4d const & a, Vec4d const & b) { return _mm256_mul_pd(a, b); } // vector operator * : multiply vector and scalar static inline Vec4d operator * (Vec4d const & a, double b) { return a * Vec4d(b); } static inline Vec4d operator * (double a, Vec4d const & b) { return Vec4d(a) * b; } // vector operator *= : multiply static inline Vec4d & operator *= (Vec4d & a, Vec4d const & b) { a = a * b; return a; } // vector operator / : divide all elements by same integer static inline Vec4d operator / (Vec4d const & a, Vec4d const & b) { return _mm256_div_pd(a, b); } // vector operator / : divide vector and scalar static inline Vec4d operator / (Vec4d const & a, double b) { return a / Vec4d(b); } static inline Vec4d operator / (double a, Vec4d const & b) { return Vec4d(a) / b; } // vector operator /= : divide static inline Vec4d & operator /= (Vec4d & a, Vec4d const & b) { a = a / b; return a; } // vector operator == : returns true for elements for which a == b static inline Vec4db operator == (Vec4d const & a, Vec4d const & b) { return _mm256_cmp_pd(a, b, 0); } // vector operator != : returns true for elements for which a != b static inline Vec4db operator != (Vec4d const & a, Vec4d const & b) { return _mm256_cmp_pd(a, b, 4); } // vector operator < : returns true for elements for which a < b static inline Vec4db operator < (Vec4d const & a, Vec4d const & b) { return _mm256_cmp_pd(a, b, 1); } // vector operator <= : returns true for elements for which a <= b static inline Vec4db operator <= (Vec4d const & a, Vec4d const & b) { return _mm256_cmp_pd(a, b, 2); } // vector operator > : returns true for elements for which a > b static inline Vec4db operator > (Vec4d const & a, Vec4d const & b) { return b < a; } // vector operator >= : returns true for elements for which a >= b static inline Vec4db operator >= (Vec4d const & a, Vec4d const & b) { return b <= a; } // Bitwise logical operators // vector operator & : bitwise and static inline Vec4d operator & (Vec4d const & a, Vec4d const & b) { return _mm256_and_pd(a, b); } // vector operator &= : bitwise and static inline Vec4d & operator &= (Vec4d & a, Vec4d const & b) { a = a & b; return a; } // vector operator & : bitwise and of Vec4d and Vec4db static inline Vec4d operator & (Vec4d const & a, Vec4db const & b) { return _mm256_and_pd(a, b); } static inline Vec4d operator & (Vec4db const & a, Vec4d const & b) { return _mm256_and_pd(a, b); } // vector operator | : bitwise or static inline Vec4d operator | (Vec4d const & a, Vec4d const & b) { return _mm256_or_pd(a, b); } // vector operator |= : bitwise or static inline Vec4d & operator |= (Vec4d & a, Vec4d const & b) { a = a | b; return a; } // vector operator ^ : bitwise xor static inline Vec4d operator ^ (Vec4d const & a, Vec4d const & b) { return _mm256_xor_pd(a, b); } // vector operator ^= : bitwise xor static inline Vec4d & operator ^= (Vec4d & a, Vec4d const & b) { a = a ^ b; return a; } // vector operator ! : logical not. Returns Boolean vector static inline Vec4db operator ! (Vec4d const & a) { return a == Vec4d(0.0); } /***************************************************************************** * * Functions for Vec4d * *****************************************************************************/ // Select between two operands. Corresponds to this pseudocode: // for (int i = 0; i < 2; i++) result[i] = s[i] ? a[i] : b[i]; // Each byte in s must be either 0 (false) or 0xFFFFFFFFFFFFFFFF (true). // No other values are allowed. static inline Vec4d select (Vec4db const & s, Vec4d const & a, Vec4d const & b) { return _mm256_blendv_pd(b, a, s); } // Conditional add: For all vector elements i: result[i] = f[i] ? (a[i] + b[i]) : a[i] static inline Vec4d if_add (Vec4db const & f, Vec4d const & a, Vec4d const & b) { return a + (Vec4d(f) & b); } // Conditional multiply: For all vector elements i: result[i] = f[i] ? (a[i] * b[i]) : a[i] static inline Vec4d if_mul (Vec4db const & f, Vec4d const & a, Vec4d const & b) { return a * select(f, b, 1.); } // General arithmetic functions, etc. // Horizontal add: Calculates the sum of all vector elements. static inline double horizontal_add (Vec4d const & a) { __m256d t1 = _mm256_hadd_pd(a,a); __m128d t2 = _mm256_extractf128_pd(t1,1); __m128d t3 = _mm_add_sd(_mm256_castpd256_pd128(t1),t2); return _mm_cvtsd_f64(t3); } // function max: a > b ? a : b static inline Vec4d max(Vec4d const & a, Vec4d const & b) { return _mm256_max_pd(a,b); } // function min: a < b ? a : b static inline Vec4d min(Vec4d const & a, Vec4d const & b) { return _mm256_min_pd(a,b); } // function abs: absolute value // Removes sign bit, even for -0.0f, -INF and -NAN static inline Vec4d abs(Vec4d const & a) { __m256d mask = _mm256_castps_pd(constant8f<-1,0x7FFFFFFF,-1,0x7FFFFFFF,-1,0x7FFFFFFF,-1,0x7FFFFFFF> ()); return _mm256_and_pd(a,mask); } // function sqrt: square root static inline Vec4d sqrt(Vec4d const & a) { return _mm256_sqrt_pd(a); } // function square: a * a static inline Vec4d square(Vec4d const & a) { return a * a; } // pow(Vec4d, int): template static Vec4d pow(Vec4d const & a, TT n); // Raise floating point numbers to integer power n template <> inline Vec4d pow(Vec4d const & x0, int n) { return pow_template_i(x0, n); } // allow conversion from unsigned int template <> inline Vec4d pow(Vec4d const & x0, uint32_t n) { return pow_template_i(x0, (int)n); } // Raise floating point numbers to integer power n, where n is a compile-time constant template static inline Vec4d pow_n(Vec4d const & a) { if (n < 0) return Vec4d(1.0) / pow_n<-n>(a); if (n == 0) return Vec4d(1.0); if (n >= 256) return pow(a, n); Vec4d x = a; // a^(2^i) Vec4d y; // accumulator const int lowest = n - (n & (n-1));// lowest set bit in n if (n & 1) y = x; if (n < 2) return y; x = x*x; // x^2 if (n & 2) { if (lowest == 2) y = x; else y *= x; } if (n < 4) return y; x = x*x; // x^4 if (n & 4) { if (lowest == 4) y = x; else y *= x; } if (n < 8) return y; x = x*x; // x^8 if (n & 8) { if (lowest == 8) y = x; else y *= x; } if (n < 16) return y; x = x*x; // x^16 if (n & 16) { if (lowest == 16) y = x; else y *= x; } if (n < 32) return y; x = x*x; // x^32 if (n & 32) { if (lowest == 32) y = x; else y *= x; } if (n < 64) return y; x = x*x; // x^64 if (n & 64) { if (lowest == 64) y = x; else y *= x; } if (n < 128) return y; x = x*x; // x^128 if (n & 128) { if (lowest == 128) y = x; else y *= x; } return y; } template static inline Vec4d pow(Vec4d const & a, Const_int_t) { return pow_n(a); } // function round: round to nearest integer (even). (result as double vector) static inline Vec4d round(Vec4d const & a) { return _mm256_round_pd(a, 0); } // function truncate: round towards zero. (result as double vector) static inline Vec4d truncate(Vec4d const & a) { return _mm256_round_pd(a, 3); } // function floor: round towards minus infinity. (result as double vector) static inline Vec4d floor(Vec4d const & a) { return _mm256_round_pd(a, 1); } // function ceil: round towards plus infinity. (result as double vector) static inline Vec4d ceil(Vec4d const & a) { return _mm256_round_pd(a, 2); } // function round_to_int: round to nearest integer (even). (result as integer vector) static inline Vec4i round_to_int(Vec4d const & a) { // Note: assume MXCSR control register is set to rounding return _mm256_cvtpd_epi32(a); } // function truncate_to_int: round towards zero. (result as integer vector) static inline Vec4i truncate_to_int(Vec4d const & a) { return _mm256_cvttpd_epi32(a); } #ifdef VECTORI256_H // 256 bit integer vectors are available // function truncate_to_int64: round towards zero. (inefficient) static inline Vec4q truncate_to_int64(Vec4d const & a) { double aa[4]; a.store(aa); return Vec4q(int64_t(aa[0]), int64_t(aa[1]), int64_t(aa[2]), int64_t(aa[3])); } // function truncate_to_int64_limited: round towards zero. // result as 64-bit integer vector, but with limited range static inline Vec4q truncate_to_int64_limited(Vec4d const & a) { #if VECTORI256_H > 1 // Note: assume MXCSR control register is set to rounding Vec2q b = _mm256_cvttpd_epi32(a); // round to 32-bit integers __m256i c = permute4q<0,-256,1,-256>(Vec4q(b,b)); // get bits 64-127 to position 128-191 __m256i s = _mm256_srai_epi32(c, 31); // sign extension bits return _mm256_unpacklo_epi32(c, s); // interleave with sign extensions #else return Vec4q(truncate_to_int64_limited(a.get_low()), truncate_to_int64_limited(a.get_high())); #endif } // function round_to_int64: round to nearest or even. (inefficient) static inline Vec4q round_to_int64(Vec4d const & a) { return truncate_to_int64(round(a)); } // function round_to_int64_limited: round to nearest integer (even) // result as 64-bit integer vector, but with limited range static inline Vec4q round_to_int64_limited(Vec4d const & a) { #if VECTORI256_H > 1 // Note: assume MXCSR control register is set to rounding Vec2q b = _mm256_cvtpd_epi32(a); // round to 32-bit integers __m256i c = permute4q<0,-256,1,-256>(Vec4q(b,b)); // get bits 64-127 to position 128-191 __m256i s = _mm256_srai_epi32(c, 31); // sign extension bits return _mm256_unpacklo_epi32(c, s); // interleave with sign extensions #else return Vec4q(round_to_int64_limited(a.get_low()), round_to_int64_limited(a.get_high())); #endif } // function to_double: convert integer vector elements to double vector (inefficient) static inline Vec4d to_double(Vec4q const & a) { int64_t aa[4]; a.store(aa); return Vec4d(double(aa[0]), double(aa[1]), double(aa[2]), double(aa[3])); } // function to_double_limited: convert integer vector elements to double vector // limited to abs(x) < 2^31 static inline Vec4d to_double_limited(Vec4q const & x) { Vec8i compressed = permute8i<0,2,4,6,-256,-256,-256,-256>(Vec8i(x)); return _mm256_cvtepi32_pd(compressed.get_low()); // AVX } #endif // VECTORI256_H // function to_double: convert integer vector to double vector static inline Vec4d to_double(Vec4i const & a) { return _mm256_cvtepi32_pd(a); } // function compress: convert two Vec4d to one Vec8f static inline Vec8f compress (Vec4d const & low, Vec4d const & high) { __m128 t1 = _mm256_cvtpd_ps(low); __m128 t2 = _mm256_cvtpd_ps(high); return Vec8f(t1, t2); } // Function extend_low : convert Vec8f vector elements 0 - 3 to Vec4d static inline Vec4d extend_low(Vec8f const & a) { return _mm256_cvtps_pd(_mm256_castps256_ps128(a)); } // Function extend_high : convert Vec8f vector elements 4 - 7 to Vec4d static inline Vec4d extend_high (Vec8f const & a) { return _mm256_cvtps_pd(_mm256_extractf128_ps(a,1)); } // Fused multiply and add functions // Multiply and add static inline Vec4d mul_add(Vec4d const & a, Vec4d const & b, Vec4d const & c) { #ifdef __FMA__ return _mm256_fmadd_pd(a, b, c); #elif defined (__FMA4__) return _mm256_macc_pd(a, b, c); #else return a * b + c; #endif } // Multiply and subtract static inline Vec4d mul_sub(Vec4d const & a, Vec4d const & b, Vec4d const & c) { #ifdef __FMA__ return _mm256_fmsub_pd(a, b, c); #elif defined (__FMA4__) return _mm256_msub_pd(a, b, c); #else return a * b - c; #endif } // Multiply and inverse subtract static inline Vec4d nmul_add(Vec4d const & a, Vec4d const & b, Vec4d const & c) { #ifdef __FMA__ return _mm256_fnmadd_pd(a, b, c); #elif defined (__FMA4__) return _mm256_nmacc_pd(a, b, c); #else return c - a * b; #endif } // Multiply and subtract with extra precision on the intermediate calculations, // even if FMA instructions not supported, using Veltkamp-Dekker split static inline Vec4d mul_sub_x(Vec4d const & a, Vec4d const & b, Vec4d const & c) { #ifdef __FMA__ return _mm256_fmsub_pd(a, b, c); #elif defined (__FMA4__) return _mm256_msub_pd(a, b, c); #else // calculate a * b - c with extra precision // mask to remove lower 27 bits Vec4d upper_mask = _mm256_castps_pd(constant8f<(int)0xF8000000,-1,(int)0xF8000000,-1,(int)0xF8000000,-1,(int)0xF8000000,-1>()); Vec4d a_high = a & upper_mask; // split into high and low parts Vec4d b_high = b & upper_mask; Vec4d a_low = a - a_high; Vec4d b_low = b - b_high; Vec4d r1 = a_high * b_high; // this product is exact Vec4d r2 = r1 - c; // subtract c from high product Vec4d r3 = r2 + (a_high * b_low + b_high * a_low) + a_low * b_low; // add rest of product return r3; // + ((r2 - r1) + c); #endif } // Math functions using fast bit manipulation #ifdef VECTORI256_H // 256 bit integer vectors are available // Extract the exponent as an integer // exponent(a) = floor(log2(abs(a))); // exponent(1.0) = 0, exponent(0.0) = -1023, exponent(INF) = +1024, exponent(NAN) = +1024 static inline Vec4q exponent(Vec4d const & a) { #if VECTORI256_H > 1 // AVX2 Vec4uq t1 = _mm256_castpd_si256(a);// reinterpret as 64-bit integer Vec4uq t2 = t1 << 1; // shift out sign bit Vec4uq t3 = t2 >> 53; // shift down logical to position 0 Vec4q t4 = Vec4q(t3) - 0x3FF; // subtract bias from exponent return t4; #else return Vec4q(exponent(a.get_low()), exponent(a.get_high())); #endif } // Extract the fraction part of a floating point number // a = 2^exponent(a) * fraction(a), except for a = 0 // fraction(1.0) = 1.0, fraction(5.0) = 1.25 static inline Vec4d fraction(Vec4d const & a) { #if VECTORI256_H > 1 // AVX2 Vec4uq t1 = _mm256_castpd_si256(a); // reinterpret as 64-bit integer Vec4uq t2 = Vec4uq((t1 & 0x000FFFFFFFFFFFFF) | 0x3FF0000000000000); // set exponent to 0 + bias return _mm256_castsi256_pd(t2); #else return Vec4d(fraction(a.get_low()), fraction(a.get_high())); #endif } // Fast calculation of pow(2,n) with n integer // n = 0 gives 1.0 // n >= 1024 gives +INF // n <= -1023 gives 0.0 // This function will never produce denormals, and never raise exceptions static inline Vec4d exp2(Vec4q const & n) { #if VECTORI256_H > 1 // AVX2 Vec4q t1 = max(n, -0x3FF); // limit to allowed range Vec4q t2 = min(t1, 0x400); Vec4q t3 = t2 + 0x3FF; // add bias Vec4q t4 = t3 << 52; // put exponent into position 52 return _mm256_castsi256_pd(t4); // reinterpret as double #else return Vec4d(exp2(n.get_low()), exp2(n.get_high())); #endif } //static inline Vec4d exp2(Vec4d const & x); // defined in vectormath_exp.h #endif // Categorization functions // Function sign_bit: gives true for elements that have the sign bit set // even for -0.0, -INF and -NAN // Note that sign_bit(Vec4d(-0.0)) gives true, while Vec4d(-0.0) < Vec4d(0.0) gives false static inline Vec4db sign_bit(Vec4d const & a) { #if defined (VECTORI256_H) && VECTORI256_H > 1 // 256 bit integer vectors are available, AVX2 Vec4q t1 = _mm256_castpd_si256(a); // reinterpret as 64-bit integer Vec4q t2 = t1 >> 63; // extend sign bit return _mm256_castsi256_pd(t2); // reinterpret as 64-bit Boolean #else return Vec4db(sign_bit(a.get_low()),sign_bit(a.get_high())); #endif } // Function sign_combine: changes the sign of a when b has the sign bit set // same as select(sign_bit(b), -a, a) static inline Vec4d sign_combine(Vec4d const & a, Vec4d const & b) { Vec4d signmask = _mm256_castps_pd(constant8f<0,(int)0x80000000,0,(int)0x80000000,0,(int)0x80000000,0,(int)0x80000000>()); // -0.0 return a ^ (b & signmask); } // Function is_finite: gives true for elements that are normal, denormal or zero, // false for INF and NAN static inline Vec4db is_finite(Vec4d const & a) { #if defined (VECTORI256_H) && VECTORI256_H > 1 // 256 bit integer vectors are available, AVX2 Vec4q t1 = _mm256_castpd_si256(a); // reinterpret as 64-bit integer Vec4q t2 = t1 << 1; // shift out sign bit Vec4q t3 = 0xFFE0000000000000; // exponent mask Vec4qb t4 = Vec4q(t2 & t3) != t3; // exponent field is not all 1s return t4; #else return Vec4db(is_finite(a.get_low()),is_finite(a.get_high())); #endif } // Function is_inf: gives true for elements that are +INF or -INF // false for finite numbers and NAN static inline Vec4db is_inf(Vec4d const & a) { #if defined (VECTORI256_H) && VECTORI256_H > 1 // 256 bit integer vectors are available, AVX2 Vec4q t1 = _mm256_castpd_si256(a); // reinterpret as 64-bit integer Vec4q t2 = t1 << 1; // shift out sign bit return t2 == 0xFFE0000000000000; // exponent is all 1s, fraction is 0 #else return Vec4db(is_inf(a.get_low()),is_inf(a.get_high())); #endif } // Function is_nan: gives true for elements that are +NAN or -NAN // false for finite numbers and +/-INF static inline Vec4db is_nan(Vec4d const & a) { #if defined (VECTORI256_H) && VECTORI256_H > 1 // 256 bit integer vectors are available, AVX2 Vec4q t1 = _mm256_castpd_si256(a); // reinterpret as 64-bit integer Vec4q t2 = t1 << 1; // shift out sign bit Vec4q t3 = 0xFFE0000000000000; // exponent mask Vec4q t4 = t2 & t3; // exponent Vec4q t5 = _mm256_andnot_si256(t3,t2);// fraction return Vec4qb(t4 == t3 && t5 != 0);// exponent = all 1s and fraction != 0 #else return Vec4db(is_nan(a.get_low()),is_nan(a.get_high())); #endif } // Function is_subnormal: gives true for elements that are denormal (subnormal) // false for finite numbers, zero, NAN and INF static inline Vec4db is_subnormal(Vec4d const & a) { #if defined (VECTORI256_H) && VECTORI256_H > 1 // 256 bit integer vectors are available, AVX2 Vec4q t1 = _mm256_castpd_si256(a); // reinterpret as 64-bit integer Vec4q t2 = t1 << 1; // shift out sign bit Vec4q t3 = 0xFFE0000000000000; // exponent mask Vec4q t4 = t2 & t3; // exponent Vec4q t5 = _mm256_andnot_si256(t3,t2);// fraction return Vec4qb(t4 == 0 && t5 != 0); // exponent = 0 and fraction != 0 #else return Vec4db(is_subnormal(a.get_low()),is_subnormal(a.get_high())); #endif } // Function is_zero_or_subnormal: gives true for elements that are zero or subnormal (denormal) // false for finite numbers, NAN and INF static inline Vec4db is_zero_or_subnormal(Vec4d const & a) { #if defined (VECTORI256_H) && VECTORI256_H > 1 // 256 bit integer vectors are available, AVX2 Vec4q t = _mm256_castpd_si256(a); // reinterpret as 32-bit integer t &= 0x7FF0000000000000ll; // isolate exponent return t == 0; // exponent = 0 #else return Vec4db(is_zero_or_subnormal(a.get_low()),is_zero_or_subnormal(a.get_high())); #endif } // Function infinite2d: returns a vector where all elements are +INF static inline Vec4d infinite4d() { return _mm256_castps_pd(constant8f<0,0x7FF00000,0,0x7FF00000,0,0x7FF00000,0,0x7FF00000>()); } // Function nan4d: returns a vector where all elements are +NAN (quiet) static inline Vec4d nan4d(int n = 0x10) { #if defined (VECTORI256_H) && VECTORI256_H > 1 // 256 bit integer vectors are available, AVX2 return _mm256_castsi256_pd(Vec4q(0x7FF8000000000000 + n)); #else return Vec4d(nan2d(n),nan2d(n)); #endif } // change signs on vectors Vec4d // Each index i0 - i3 is 1 for changing sign on the corresponding element, 0 for no change template static inline Vec4d change_sign(Vec4d const & a) { if ((i0 | i1 | i2 | i3) == 0) return a; __m256 mask = constant8f<0, i0 ? 0x80000000 : 0, 0, i1 ? 0x80000000 : 0, 0, i2 ? 0x80000000 : 0, 0, i3 ? 0x80000000 : 0> (); return _mm256_xor_pd(a, _mm256_castps_pd(mask)); } /***************************************************************************** * * Functions for reinterpretation between vector types * *****************************************************************************/ #if defined (VECTORI256_H) && VECTORI256_H >= 2 // AVX2 vectors defined // ABI version 4 or later needed on Gcc for correct mangling of 256-bit intrinsic vectors. // It is recommended to compile with -fabi-version=0 to get the latest abi version #if !defined (GCC_VERSION) || (defined (__GXX_ABI_VERSION) && __GXX_ABI_VERSION >= 1004) static inline __m256i reinterpret_i (__m256i const & x) { return x; } static inline __m256i reinterpret_i (__m256 const & x) { return _mm256_castps_si256(x); } static inline __m256i reinterpret_i (__m256d const & x) { return _mm256_castpd_si256(x); } static inline __m256 reinterpret_f (__m256i const & x) { return _mm256_castsi256_ps(x); } static inline __m256 reinterpret_f (__m256 const & x) { return x; } static inline __m256 reinterpret_f (__m256d const & x) { return _mm256_castpd_ps(x); } static inline __m256d reinterpret_d (__m256i const & x) { return _mm256_castsi256_pd(x); } static inline __m256d reinterpret_d (__m256 const & x) { return _mm256_castps_pd(x); } static inline __m256d reinterpret_d (__m256d const & x) { return x; } #else // __GXX_ABI_VERSION < 1004 static inline __m256i reinterpret_i (Vec32c const & x) { return x; } static inline __m256i reinterpret_i (Vec16s const & x) { return x; } static inline __m256i reinterpret_i (Vec8i const & x) { return x; } static inline __m256i reinterpret_i (Vec4q const & x) { return x; } static inline __m256i reinterpret_i (Vec8f const & x) { return _mm256_castps_si256(x); } static inline __m256i reinterpret_i (Vec4d const & x) { return _mm256_castpd_si256(x); } static inline __m256 reinterpret_f (Vec32c const & x) { return _mm256_castsi256_ps(x); } static inline __m256 reinterpret_f (Vec16s const & x) { return _mm256_castsi256_ps(x); } static inline __m256 reinterpret_f (Vec8i const & x) { return _mm256_castsi256_ps(x); } static inline __m256 reinterpret_f (Vec4q const & x) { return _mm256_castsi256_ps(x); } static inline __m256 reinterpret_f (Vec8f const & x) { return x; } static inline __m256 reinterpret_f (Vec4d const & x) { return _mm256_castpd_ps(x); } static inline __m256d reinterpret_d (Vec32c const & x) { return _mm256_castsi256_pd(x); } static inline __m256d reinterpret_d (Vec16s const & x) { return _mm256_castsi256_pd(x); } static inline __m256d reinterpret_d (Vec8i const & x) { return _mm256_castsi256_pd(x); } static inline __m256d reinterpret_d (Vec4q const & x) { return _mm256_castsi256_pd(x); } static inline __m256d reinterpret_d (Vec8f const & x) { return _mm256_castps_pd(x); } static inline __m256d reinterpret_d (Vec4d const & x) { return x; } #endif // __GXX_ABI_VERSION #else // AVX2 emulated in vectori256e.h, AVX supported // ABI version 4 or later needed on Gcc for correct mangling of 256-bit intrinsic vectors. // It is recommended to compile with -fabi-version=0 to get the latest abi version #if !defined (GCC_VERSION) || (defined (__GXX_ABI_VERSION) && __GXX_ABI_VERSION >= 1004) static inline Vec256ie reinterpret_i (__m256 const & x) { Vec8f xx(x); return Vec256ie(reinterpret_i(xx.get_low()), reinterpret_i(xx.get_high())); } static inline Vec256ie reinterpret_i (__m256d const & x) { Vec4d xx(x); return Vec256ie(reinterpret_i(xx.get_low()), reinterpret_i(xx.get_high())); } static inline __m256 reinterpret_f (__m256 const & x) { return x; } static inline __m256 reinterpret_f (__m256d const & x) { return _mm256_castpd_ps(x); } static inline __m256d reinterpret_d (__m256 const & x) { return _mm256_castps_pd(x); } static inline __m256d reinterpret_d (__m256d const & x) { return x; } #else // __GXX_ABI_VERSION < 1004 static inline Vec256ie reinterpret_i (Vec8f const & x) { Vec8f xx(x); return Vec256ie(reinterpret_i(xx.get_low()), reinterpret_i(xx.get_high())); } static inline Vec256ie reinterpret_i (Vec4d const & x) { Vec4d xx(x); return Vec256ie(reinterpret_i(xx.get_low()), reinterpret_i(xx.get_high())); } static inline __m256 reinterpret_f (Vec8f const & x) { return x; } static inline __m256 reinterpret_f (Vec4d const & x) { return _mm256_castpd_ps(x); } static inline __m256d reinterpret_d (Vec8f const & x) { return _mm256_castps_pd(x); } static inline __m256d reinterpret_d (Vec4d const & x) { return x; } #endif // __GXX_ABI_VERSION static inline Vec256ie reinterpret_i (Vec256ie const & x) { return x; } static inline __m256 reinterpret_f (Vec256ie const & x) { return Vec8f(Vec4f(reinterpret_f(x.get_low())), Vec4f(reinterpret_f(x.get_high()))); } static inline __m256d reinterpret_d (Vec256ie const & x) { return Vec4d(Vec2d(reinterpret_d(x.get_low())), Vec2d(reinterpret_d(x.get_high()))); } #endif // VECTORI256_H /***************************************************************************** * * Vector permute and blend functions * ****************************************************************************** * * The permute function can reorder the elements of a vector and optionally * set some elements to zero. * * The indexes are inserted as template parameters in <>. These indexes must be * constants. Each template parameter is an index to the element you want to * select. An index of -1 will generate zero. An index of -256 means don't care. * * Example: * Vec4d a(10., 11., 12., 13.); // a is (10, 11, 12, 13) * Vec4d b; * b = permute4d<1,0,-1,3>(a); // b is (11, 10, 0, 13) * * * The blend function can mix elements from two different vectors and * optionally set some elements to zero. * * The indexes are inserted as template parameters in <>. These indexes must be * constants. Each template parameter is an index to the element you want to * select, where indexes 0 - 3 indicate an element from the first source * vector and indexes 4 - 7 indicate an element from the second source vector. * A negative index will generate zero. * * * Example: * Vec4d a(10., 11., 12., 13.); // a is (10, 11, 12, 13) * Vec4d b(20., 21., 22., 23.); // a is (20, 21, 22, 23) * Vec4d c; * c = blend4d<4,3,7,-1> (a,b); // c is (20, 13, 23, 0) * * A lot of the code here is metaprogramming aiming to find the instructions * that best fit the template parameters and instruction set. The metacode * will be reduced out to leave only a few vector instructions in release * mode with optimization on. *****************************************************************************/ // permute vector Vec4d template static inline Vec4d permute4d(Vec4d const & a) { const int ior = i0 | i1 | i2 | i3; // OR indexes // is zeroing needed const bool do_zero = ior < 0 && (ior & 0x80); // at least one index is negative, and not -0x100 // is shuffling needed const bool do_shuffle = (i0>0) || (i1!=1 && i1>=0) || (i2!=2 && i2>=0) || (i3!=3 && i3>=0); if (!do_shuffle) { // no shuffling needed if (do_zero) { // zeroing if ((i0 & i1 & i2 & i3) < 0) { return _mm256_setzero_pd(); // zero everything } // zero some elements __m256d const mask = _mm256_castps_pd ( constant8f< -int(i0>=0), -int(i0>=0), -int(i1>=0), -int(i1>=0), -int(i2>=0), -int(i2>=0), -int(i3>=0), -int(i3>=0) > ()); return _mm256_and_pd(a, mask); // zero with AND mask } else { return a; // do nothing } } #if INSTRSET >= 8 // AVX2: use VPERMPD __m256d x = _mm256_permute4x64_pd(a, (i0&3) | (i1&3)<<2 | (i2&3)<<4 | (i3&3)<<6); if (do_zero) { // zeroing // zero some elements __m256d const mask2 = _mm256_castps_pd ( constant8f< -int(i0>=0), -int(i0>=0), -int(i1>=0), -int(i1>=0), -int(i2>=0), -int(i2>=0), -int(i3>=0), -int(i3>=0) > ()); x = _mm256_and_pd(x, mask2); // zero with AND mask } return x; #else // AVX // Needed contents of low/high part of each source register in VSHUFPD // 0: a.low, 1: a.high, 3: zero const int s1 = (i0 < 0 ? 3 : (i0 & 2) >> 1) | (i2 < 0 ? 0x30 : (i2 & 2) << 3); const int s2 = (i1 < 0 ? 3 : (i1 & 2) >> 1) | (i3 < 0 ? 0x30 : (i3 & 2) << 3); // permute mask const int sm = (i0 < 0 ? 0 : (i0 & 1)) | (i1 < 0 ? 1 : (i1 & 1)) << 1 | (i2 < 0 ? 0 : (i2 & 1)) << 2 | (i3 < 0 ? 1 : (i3 & 1)) << 3; if (s1 == 0x01 || s1 == 0x11 || s2 == 0x01 || s2 == 0x11) { // too expensive to use 256 bit permute, split into two 128 bit permutes Vec2d alo = a.get_low(); Vec2d ahi = a.get_high(); Vec2d rlo = blend2d (alo, ahi); Vec2d rhi = blend2d (alo, ahi); return Vec4d(rlo, rhi); } // make operands for VSHUFPD __m256d r1, r2; switch (s1) { case 0x00: // LL r1 = _mm256_insertf128_pd(a,_mm256_castpd256_pd128(a),1); break; case 0x03: // LZ r1 = _mm256_insertf128_pd(do_zero ? _mm256_setzero_pd() : __m256d(a), _mm256_castpd256_pd128(a), 1); break; case 0x10: // LH r1 = a; break; case 0x13: // ZH r1 = do_zero ? _mm256_and_pd(a, _mm256_castps_pd(constant8f<0,0,0,0,-1,-1,-1,-1>())) : __m256d(a); break; case 0x30: // LZ if (do_zero) { __m128d t = _mm256_castpd256_pd128(a); t = _mm_and_pd(t,t); r1 = _mm256_castpd128_pd256(t); } else r1 = a; break; case 0x31: // HZ r1 = _mm256_castpd128_pd256(_mm256_extractf128_pd(a,1)); break; case 0x33: // ZZ r1 = do_zero ? _mm256_setzero_pd() : __m256d(a); break; } if (s2 == s1) { if (sm == 0x0A) return r1; r2 = r1; } else { switch (s2) { case 0x00: // LL r2 = _mm256_insertf128_pd(a,_mm256_castpd256_pd128(a),1); break; case 0x03: // ZL r2 = _mm256_insertf128_pd(do_zero ? _mm256_setzero_pd() : __m256d(a), _mm256_castpd256_pd128(a), 1); break; case 0x10: // LH r2 = a; break; case 0x13: // ZH r2 = do_zero ? _mm256_and_pd(a,_mm256_castps_pd(constant8f<0,0,0,0,-1,-1,-1,-1>())) : __m256d(a); break; case 0x30: // LZ if (do_zero) { __m128d t = _mm256_castpd256_pd128(a); t = _mm_and_pd(t,t); r2 = _mm256_castpd128_pd256(t); } else r2 = a; break; case 0x31: // HZ r2 = _mm256_castpd128_pd256(_mm256_extractf128_pd(a,1)); break; case 0x33: // ZZ r2 = do_zero ? _mm256_setzero_pd() : __m256d(a); break; } } return _mm256_shuffle_pd(r1, r2, sm); #endif // INSTRSET >= 8 } // blend vectors Vec4d template static inline Vec4d blend4d(Vec4d const & a, Vec4d const & b) { // Combine all the indexes into a single bitfield, with 8 bits for each const int m1 = (i0 & 7) | (i1 & 7) << 8 | (i2 & 7) << 16 | (i3 & 7) << 24; // Mask to zero out negative indexes const uint32_t mz = (i0 < 0 ? 0 : 0xFF) | (i1 < 0 ? 0 : 0xFF) << 8 | (i2 < 0 ? 0 : 0xFF) << 16 | (i3 < 0 ? 0 : 0xFF) << 24; if (mz == 0) return _mm256_setzero_pd(); // all zero __m256d t1; if ((((m1 & 0xFEFEFEFE) ^ 0x06020400) & mz) == 0) { // fits VSHUFPD(a,b) t1 = _mm256_shuffle_pd(a, b, (i0 & 1) | (i1 & 1) << 1 | (i2 & 1) << 2 | (i3 & 1) << 3); if (mz == 0xFFFFFFFF) return t1; return permute4d (t1); } if ((((m1 & 0xFEFEFEFE) ^0x02060004) & mz) == 0) { // fits VSHUFPD(b,a) t1 = _mm256_shuffle_pd(b, a, (i0 & 1) | (i1 & 1) << 1 | (i2 & 1) << 2 | (i3 & 1) << 3); if (mz == 0xFFFFFFFF) return t1; return permute4d (t1); } if ((((m1 & 0x03030303) ^ 0x03020100) & mz) == 0) { // blend and zero, no permute if ((m1 & 0x04040404 & mz) == 0) { t1 = a; } else if (((m1 ^ 0x04040404) & 0x04040404 & mz) == 0) { t1 = b; } else { t1 = _mm256_blend_pd(a, b, (i0&4)>>2 | (i1&4)>>1 | (i2&4) | (i3&4) << 1); } if (mz == 0xFFFFFFFF) return t1; return permute4d (t1); } if ((m1 & 0x04040404 & mz) == 0) { // all from a return permute4d (a); } if (((m1 ^ 0x04040404) & 0x04040404 & mz) == 0) { // all from b return permute4d (b); } // check if we can do 128-bit blend/permute if (((m1 ^ 0x01000100) & 0x01010101 & mz) == 0) { const uint32_t j0 = uint32_t((i0 >= 0 ? i0 : i1 >= 0 ? i1 : -1) >> 1); const uint32_t j1 = uint32_t((i2 >= 0 ? i2 : i3 >= 0 ? i3 : -1) >> 1); if (((m1 ^ ((j0 & 3) * 0x00000202 | (j1 & 3) * 0x02020000)) & 0x06060606 & mz) == 0) { t1 = _mm256_permute2f128_pd(a, b, (j0 & 0x0F) | (j1 & 0x0F) << 4); const bool partialzero = (((i0 | i1) ^ j0) & 0x80) != 0 || (((i2 | i3) ^ j1) & 0x80) != 0; if (partialzero) { // zero some elements __m256d mask = _mm256_castps_pd (constant8f < i0 < 0 ? 0 : -1, i0 < 0 ? 0 : -1, i1 < 0 ? 0 : -1, i1 < 0 ? 0 : -1, i2 < 0 ? 0 : -1, i2 < 0 ? 0 : -1, i3 < 0 ? 0 : -1, i3 < 0 ? 0 : -1 > ()); return _mm256_and_pd(t1, mask); } else return t1; } } // general case. combine two permutes Vec4d a1 = permute4d < (uint32_t)i0 < 4 ? i0 : -0x100, (uint32_t)i1 < 4 ? i1 : -0x100, (uint32_t)i2 < 4 ? i2 : -0x100, (uint32_t)i3 < 4 ? i3 : -0x100 > (a); Vec4d b1 = permute4d < (uint32_t)(i0^4) < 4 ? (i0^4) : -0x100, (uint32_t)(i1^4) < 4 ? (i1^4) : -0x100, (uint32_t)(i2^4) < 4 ? (i2^4) : -0x100, (uint32_t)(i3^4) < 4 ? (i3^4) : -0x100 > (b); t1 = _mm256_blend_pd(a1, b1, (i0&4)>>2 | (i1&4)>>1 | (i2&4) | (i3&4) << 1); if (mz == 0xFFFFFFFF) return t1; return permute4d (t1); } /***************************************************************************** * * Vector Vec8f permute and blend functions * *****************************************************************************/ // permute vector Vec8f template static inline Vec8f permute8f(Vec8f const & a) { __m256 t1, mask; const int ior = i0 | i1 | i2 | i3 | i4 | i5 | i6 | i7; // OR indexes // is zeroing needed const bool do_zero = ior < 0 && (ior & 0x80); // at least one index is negative, and not -0x100 // is shuffling needed const bool do_shuffle = (i0>0) || (i1!=1 && i1>=0) || (i2!=2 && i2>=0) || (i3!=3 && i3>=0) || (i4!=4 && i4>=0) || (i5!=5 && i5>=0) || (i6!=6 && i6>=0) || (i7!=7 && i7>=0); if (!do_shuffle) { // no shuffling needed if (do_zero) { // zeroing if ((i0 & i1 & i2 & i3 & i4 & i5 & i6 & i7) < 0) { return _mm256_setzero_ps(); // zero everything } // zero some elements mask = constant8f< -int(i0>=0), -int(i1>=0), -int(i2>=0), -int(i3>=0), -int(i4>=0), -int(i5>=0), -int(i6>=0), -int(i7>=0) > (); return _mm256_and_ps(a, mask); // zero with AND mask } else { return a; // do nothing } } #if INSTRSET >= 8 // AVX2: use VPERMPS if (do_shuffle) { // shuffling mask = constant8f< i0 & 7, i1 & 7, i2 & 7, i3 & 7, i4 & 7, i5 & 7, i6 & 7, i7 & 7 > (); #if defined (_MSC_VER) && _MSC_VER < 1700 && ! defined(__INTEL_COMPILER) // bug in MS VS 11 beta: operands in wrong order. fixed in 11.0 t1 = _mm256_permutevar8x32_ps(mask, _mm256_castps_si256(a)); // problem in immintrin.h #elif defined (GCC_VERSION) && GCC_VERSION <= 40700 && !defined(__INTEL_COMPILER) && !defined(__clang__) // Gcc 4.7.0 has wrong parameter type and operands in wrong order. fixed in version 4.7.1 t1 = _mm256_permutevar8x32_ps(mask, a); #else // no bug version t1 = _mm256_permutevar8x32_ps(a, _mm256_castps_si256(mask)); #endif } else { t1 = a; // no shuffling } if (do_zero) { // zeroing if ((i0 & i1 & i2 & i3 & i4 & i5 & i6 & i7) < 0) { return _mm256_setzero_ps(); // zero everything } // zero some elements mask = constant8f< -int(i0>=0), -int(i1>=0), -int(i2>=0), -int(i3>=0), -int(i4>=0), -int(i5>=0), -int(i6>=0), -int(i7>=0) > (); t1 = _mm256_and_ps(t1, mask); // zero with AND mask } return t1; #else // AVX // Combine all the indexes into a single bitfield, with 4 bits for each const int m1 = (i0&7) | (i1&7)<<4 | (i2&7)<<8 | (i3&7)<<12 | (i4&7)<<16 | (i5&7)<<20 | (i6&7)<<24 | (i7&7)<<28; // Mask to zero out negative indexes const int m2 = (i0<0?0:0xF) | (i1<0?0:0xF)<<4 | (i2<0?0:0xF)<<8 | (i3<0?0:0xF)<<12 | (i4<0?0:0xF)<<16 | (i5<0?0:0xF)<<20 | (i6<0?0:0xF)<<24 | (i7<0?0:0xF)<<28; // Check if it is possible to use VSHUFPS. Index n must match index n+4 on bit 0-1, and even index n must match odd index n+1 on bit 2 const bool sps = ((m1 ^ (m1 >> 16)) & 0x3333 & m2 & (m2 >> 16)) == 0 && ((m1 ^ (m1 >> 4)) & 0x04040404 & m2 & m2 >> 4) == 0; if (sps) { // can use VSHUFPS // Index of each pair (i[n],i[n+1]) const int j0 = i0 >= 0 ? i0 : i1; const int j1 = i2 >= 0 ? i2 : i3; const int j2 = i4 >= 0 ? i4 : i5; const int j3 = i6 >= 0 ? i6 : i7; // Index of each pair (i[n],i[n+4]) const int k0 = i0 >= 0 ? i0 : i4; const int k1 = i1 >= 0 ? i1 : i5; const int k2 = i2 >= 0 ? i2 : i6; const int k3 = i3 >= 0 ? i3 : i7; // Needed contents of low/high part of each source register in VSHUFPS // 0: a.low, 1: a.high, 3: zero or don't care const int s1 = (j0 < 0 ? 3 : (j0 & 4) >> 2) | (j2 < 0 ? 0x30 : (j2 & 4) << 2); const int s2 = (j1 < 0 ? 3 : (j1 & 4) >> 2) | (j3 < 0 ? 0x30 : (j3 & 4) << 2); // calculate cost of using VSHUFPS const int cost1 = (s1 == 0x01 || s1 == 0x11) ? 2 : (s1 == 0x00 || s1 == 0x03 || s1 == 0x31) ? 1 : 0; const int cost2 = (s2 == s1) ? 0 : (s2 == 0x01 || s2 == 0x11) ? 2 : (s2 == 0x00 || (s2 == 0x03 && (s1 & 0xF0) != 0x00) || (s2 == 0x31 && (s1 & 0x0F) != 0x01)) ? 1 : 0; if (cost1 + cost2 <= 3) { // permute mask const int sm = (k0 < 0 ? 0 : (k0 & 3)) | (k1 < 0 ? 1 : (k1 & 3)) << 2 | (k2 < 0 ? 2 : (k2 & 3)) << 4 | (k3 < 0 ? 3 : (k3 & 3)) << 6; // make operands for VSHUFPS __m256 r1, r2; switch (s1) { case 0x00: // LL case 0x03: // ZL r1 = _mm256_insertf128_ps(a,_mm256_castps256_ps128(a),1); break; case 0x01: // HL r1 = _mm256_castps128_ps256(_mm256_extractf128_ps(a,1)); r1 = _mm256_insertf128_ps(r1,_mm256_castps256_ps128(a),1); break; case 0x10: // LH case 0x13: // ZH case 0x30: // LZ case 0x33: // ZZ r1 = a; break; case 0x11: // HH r1 = _mm256_castps128_ps256(_mm256_extractf128_ps(a,1)); r1 = _mm256_insertf128_ps(r1,_mm256_castps256_ps128(r1),1); break; case 0x31: // HZ r1 = _mm256_castps128_ps256(_mm256_extractf128_ps(a,1)); break; } if (s2 == s1) { if (sm == 0xE4) return r1; r2 = r1; } else { switch (s2) { case 0x00: // LL r2 = _mm256_insertf128_ps(a,_mm256_castps256_ps128(a),1); break; case 0x03: // ZL if ((s1 & 0xF0) == 0x00) r2 = r1; else { r2 = _mm256_insertf128_ps(a,_mm256_castps256_ps128(a),1); } break; case 0x01: // HL r2 = _mm256_castps128_ps256(_mm256_extractf128_ps(a,1)); r2 = _mm256_insertf128_ps(r1,_mm256_castps256_ps128(a),1); break; case 0x10: // LH case 0x13: // ZH case 0x30: // LZ case 0x33: // ZZ r2 = a; break; case 0x11: // HH r2 = _mm256_castps128_ps256(_mm256_extractf128_ps(a,1)); r2 = _mm256_insertf128_ps(r2,_mm256_castps256_ps128(r2),1); break; case 0x31: // HZ if ((s1 & 0x0F) == 0x01) r2 = r1; else { r2 = _mm256_castps128_ps256(_mm256_extractf128_ps(a,1)); } break; } } // now the permute instruction t1 = _mm256_shuffle_ps(r1, r2, sm); if (do_zero) { // zero some elements mask = constant8f< -int(i0>=0), -int(i1>=0), -int(i2>=0), -int(i3>=0), -int(i4>=0), -int(i5>=0), -int(i6>=0), -int(i7>=0) > (); t1 = _mm256_and_ps(t1, mask); // zero with AND mask } return t1; } } // not using VSHUFPS. Split into low and high part Vec4f alo = a.get_low(); Vec4f ahi = a.get_high(); Vec4f rlo = blend4f (alo, ahi); Vec4f rhi = blend4f (alo, ahi); return Vec8f(rlo, rhi); #endif } // blend vectors Vec8f template static inline Vec8f blend8f(Vec8f const & a, Vec8f const & b) { const int ior = i0 | i1 | i2 | i3 | i4 | i5 | i6 | i7; // OR indexes // is zeroing needed const bool do_zero = ior < 0 && (ior & 0x80); // at least one index is negative, and not -0x100 // Combine all the indexes into a single bitfield, with 4 bits for each const int m1 = (i0&0xF) | (i1&0xF)<<4 | (i2&0xF)<<8 | (i3&0xF)<<12 | (i4&0xF)<<16 | (i5&0xF)<<20 | (i6&0xF)<<24 | (i7&0xF)<<28; // Mask to zero out negative indexes const int mz = (i0<0?0:0xF) | (i1<0?0:0xF)<<4 | (i2<0?0:0xF)<<8 | (i3<0?0:0xF)<<12 | (i4<0?0:0xF)<<16 | (i5<0?0:0xF)<<20 | (i6<0?0:0xF)<<24 | (i7<0?0:0xF)<<28; __m256 t1, mask; if (mz == 0) return _mm256_setzero_ps(); // all zero if ((m1 & 0x88888888 & mz) == 0) { // all from a return permute8f (a); } if (((m1 ^ 0x88888888) & 0x88888888 & mz) == 0) { // all from b return permute8f (b); } if ((((m1 & 0x77777777) ^ 0x76543210) & mz) == 0) { // blend and zero, no permute mask = constant8f<(i0&8)?0:-1, (i1&8)?0:-1, (i2&8)?0:-1, (i3&8)?0:-1, (i4&8)?0:-1, (i5&8)?0:-1, (i6&8)?0:-1, (i7&8)?0:-1> (); t1 = select(mask, a, b); if (!do_zero) return t1; // zero some elements mask = constant8f< (i0<0&&(i0&8)) ? 0 : -1, (i1<0&&(i1&8)) ? 0 : -1, (i2<0&&(i2&8)) ? 0 : -1, (i3<0&&(i3&8)) ? 0 : -1, (i4<0&&(i4&8)) ? 0 : -1, (i5<0&&(i5&8)) ? 0 : -1, (i6<0&&(i6&8)) ? 0 : -1, (i7<0&&(i7&8)) ? 0 : -1 > (); return _mm256_and_ps(t1, mask); } // check if we can do 128-bit blend/permute if (((m1 ^ 0x32103210) & 0x33333333 & mz) == 0) { const uint32_t j0 = (i0 >= 0 ? i0 : i1 >= 0 ? i1 : i2 >= 0 ? i2 : i3 >= 0 ? i3 : -1) >> 2; const uint32_t j1 = (i4 >= 0 ? i4 : i5 >= 0 ? i5 : i6 >= 0 ? i6 : i7 >= 0 ? i7 : -1) >> 2; if (((m1 ^ ((j0 & 3) * 0x00004444 | (j1 & 3) * 0x44440000)) & 0xCCCCCCCC & mz) == 0) { t1 = _mm256_permute2f128_ps(a, b, (j0 & 0x0F) | (j1 & 0x0F) << 4); const bool partialzero = (((i0 | i1 | i2 | i3) ^ j0) & 0x80) != 0 || (((i4 | i5 | i6 | i7) ^ j1) & 0x80) != 0; if (partialzero) { // zero some elements mask = constant8f< i0 < 0 ? 0 : -1, i1 < 0 ? 0 : -1, i2 < 0 ? 0 : -1, i3 < 0 ? 0 : -1, i4 < 0 ? 0 : -1, i5 < 0 ? 0 : -1, i6 < 0 ? 0 : -1, i7 < 0 ? 0 : -1 > (); return _mm256_and_ps(t1, mask); } else return t1; } } // Not checking special cases for vunpckhps, vunpcklps: they are too rare // Check if it is possible to use VSHUFPS. // Index n must match index n+4 on bit 0-1, and even index n must match odd index n+1 on bit 2-3 const bool sps = ((m1 ^ (m1 >> 16)) & 0x3333 & mz & (mz >> 16)) == 0 && ((m1 ^ (m1 >> 4)) & 0x0C0C0C0C & mz & mz >> 4) == 0; if (sps) { // can use VSHUFPS // Index of each pair (i[n],i[n+1]) const int j0 = i0 >= 0 ? i0 : i1; const int j1 = i2 >= 0 ? i2 : i3; const int j2 = i4 >= 0 ? i4 : i5; const int j3 = i6 >= 0 ? i6 : i7; // Index of each pair (i[n],i[n+4]) const int k0 = i0 >= 0 ? i0 : i4; const int k1 = i1 >= 0 ? i1 : i5; const int k2 = i2 >= 0 ? i2 : i6; const int k3 = i3 >= 0 ? i3 : i7; // Needed contents of low/high part of each source register in VSHUFPS // 0: a.low, 1: a.high, 2: b.low, 3: b.high, 4: zero or don't care const int s1 = (j0 < 0 ? 4 : (j0 & 0xC) >> 2) | (j2 < 0 ? 0x30 : (j2 & 0xC) << 2); const int s2 = (j1 < 0 ? 3 : (j1 & 0xC) >> 2) | (j3 < 0 ? 0x30 : (j3 & 0xC) << 2); // permute mask const int sm = (k0 < 0 ? 0 : (k0 & 3)) | (k1 < 0 ? 1 : (k1 & 3)) << 2 | (k2 < 0 ? 2 : (k2 & 3)) << 4 | (k3 < 0 ? 3 : (k3 & 3)) << 6; __m256 r1, r2; __m128 ahi = _mm256_extractf128_ps(a,1); // 1 __m128 bhi = _mm256_extractf128_ps(b,1); // 3 switch (s1) { case 0x00: case 0x04: r1 = _mm256_insertf128_ps(a,_mm256_castps256_ps128(a),1); break; case 0x01: case 0x41: r1 = _mm256_insertf128_ps(_mm256_castps128_ps256(ahi),_mm256_castps256_ps128(a),1); break; case 0x02: r1 = _mm256_insertf128_ps(b,_mm256_castps256_ps128(a),1); break; case 0x03: r1 = _mm256_insertf128_ps(_mm256_castps128_ps256(bhi),_mm256_castps256_ps128(a),1); break; case 0x10: case 0x14: case 0x40: case 0x44: r1 = a; break; case 0x11: r1 = _mm256_insertf128_ps(_mm256_castps128_ps256(ahi),ahi,1); break; case 0x12: r1 = _mm256_insertf128_ps(b,ahi,1); break; case 0x13: r1 = _mm256_insertf128_ps(_mm256_castps128_ps256(bhi),ahi,1); break; case 0x20: r1 = _mm256_insertf128_ps(a,_mm256_castps256_ps128(b),1); break; case 0x21: r1 = _mm256_insertf128_ps(_mm256_castps128_ps256(ahi),_mm256_castps256_ps128(b),1); break; case 0x22: case 0x24: case 0x42: r1 = _mm256_insertf128_ps(b,_mm256_castps256_ps128(b),1); break; case 0x23: case 0x43: r1 = _mm256_insertf128_ps(_mm256_castps128_ps256(bhi),_mm256_castps256_ps128(b),1); break; case 0x30: r1 = _mm256_insertf128_ps(a,bhi,1); break; case 0x31: r1 = _mm256_insertf128_ps(_mm256_castps128_ps256(ahi),bhi,1); break; case 0x32: case 0x34: r1 = b; break; case 0x33: r1 = _mm256_insertf128_ps(_mm256_castps128_ps256(bhi),bhi,1); break; } if (s2 == s1 || ((s2 & 0x04) && ((s1 ^ s2) & 0xF0) == 0) || ((s2 & 0x40) && ((s1 ^ s2) & 0x0F) == 0)) { // can use r2 = r1 if (sm == 0xE4) return r1; // no shuffling needed r2 = r1; } else { switch (s2) { case 0x00: case 0x04: r2 = _mm256_insertf128_ps(a,_mm256_castps256_ps128(a),1); break; case 0x01: case 0x41: r2 = _mm256_insertf128_ps(_mm256_castps128_ps256(ahi),_mm256_castps256_ps128(a),1); break; case 0x02: r2 = _mm256_insertf128_ps(b,_mm256_castps256_ps128(a),1); break; case 0x03: r2 = _mm256_insertf128_ps(_mm256_castps128_ps256(bhi),_mm256_castps256_ps128(a),1); break; case 0x10: case 0x14: case 0x40: case 0x44: r2 = a; break; case 0x11: r2 = _mm256_insertf128_ps(_mm256_castps128_ps256(ahi),ahi,1); break; case 0x12: r2 = _mm256_insertf128_ps(b,ahi,1); break; case 0x13: r2 = _mm256_insertf128_ps(_mm256_castps128_ps256(bhi),ahi,1); break; case 0x20: r2 = _mm256_insertf128_ps(a,_mm256_castps256_ps128(b),1); break; case 0x21: r2 = _mm256_insertf128_ps(_mm256_castps128_ps256(ahi),_mm256_castps256_ps128(b),1); break; case 0x22: case 0x24: case 0x42: r2 = _mm256_insertf128_ps(b,_mm256_castps256_ps128(b),1); break; case 0x23: case 0x43: r2 = _mm256_insertf128_ps(_mm256_castps128_ps256(bhi),_mm256_castps256_ps128(b),1); break; case 0x30: r2 = _mm256_insertf128_ps(a,bhi,1); break; case 0x31: r2 = _mm256_insertf128_ps(_mm256_castps128_ps256(ahi),bhi,1); break; case 0x32: case 0x34: r2 = b; break; case 0x33: r2 = _mm256_insertf128_ps(_mm256_castps128_ps256(bhi),bhi,1); break; } } // now the shuffle instruction t1 = _mm256_shuffle_ps(r1, r2, sm); if (do_zero) { // zero some elements mask = constant8f< -int(i0>=0), -int(i1>=0), -int(i2>=0), -int(i3>=0), -int(i4>=0), -int(i5>=0), -int(i6>=0), -int(i7>=0) > (); t1 = _mm256_and_ps(t1, mask); // zero with AND mask } return t1; } // Check if we can use 64-bit blend. Even numbered indexes must be even and odd numbered // indexes must be equal to the preceding index + 1, except for negative indexes. if (((m1 ^ 0x10101010) & 0x11111111 & mz) == 0 && ((m1 ^ m1 >> 4) & 0x0E0E0E0E & mz & mz >> 4) == 0) { const bool partialzero = int((i0 ^ i1) | (i2 ^ i3) | (i4 ^ i5) | (i6 ^ i7)) < 0; // part of a 64-bit block is zeroed const int blank1 = partialzero ? -0x100 : -1; // ignore or zero const int n0 = i0 > 0 ? i0/2 : i1 > 0 ? i1/2 : blank1; // indexes for 64 bit blend const int n1 = i2 > 0 ? i2/2 : i3 > 0 ? i3/2 : blank1; const int n2 = i4 > 0 ? i4/2 : i5 > 0 ? i5/2 : blank1; const int n3 = i6 > 0 ? i6/2 : i7 > 0 ? i7/2 : blank1; t1 = _mm256_castpd_ps (blend4d (_mm256_castps_pd(a), _mm256_castps_pd(b))); if (blank1 == -1 || !do_zero) { return t1; } // need more zeroing mask = constant8f< -int(i0>=0), -int(i1>=0), -int(i2>=0), -int(i3>=0), -int(i4>=0), -int(i5>=0), -int(i6>=0), -int(i7>=0) > (); return _mm256_and_ps(t1, mask); // zero with AND mask } // general case: permute and blend and possible zero const int blank2 = do_zero ? -1 : -0x100; // ignore or zero Vec8f ta = permute8f < (uint32_t)i0 < 8 ? i0 : blank2, (uint32_t)i1 < 8 ? i1 : blank2, (uint32_t)i2 < 8 ? i2 : blank2, (uint32_t)i3 < 8 ? i3 : blank2, (uint32_t)i4 < 8 ? i4 : blank2, (uint32_t)i5 < 8 ? i5 : blank2, (uint32_t)i6 < 8 ? i6 : blank2, (uint32_t)i7 < 8 ? i7 : blank2 > (a); Vec8f tb = permute8f < (uint32_t)(i0^8) < 8 ? (i0^8) : blank2, (uint32_t)(i1^8) < 8 ? (i1^8) : blank2, (uint32_t)(i2^8) < 8 ? (i2^8) : blank2, (uint32_t)(i3^8) < 8 ? (i3^8) : blank2, (uint32_t)(i4^8) < 8 ? (i4^8) : blank2, (uint32_t)(i5^8) < 8 ? (i5^8) : blank2, (uint32_t)(i6^8) < 8 ? (i6^8) : blank2, (uint32_t)(i7^8) < 8 ? (i7^8) : blank2 > (b); if (blank2 == -1) { return _mm256_or_ps(ta, tb); } // no zeroing, need to blend const int maskb = ((i0 >> 3) & 1) | ((i1 >> 2) & 2) | ((i2 >> 1) & 4) | (i3 & 8) | ((i4 << 1) & 0x10) | ((i5 << 2) & 0x20) | ((i6 << 3) & 0x40) | ((i7 << 4) & 0x80); return _mm256_blend_ps(ta, tb, maskb); // blend } /***************************************************************************** * * Vector lookup functions * ****************************************************************************** * * These functions use vector elements as indexes into a table. * The table is given as one or more vectors or as an array. * * This can be used for several purposes: * - table lookup * - permute or blend with variable indexes * - blend from more than two sources * - gather non-contiguous data * * An index out of range may produce any value - the actual value produced is * implementation dependent and may be different for different instruction * sets. An index out of range does not produce an error message or exception. * * Example: * Vec4i a(2,0,0,3); // index a is ( 2, 0, 0, 3) * Vec4f b(1.0f,1.1f,1.2f,1.3f); // table b is (1.0, 1.1, 1.2, 1.3) * Vec4f c; * c = lookup4 (a,b); // result c is (1.2, 1.0, 1.0, 1.3) * *****************************************************************************/ #ifdef VECTORI256_H // Vec8i and Vec4q must be defined static inline Vec8f lookup8(Vec8i const & index, Vec8f const & table) { #if INSTRSET >= 8 && VECTORI256_H > 1 // AVX2 #if defined (_MSC_VER) && _MSC_VER < 1700 && ! defined(__INTEL_COMPILER) // bug in MS VS 11 beta: operands in wrong order. fixed in 11.0 return _mm256_permutevar8x32_ps(_mm256_castsi256_ps(index), _mm256_castps_si256(table)); #elif defined (GCC_VERSION) && GCC_VERSION <= 40700 && !defined(__INTEL_COMPILER) && !defined(__clang__) // Gcc 4.7.0 has wrong parameter type and operands in wrong order. fixed in version 4.7.1 return _mm256_permutevar8x32_ps(_mm256_castsi256_ps(index), table); #else // no bug version return _mm256_permutevar8x32_ps(table, index); #endif #else // AVX // swap low and high part of table __m256 t1 = _mm256_castps128_ps256(_mm256_extractf128_ps(table, 1)); __m256 t2 = _mm256_insertf128_ps(t1, _mm256_castps256_ps128(table), 1); // join index parts __m256i index2 = _mm256_insertf128_si256(_mm256_castsi128_si256(index.get_low()), index.get_high(), 1); // permute within each 128-bit part __m256 r0 = _mm256_permutevar_ps(table, index2); __m256 r1 = _mm256_permutevar_ps(t2, index2); // high index bit for blend __m128i k1 = _mm_slli_epi32(index.get_high() ^ 4, 29); __m128i k0 = _mm_slli_epi32(index.get_low(), 29); __m256 kk = _mm256_insertf128_ps(_mm256_castps128_ps256(_mm_castsi128_ps(k0)), _mm_castsi128_ps(k1), 1); // blend the two permutes return _mm256_blendv_ps(r0, r1, kk); #endif } template static inline Vec8f lookup(Vec8i const & index, float const * table) { if (n <= 0) return 0; if (n <= 4) { Vec4f table1 = Vec4f().load(table); return Vec8f( lookup4 (index.get_low(), table1), lookup4 (index.get_high(), table1)); } #if INSTRSET < 8 // not AVX2 if (n <= 8) { return lookup8(index, Vec8f().load(table)); } #endif // Limit index Vec8ui index1; if ((n & (n-1)) == 0) { // n is a power of 2, make index modulo n index1 = Vec8ui(index) & (n-1); } else { // n is not a power of 2, limit to n-1 index1 = min(Vec8ui(index), n-1); } #if INSTRSET >= 8 && VECTORI256_H > 1 // AVX2 return _mm256_i32gather_ps(table, index1, 4); #else // AVX return Vec8f(table[index1[0]],table[index1[1]],table[index1[2]],table[index1[3]], table[index1[4]],table[index1[5]],table[index1[6]],table[index1[7]]); #endif } static inline Vec4d lookup4(Vec4q const & index, Vec4d const & table) { #if INSTRSET >= 8 && VECTORI256_H > 1 // AVX2 // We can't use VPERMPD because it has constant indexes. // Convert the index to fit VPERMPS Vec8i index1 = permute8i<0,0,2,2,4,4,6,6> (Vec8i(index+index)); Vec8i index2 = index1 + Vec8i(constant8i<0,1,0,1,0,1,0,1>()); #if defined (_MSC_VER) && _MSC_VER < 1700 && ! defined(__INTEL_COMPILER) // bug in MS VS 11 beta: operands in wrong order. fixed in 11.0 return _mm256_castps_pd(_mm256_permutevar8x32_ps(_mm256_castsi256_ps(index2), _mm256_castpd_si256(table))); #elif defined (GCC_VERSION) && GCC_VERSION <= 40700 && !defined(__INTEL_COMPILER) && !defined(__clang__) // Gcc 4.7.0 has wrong parameter type and operands in wrong order return _mm256_castps_pd(_mm256_permutevar8x32_ps(_mm256_castsi256_ps(index2), _mm256_castpd_ps(table))); #else // no bug version return _mm256_castps_pd(_mm256_permutevar8x32_ps(_mm256_castpd_ps(table), index2)); #endif #else // AVX // swap low and high part of table __m256d t1 = _mm256_castpd128_pd256(_mm256_extractf128_pd(table, 1)); __m256d t2 = _mm256_insertf128_pd(t1, _mm256_castpd256_pd128(table), 1); // index << 1 __m128i index2lo = index.get_low() + index.get_low(); __m128i index2hi = index.get_high() + index.get_high(); // join index parts __m256i index3 = _mm256_insertf128_si256(_mm256_castsi128_si256(index2lo), index2hi, 1); // permute within each 128-bit part __m256d r0 = _mm256_permutevar_pd(table, index3); __m256d r1 = _mm256_permutevar_pd(t2, index3); // high index bit for blend __m128i k1 = _mm_slli_epi64(index.get_high() ^ 2, 62); __m128i k0 = _mm_slli_epi64(index.get_low(), 62); __m256d kk = _mm256_insertf128_pd(_mm256_castpd128_pd256(_mm_castsi128_pd(k0)), _mm_castsi128_pd(k1), 1); // blend the two permutes return _mm256_blendv_pd(r0, r1, kk); #endif } template static inline Vec4d lookup(Vec4q const & index, double const * table) { if (n <= 0) return 0; if (n <= 2) { Vec2d table1 = Vec2d().load(table); return Vec4d( lookup2 (index.get_low(), table1), lookup2 (index.get_high(), table1)); } #if INSTRSET < 8 // not AVX2 if (n <= 4) { return lookup4(index, Vec4d().load(table)); } #endif // Limit index Vec8ui index1; if ((n & (n-1)) == 0) { // n is a power of 2, make index modulo n index1 = Vec8ui(index) & constant8i(); } else { // n is not a power of 2, limit to n-1 index1 = min(Vec8ui(index), constant8i() ); } #if INSTRSET >= 8 && VECTORI256_H > 1 // AVX2 return _mm256_i64gather_pd(table, index1, 8); #else // AVX Vec4q index2 = Vec4q(index1); return Vec4d(table[index2[0]],table[index2[1]],table[index2[2]],table[index2[3]]); #endif } #endif // VECTORI256_H /***************************************************************************** * * Gather functions with fixed indexes * *****************************************************************************/ // Load elements from array a with indices i0, i1, i2, i3, .. template static inline Vec8f gather8f(void const * a) { return reinterpret_f(gather8i(a)); } // Load elements from array a with indices i0, i1, i2, i3 template static inline Vec4d gather4d(void const * a) { return reinterpret_d(gather4q(a)); } /***************************************************************************** * * Horizontal scan functions * *****************************************************************************/ // Get index to the first element that is true. Return -1 if all are false static inline int horizontal_find_first(Vec8fb const & x) { return horizontal_find_first(Vec8ib(x)); } static inline int horizontal_find_first(Vec4db const & x) { return horizontal_find_first(Vec4qb(x)); } // Count the number of elements that are true static inline uint32_t horizontal_count(Vec8fb const & x) { return horizontal_count(Vec8ib(x)); } static inline uint32_t horizontal_count(Vec4db const & x) { return horizontal_count(Vec4qb(x)); } /***************************************************************************** * * Boolean <-> bitfield conversion functions * *****************************************************************************/ // to_bits: convert boolean vector to integer bitfield static inline uint8_t to_bits(Vec8fb const & x) { return to_bits(Vec8ib(x)); } // to_Vec8fb: convert integer bitfield to boolean vector static inline Vec8fb to_Vec8fb(uint8_t x) { return Vec8fb(to_Vec8ib(x)); } // to_bits: convert boolean vector to integer bitfield static inline uint8_t to_bits(Vec4db const & x) { return to_bits(Vec4qb(x)); } // to_Vec4db: convert integer bitfield to boolean vector static inline Vec4db to_Vec4db(uint8_t x) { return Vec4db(to_Vec4qb(x)); } #endif // VECTORF256_H