#pragma once #include #include #include #include #include #include #include namespace llvm { class LLVMContext; class Value; class IRBuilderBase; } namespace DB { namespace ErrorCodes { extern const int ILLEGAL_TYPE_OF_ARGUMENT; extern const int NOT_IMPLEMENTED; extern const int LOGICAL_ERROR; } /// The simplest executable object. /// Motivation: /// * Prepare something heavy once before main execution loop instead of doing it for each block. /// * Provide const interface for IFunctionBase (later). class IPreparedFunction { public: virtual ~IPreparedFunction() = default; /// Get the main function name. virtual String getName() const = 0; virtual void execute(Block & block, const ColumnNumbers & arguments, size_t result, size_t input_rows_count, bool dry_run) = 0; }; using PreparedFunctionPtr = std::shared_ptr; /// Cache for functions result if it was executed on low cardinality column. class PreparedFunctionLowCardinalityResultCache; using PreparedFunctionLowCardinalityResultCachePtr = std::shared_ptr; class PreparedFunctionImpl : public IPreparedFunction { public: void execute(Block & block, const ColumnNumbers & arguments, size_t result, size_t input_rows_count, bool dry_run = false) final; /// Create cache which will be used to store result of function executed on LowCardinality column. /// Only for default LowCardinality implementation. /// Cannot be called concurrently for the same object. void createLowCardinalityResultCache(size_t cache_size); protected: virtual void executeImpl(Block & block, const ColumnNumbers & arguments, size_t result, size_t input_rows_count) = 0; virtual void executeImplDryRun(Block & block, const ColumnNumbers & arguments, size_t result, size_t input_rows_count) { executeImpl(block, arguments, result, input_rows_count); } /** Default implementation in presence of Nullable arguments or NULL constants as arguments is the following: * if some of arguments are NULL constants then return NULL constant, * if some of arguments are Nullable, then execute function as usual for block, * where Nullable columns are substituted with nested columns (they have arbitrary values in rows corresponding to NULL value) * and wrap result in Nullable column where NULLs are in all rows where any of arguments are NULL. */ virtual bool useDefaultImplementationForNulls() const { return true; } /** If the function have non-zero number of arguments, * and if all arguments are constant, that we could automatically provide default implementation: * arguments are converted to ordinary columns with single value, then function is executed as usual, * and then the result is converted to constant column. */ virtual bool useDefaultImplementationForConstants() const { return false; } /** If function arguments has single low cardinality column and all other arguments are constants, call function on nested column. * Otherwise, convert all low cardinality columns to ordinary columns. * Returns ColumnLowCardinality if at least one argument is ColumnLowCardinality. */ virtual bool useDefaultImplementationForLowCardinalityColumns() const { return true; } /** Some arguments could remain constant during this implementation. */ virtual ColumnNumbers getArgumentsThatAreAlwaysConstant() const { return {}; } /** True if function can be called on default arguments (include Nullable's) and won't throw. * Counterexample: modulo(0, 0) */ virtual bool canBeExecutedOnDefaultArguments() const { return true; } private: bool defaultImplementationForNulls(Block & block, const ColumnNumbers & args, size_t result, size_t input_rows_count, bool dry_run); bool defaultImplementationForConstantArguments(Block & block, const ColumnNumbers & args, size_t result, size_t input_rows_count, bool dry_run); void executeWithoutLowCardinalityColumns(Block & block, const ColumnNumbers & arguments, size_t result, size_t input_rows_count, bool dry_run); /// Cache is created by function createLowCardinalityResultCache() PreparedFunctionLowCardinalityResultCachePtr low_cardinality_result_cache; }; using ValuePlaceholders = std::vector>; /// Function with known arguments and return type. class IFunctionBase { public: virtual ~IFunctionBase() = default; /// Get the main function name. virtual String getName() const = 0; virtual const DataTypes & getArgumentTypes() const = 0; virtual const DataTypePtr & getReturnType() const = 0; /// Do preparations and return executable. /// sample_block should contain data types of arguments and values of constants, if relevant. virtual PreparedFunctionPtr prepare(const Block & sample_block, const ColumnNumbers & arguments, size_t result) const = 0; /// TODO: make const virtual void execute(Block & block, const ColumnNumbers & arguments, size_t result, size_t input_rows_count, bool dry_run = false) { return prepare(block, arguments, result)->execute(block, arguments, result, input_rows_count, dry_run); } #if USE_EMBEDDED_COMPILER virtual bool isCompilable() const { return false; } /** Produce LLVM IR code that operates on scalar values. See `toNativeType` in DataTypes/Native.h * for supported value types and how they map to LLVM types. * * NOTE: the builder is actually guaranteed to be exactly `llvm::IRBuilder<>`, so you may safely * downcast it to that type. This method is specified with `IRBuilderBase` because forward-declaring * templates with default arguments is impossible and including LLVM in such a generic header * as this one is a major pain. */ virtual llvm::Value * compile(llvm::IRBuilderBase & /*builder*/, ValuePlaceholders /*values*/) const { throw Exception(getName() + " is not JIT-compilable", ErrorCodes::NOT_IMPLEMENTED); } #endif /** Should we evaluate this function while constant folding, if arguments are constants? * Usually this is true. Notable counterexample is function 'sleep'. * If we will call it during query analysis, we will sleep extra amount of time. */ virtual bool isSuitableForConstantFolding() const { return true; } /** Function is called "injective" if it returns different result for different values of arguments. * Example: hex, negate, tuple... * * Function could be injective with some arguments fixed to some constant values. * Examples: * plus(const, x); * multiply(const, x) where x is an integer and constant is not divisible by two; * concat(x, 'const'); * concat(x, 'const', y) where const contain at least one non-numeric character; * concat with FixedString * dictGet... functions takes name of dictionary as its argument, * and some dictionaries could be explicitly defined as injective. * * It could be used, for example, to remove useless function applications from GROUP BY. * * Sometimes, function is not really injective, but considered as injective, for purpose of query optimization. * For example, toString function is not injective for Float64 data type, * as it returns 'nan' for many different representation of NaNs. * But we assume, that it is injective. This could be documented as implementation-specific behaviour. * * sample_block should contain data types of arguments and values of constants, if relevant. */ virtual bool isInjective(const Block & /*sample_block*/) { return false; } /** Function is called "deterministic", if it returns same result for same values of arguments. * Most of functions are deterministic. Notable counterexample is rand(). * Sometimes, functions are "deterministic" in scope of single query * (even for distributed query), but not deterministic it general. * Example: now(). Another example: functions that work with periodically updated dictionaries. */ virtual bool isDeterministic() const { return true; } virtual bool isDeterministicInScopeOfQuery() const { return true; } /** Lets you know if the function is monotonic in a range of values. * This is used to work with the index in a sorted chunk of data. * And allows to use the index not only when it is written, for example `date >= const`, but also, for example, `toMonth(date) >= 11`. * All this is considered only for functions of one argument. */ virtual bool hasInformationAboutMonotonicity() const { return false; } /// The property of monotonicity for a certain range. struct Monotonicity { bool is_monotonic = false; /// Is the function monotonous (nondecreasing or nonincreasing). bool is_positive = true; /// true if the function is nondecreasing, false, if notincreasing. If is_monotonic = false, then it does not matter. bool is_always_monotonic = false; /// Is true if function is monotonic on the whole input range I Monotonicity(bool is_monotonic_ = false, bool is_positive_ = true, bool is_always_monotonic_ = false) : is_monotonic(is_monotonic_), is_positive(is_positive_), is_always_monotonic(is_always_monotonic_) {} }; /** Get information about monotonicity on a range of values. Call only if hasInformationAboutMonotonicity. * NULL can be passed as one of the arguments. This means that the corresponding range is unlimited on the left or on the right. */ virtual Monotonicity getMonotonicityForRange(const IDataType & /*type*/, const Field & /*left*/, const Field & /*right*/) const { throw Exception("Function " + getName() + " has no information about its monotonicity.", ErrorCodes::NOT_IMPLEMENTED); } }; using FunctionBasePtr = std::shared_ptr; /// Creates IFunctionBase from argument types list. class IFunctionBuilder { public: virtual ~IFunctionBuilder() = default; /// Get the main function name. virtual String getName() const = 0; /// Override and return true if function could take different number of arguments. virtual bool isVariadic() const { return false; } /// For non-variadic functions, return number of arguments; otherwise return zero (that should be ignored). virtual size_t getNumberOfArguments() const = 0; /// Throw if number of arguments is incorrect. Default implementation will check only in non-variadic case. virtual void checkNumberOfArguments(size_t number_of_arguments) const = 0; /// Check arguments and return IFunctionBase. virtual FunctionBasePtr build(const ColumnsWithTypeAndName & arguments) const = 0; /// For higher-order functions (functions, that have lambda expression as at least one argument). /// You pass data types with empty DataTypeFunction for lambda arguments. /// This function will replace it with DataTypeFunction containing actual types. virtual void getLambdaArgumentTypes(DataTypes & arguments) const = 0; }; using FunctionBuilderPtr = std::shared_ptr; class FunctionBuilderImpl : public IFunctionBuilder { public: FunctionBasePtr build(const ColumnsWithTypeAndName & arguments) const final { return buildImpl(arguments, getReturnType(arguments)); } /// Default implementation. Will check only in non-variadic case. void checkNumberOfArguments(size_t number_of_arguments) const override; DataTypePtr getReturnType(const ColumnsWithTypeAndName & arguments) const; void getLambdaArgumentTypes(DataTypes & arguments) const override { checkNumberOfArguments(arguments.size()); getLambdaArgumentTypesImpl(arguments); } protected: /// Get the result type by argument type. If the function does not apply to these arguments, throw an exception. virtual DataTypePtr getReturnTypeImpl(const ColumnsWithTypeAndName & arguments) const { DataTypes data_types(arguments.size()); for (size_t i = 0; i < arguments.size(); ++i) data_types[i] = arguments[i].type; return getReturnTypeImpl(data_types); } virtual DataTypePtr getReturnTypeImpl(const DataTypes & /*arguments*/) const { throw Exception("getReturnType is not implemented for " + getName(), ErrorCodes::NOT_IMPLEMENTED); } /** If useDefaultImplementationForNulls() is true, than change arguments for getReturnType() and buildImpl(): * if some of arguments are Nullable(Nothing) then don't call getReturnType(), call buildImpl() with return_type = Nullable(Nothing), * if some of arguments are Nullable, then: * - Nullable types are substituted with nested types for getReturnType() function * - wrap getReturnType() result in Nullable type and pass to buildImpl * * Otherwise build returns buildImpl(arguments, getReturnType(arguments)); */ virtual bool useDefaultImplementationForNulls() const { return true; } /** If useDefaultImplementationForNulls() is true, than change arguments for getReturnType() and buildImpl(). * If function arguments has low cardinality types, convert them to ordinary types. * getReturnType returns ColumnLowCardinality if at least one argument type is ColumnLowCardinality. */ virtual bool useDefaultImplementationForLowCardinalityColumns() const { return true; } /// If it isn't, will convert all ColumnLowCardinality arguments to full columns. virtual bool canBeExecutedOnLowCardinalityDictionary() const { return true; } virtual FunctionBasePtr buildImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr & return_type) const = 0; virtual void getLambdaArgumentTypesImpl(DataTypes & /*arguments*/) const { throw Exception("Function " + getName() + " can't have lambda-expressions as arguments", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT); } private: DataTypePtr getReturnTypeWithoutLowCardinality(const ColumnsWithTypeAndName & arguments) const; }; /// Previous function interface. class IFunction : public std::enable_shared_from_this, public FunctionBuilderImpl, public IFunctionBase, public PreparedFunctionImpl { public: String getName() const override = 0; /// TODO: make const void executeImpl(Block & block, const ColumnNumbers & arguments, size_t result, size_t input_rows_count) override = 0; /// Override this functions to change default implementation behavior. See details in IMyFunction. bool useDefaultImplementationForNulls() const override { return true; } bool useDefaultImplementationForConstants() const override { return false; } bool useDefaultImplementationForLowCardinalityColumns() const override { return true; } ColumnNumbers getArgumentsThatAreAlwaysConstant() const override { return {}; } bool canBeExecutedOnDefaultArguments() const override { return true; } bool canBeExecutedOnLowCardinalityDictionary() const override { return isDeterministicInScopeOfQuery(); } using PreparedFunctionImpl::execute; using PreparedFunctionImpl::executeImplDryRun; using FunctionBuilderImpl::getReturnTypeImpl; using FunctionBuilderImpl::getLambdaArgumentTypesImpl; using FunctionBuilderImpl::getReturnType; PreparedFunctionPtr prepare(const Block & /*sample_block*/, const ColumnNumbers & /*arguments*/, size_t /*result*/) const final { throw Exception("prepare is not implemented for IFunction", ErrorCodes::NOT_IMPLEMENTED); } #if USE_EMBEDDED_COMPILER bool isCompilable() const final { throw Exception("isCompilable without explicit types is not implemented for IFunction", ErrorCodes::NOT_IMPLEMENTED); } llvm::Value * compile(llvm::IRBuilderBase & /*builder*/, ValuePlaceholders /*values*/) const final { throw Exception("compile without explicit types is not implemented for IFunction", ErrorCodes::NOT_IMPLEMENTED); } #endif const DataTypes & getArgumentTypes() const final { throw Exception("getArgumentTypes is not implemented for IFunction", ErrorCodes::NOT_IMPLEMENTED); } const DataTypePtr & getReturnType() const final { throw Exception("getReturnType is not implemented for IFunction", ErrorCodes::NOT_IMPLEMENTED); } #if USE_EMBEDDED_COMPILER bool isCompilable(const DataTypes & arguments) const; llvm::Value * compile(llvm::IRBuilderBase &, const DataTypes & arguments, ValuePlaceholders values) const; #endif protected: #if USE_EMBEDDED_COMPILER virtual bool isCompilableImpl(const DataTypes &) const { return false; } virtual llvm::Value * compileImpl(llvm::IRBuilderBase &, const DataTypes &, ValuePlaceholders) const { throw Exception(getName() + " is not JIT-compilable", ErrorCodes::NOT_IMPLEMENTED); } #endif FunctionBasePtr buildImpl(const ColumnsWithTypeAndName & /*arguments*/, const DataTypePtr & /*return_type*/) const final { throw Exception("buildImpl is not implemented for IFunction", ErrorCodes::NOT_IMPLEMENTED); } }; /// Wrappers over IFunction. class DefaultExecutable final : public PreparedFunctionImpl { public: explicit DefaultExecutable(std::shared_ptr function) : function(std::move(function)) {} String getName() const override { return function->getName(); } protected: void executeImpl(Block & block, const ColumnNumbers & arguments, size_t result, size_t input_rows_count) final { return function->executeImpl(block, arguments, result, input_rows_count); } void executeImplDryRun(Block & block, const ColumnNumbers & arguments, size_t result, size_t input_rows_count) final { return function->executeImplDryRun(block, arguments, result, input_rows_count); } bool useDefaultImplementationForNulls() const final { return function->useDefaultImplementationForNulls(); } bool useDefaultImplementationForConstants() const final { return function->useDefaultImplementationForConstants(); } bool useDefaultImplementationForLowCardinalityColumns() const final { return function->useDefaultImplementationForLowCardinalityColumns(); } ColumnNumbers getArgumentsThatAreAlwaysConstant() const final { return function->getArgumentsThatAreAlwaysConstant(); } bool canBeExecutedOnDefaultArguments() const override { return function->canBeExecutedOnDefaultArguments(); } private: std::shared_ptr function; }; class DefaultFunction final : public IFunctionBase { public: DefaultFunction(std::shared_ptr function, DataTypes arguments, DataTypePtr return_type) : function(std::move(function)), arguments(std::move(arguments)), return_type(std::move(return_type)) {} String getName() const override { return function->getName(); } const DataTypes & getArgumentTypes() const override { return arguments; } const DataTypePtr & getReturnType() const override { return return_type; } #if USE_EMBEDDED_COMPILER bool isCompilable() const override { return function->isCompilable(arguments); } llvm::Value * compile(llvm::IRBuilderBase & builder, ValuePlaceholders values) const override { return function->compile(builder, arguments, std::move(values)); } #endif PreparedFunctionPtr prepare(const Block & /*sample_block*/, const ColumnNumbers & /*arguments*/, size_t /*result*/) const override { return std::make_shared(function); } bool isSuitableForConstantFolding() const override { return function->isSuitableForConstantFolding(); } bool isInjective(const Block & sample_block) override { return function->isInjective(sample_block); } bool isDeterministic() const override { return function->isDeterministic(); } bool isDeterministicInScopeOfQuery() const override { return function->isDeterministicInScopeOfQuery(); } bool hasInformationAboutMonotonicity() const override { return function->hasInformationAboutMonotonicity(); } IFunctionBase::Monotonicity getMonotonicityForRange(const IDataType & type, const Field & left, const Field & right) const override { return function->getMonotonicityForRange(type, left, right); } private: std::shared_ptr function; DataTypes arguments; DataTypePtr return_type; }; class DefaultFunctionBuilder : public FunctionBuilderImpl { public: explicit DefaultFunctionBuilder(std::shared_ptr function) : function(std::move(function)) {} void checkNumberOfArguments(size_t number_of_arguments) const override { return function->checkNumberOfArguments(number_of_arguments); } String getName() const override { return function->getName(); } bool isVariadic() const override { return function->isVariadic(); } size_t getNumberOfArguments() const override { return function->getNumberOfArguments(); } protected: DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override { return function->getReturnTypeImpl(arguments); } DataTypePtr getReturnTypeImpl(const ColumnsWithTypeAndName & arguments) const override { return function->getReturnTypeImpl(arguments); } bool useDefaultImplementationForNulls() const override { return function->useDefaultImplementationForNulls(); } bool useDefaultImplementationForLowCardinalityColumns() const override { return function->useDefaultImplementationForLowCardinalityColumns(); } bool canBeExecutedOnLowCardinalityDictionary() const override { return function->canBeExecutedOnLowCardinalityDictionary(); } FunctionBasePtr buildImpl(const ColumnsWithTypeAndName & arguments, const DataTypePtr & return_type) const override { DataTypes data_types(arguments.size()); for (size_t i = 0; i < arguments.size(); ++i) data_types[i] = arguments[i].type; return std::make_shared(function, data_types, return_type); } void getLambdaArgumentTypesImpl(DataTypes & arguments) const override { return function->getLambdaArgumentTypesImpl(arguments); } private: std::shared_ptr function; }; using FunctionPtr = std::shared_ptr; /** Return ColumnNullable of src, with null map as OR-ed null maps of args columns in blocks. * Or ColumnConst(ColumnNullable) if the result is always NULL or if the result is constant and always not NULL. */ ColumnPtr wrapInNullable(const ColumnPtr & src, const Block & block, const ColumnNumbers & args, size_t result, size_t input_rows_count); }