#pragma once #include #include #include #include #include #include namespace DB { template struct TrivialWeightFunction { size_t operator()(const T & x) const { return 1; } }; /// Thread-safe cache that evicts entries which are not used for a long time or are expired. /// WeightFunction is a functor that takes Mapped as a parameter and returns "weight" (approximate size) /// of that value. /// Cache starts to evict entries when their total weight exceeds max_size and when expiration time of these /// entries is due. /// Value weight should not change after insertion. template , typename WeightFunction = TrivialWeightFunction > class LRUCache { public: using Key = TKey; using Mapped = TMapped; using MappedPtr = std::shared_ptr; using Delay = std::chrono::seconds; private: using Clock = std::chrono::steady_clock; using Timestamp = Clock::time_point; public: LRUCache(size_t max_size_, const Delay & expiration_delay_ = Delay::zero()) : max_size(std::max(1ul, max_size_)), expiration_delay(expiration_delay_) {} MappedPtr get(const Key & key) { std::lock_guard lock(mutex); auto res = getImpl(key, lock); if (res) ++hits; else ++misses; return res; } void set(const Key & key, const MappedPtr & mapped) { std::lock_guard lock(mutex); setImpl(key, mapped, lock); } /// If the value for the key is in the cache, returns it. If it is not, calls load_func() to /// produce it, saves the result in the cache and returns it. /// Only one of several concurrent threads calling getOrSet() will call load_func(), /// others will wait for that call to complete and will use its result (this helps prevent cache stampede). /// Exceptions occuring in load_func will be propagated to the caller. Another thread from the /// set of concurrent threads will then try to call its load_func etc. template std::pair getOrSet(const Key & key, LoadFunc&& load_func) { InsertTokenHolder token_holder; { std::lock_guard lock(mutex); auto val = getImpl(key, lock); if (val) { ++hits; return std::make_pair(val, false); } auto & token = insert_tokens[key]; if (!token) token = std::make_shared(*this); token_holder.acquire(&key, token, lock); } InsertToken * token = token_holder.token.get(); std::lock_guard token_lock(token->mutex); token_holder.cleaned_up = token->cleaned_up; if (token->value) { /// Another thread already produced the value while we waited for token->mutex. ++hits; return std::make_pair(token->value, false); } ++misses; token->value = load_func(); std::lock_guard cache_lock(mutex); setImpl(key, token->value, cache_lock); if (!token->cleaned_up) token_holder.cleanup(token_lock, cache_lock); return std::make_pair(token->value, true); } void getStats(size_t & out_hits, size_t & out_misses) const { std::lock_guard lock(mutex); out_hits = hits; out_misses = misses; } size_t weight() const { std::lock_guard lock(mutex); return current_size; } size_t count() const { std::lock_guard lock(mutex); return cells.size(); } void reset() { std::lock_guard lock(mutex); queue.clear(); cells.clear(); insert_tokens.clear(); current_size = 0; hits = 0; misses = 0; current_weight_lost = 0; } protected: /// Total weight of evicted values. This value is reset every time it is sent to profile events. size_t current_weight_lost = 0; private: /// Represents pending insertion attempt. struct InsertToken { InsertToken(LRUCache & cache_) : cache(cache_) {} std::mutex mutex; bool cleaned_up = false; /// Protected by the token mutex MappedPtr value; /// Protected by the token mutex LRUCache & cache; size_t refcount = 0; /// Protected by the cache mutex }; using InsertTokenById = std::unordered_map, HashFunction>; /// This class is responsible for removing used insert tokens from the insert_tokens map. /// Among several concurrent threads the first successful one is responsible for removal. But if they all /// fail, then the last one is responsible. struct InsertTokenHolder { const Key * key = nullptr; std::shared_ptr token; bool cleaned_up = false; InsertTokenHolder() = default; void acquire(const Key * key_, const std::shared_ptr & token_, std::lock_guard & cache_lock) { key = key_; token = token_; ++token->refcount; } void cleanup(std::lock_guard & token_lock, std::lock_guard & cache_lock) { auto it = token->cache.insert_tokens.find(*key); if (it != token->cache.insert_tokens.end()) token->cache.insert_tokens.erase(it); token->cleaned_up = true; cleaned_up = true; } ~InsertTokenHolder() { if (!token) return; if (cleaned_up) return; std::lock_guard token_lock(token->mutex); if (token->cleaned_up) return; std::lock_guard cache_lock(token->cache.mutex); --token->refcount; if (token->refcount == 0) cleanup(token_lock, cache_lock); } }; friend struct InsertTokenHolder; using LRUQueue = std::list; using LRUQueueIterator = typename LRUQueue::iterator; struct Cell { bool expired(const Timestamp & last_timestamp, const Delay & expiration_delay) const { return (expiration_delay == Delay::zero()) || ((last_timestamp > timestamp) && ((last_timestamp - timestamp) > expiration_delay)); } MappedPtr value; size_t size; LRUQueueIterator queue_iterator; Timestamp timestamp; }; using Cells = std::unordered_map; InsertTokenById insert_tokens; LRUQueue queue; Cells cells; /// Total weight of values. size_t current_size = 0; const size_t max_size; const Delay expiration_delay; mutable std::mutex mutex; size_t hits = 0; size_t misses = 0; WeightFunction weight_function; MappedPtr getImpl(const Key & key, std::lock_guard & cache_lock) { auto it = cells.find(key); if (it == cells.end()) { return MappedPtr(); } Cell & cell = it->second; updateCellTimestamp(cell); /// Move the key to the end of the queue. The iterator remains valid. queue.splice(queue.end(), queue, cell.queue_iterator); return cell.value; } void setImpl(const Key & key, const MappedPtr & mapped, std::lock_guard & cache_lock) { auto res = cells.emplace(std::piecewise_construct, std::forward_as_tuple(key), std::forward_as_tuple()); Cell & cell = res.first->second; bool inserted = res.second; if (inserted) { cell.queue_iterator = queue.insert(queue.end(), key); } else { current_size -= cell.size; queue.splice(queue.end(), queue, cell.queue_iterator); } cell.value = mapped; cell.size = cell.value ? weight_function(*cell.value) : 0; current_size += cell.size; updateCellTimestamp(cell); removeOverflow(cell.timestamp); } void updateCellTimestamp(Cell & cell) { if (expiration_delay != Delay::zero()) cell.timestamp = Clock::now(); } void removeOverflow(const Timestamp & last_timestamp) { size_t queue_size = cells.size(); while ((current_size > max_size) && (queue_size > 1)) { const Key & key = queue.front(); auto it = cells.find(key); if (it == cells.end()) { LOG_ERROR(&Logger::get("LRUCache"), "LRUCache became inconsistent. There must be a bug in it."); abort(); } const auto & cell = it->second; if (!cell.expired(last_timestamp, expiration_delay)) break; current_size -= cell.size; current_weight_lost += cell.size; cells.erase(it); queue.pop_front(); --queue_size; } if (current_size > (1ull << 63)) { LOG_ERROR(&Logger::get("LRUCache"), "LRUCache became inconsistent. There must be a bug in it."); abort(); } } }; }