--- slug: /en/sql-reference/functions/array-functions sidebar_position: 10 sidebar_label: Arrays --- # Array Functions ## empty {#empty} Checks whether the input array is empty. **Syntax** ``` sql empty([x]) ``` An array is considered empty if it does not contain any elements. :::note Can be optimized by enabling the [`optimize_functions_to_subcolumns` setting](../../operations/settings/settings.md#optimize-functions-to-subcolumns). With `optimize_functions_to_subcolumns = 1` the function reads only [size0](../../sql-reference/data-types/array.md#array-size) subcolumn instead of reading and processing the whole array column. The query `SELECT empty(arr) FROM TABLE;` transforms to `SELECT arr.size0 = 0 FROM TABLE;`. ::: The function also works for [strings](string-functions.md#empty) or [UUID](uuid-functions.md#empty). **Arguments** - `[x]` — Input array. [Array](../data-types/array.md). **Returned value** - Returns `1` for an empty array or `0` for a non-empty array. Type: [UInt8](../data-types/int-uint.md). **Example** Query: ```sql SELECT empty([]); ``` Result: ```text ┌─empty(array())─┐ │ 1 │ └────────────────┘ ``` ## notEmpty {#notempty} Checks whether the input array is non-empty. **Syntax** ``` sql notEmpty([x]) ``` An array is considered non-empty if it contains at least one element. :::note Can be optimized by enabling the [optimize_functions_to_subcolumns](../../operations/settings/settings.md#optimize-functions-to-subcolumns) setting. With `optimize_functions_to_subcolumns = 1` the function reads only [size0](../../sql-reference/data-types/array.md#array-size) subcolumn instead of reading and processing the whole array column. The query `SELECT notEmpty(arr) FROM table` transforms to `SELECT arr.size0 != 0 FROM TABLE`. ::: The function also works for [strings](string-functions.md#notempty) or [UUID](uuid-functions.md#notempty). **Arguments** - `[x]` — Input array. [Array](../data-types/array.md). **Returned value** - Returns `1` for a non-empty array or `0` for an empty array. Type: [UInt8](../data-types/int-uint.md). **Example** Query: ```sql SELECT notEmpty([1,2]); ``` Result: ```text ┌─notEmpty([1, 2])─┐ │ 1 │ └──────────────────┘ ``` ## length Returns the number of items in the array. The result type is UInt64. The function also works for strings. Can be optimized by enabling the [optimize_functions_to_subcolumns](../../operations/settings/settings.md#optimize-functions-to-subcolumns) setting. With `optimize_functions_to_subcolumns = 1` the function reads only [size0](../../sql-reference/data-types/array.md#array-size) subcolumn instead of reading and processing the whole array column. The query `SELECT length(arr) FROM table` transforms to `SELECT arr.size0 FROM TABLE`. Alias: `OCTET_LENGTH` ## emptyArrayUInt8 Returns an empty UInt8 array. **Syntax** ```sql emptyArrayUInt8() ``` **Arguments** None. **Returned value** An empty array. **Examples** Query: ```sql SELECT emptyArrayUInt8(); ``` Result: ```response [] ``` ## emptyArrayUInt16 Returns an empty UInt16 array. **Syntax** ```sql emptyArrayUInt16() ``` **Arguments** None. **Returned value** An empty array. **Examples** Query: ```sql SELECT emptyArrayUInt16(); ``` Result: ```response [] ``` ## emptyArrayUInt32 Returns an empty UInt32 array. **Syntax** ```sql emptyArrayUInt32() ``` **Arguments** None. **Returned value** An empty array. **Examples** Query: ```sql SELECT emptyArrayUInt32(); ``` Result: ```response [] ``` ## emptyArrayUInt64 Returns an empty UInt64 array. **Syntax** ```sql emptyArrayUInt64() ``` **Arguments** None. **Returned value** An empty array. **Examples** Query: ```sql SELECT emptyArrayUInt64(); ``` Result: ```response [] ``` ## emptyArrayInt8 Returns an empty Int8 array. **Syntax** ```sql emptyArrayInt8() ``` **Arguments** None. **Returned value** An empty array. **Examples** Query: ```sql SELECT emptyArrayInt8(); ``` Result: ```response [] ``` ## emptyArrayInt16 Returns an empty Int16 array. **Syntax** ```sql emptyArrayInt16() ``` **Arguments** None. **Returned value** An empty array. **Examples** Query: ```sql SELECT emptyArrayInt16(); ``` Result: ```response [] ``` ## emptyArrayInt32 Returns an empty Int32 array. **Syntax** ```sql emptyArrayInt32() ``` **Arguments** None. **Returned value** An empty array. **Examples** Query: ```sql SELECT emptyArrayInt32(); ``` Result: ```response [] ``` ## emptyArrayInt64 Returns an empty Int64 array. **Syntax** ```sql emptyArrayInt64() ``` **Arguments** None. **Returned value** An empty array. **Examples** Query: ```sql SELECT emptyArrayInt64(); ``` Result: ```response [] ``` ## emptyArrayFloat32 Returns an empty Float32 array. **Syntax** ```sql emptyArrayFloat32() ``` **Arguments** None. **Returned value** An empty array. **Examples** Query: ```sql SELECT emptyArrayFloat32(); ``` Result: ```response [] ``` ## emptyArrayFloat64 Returns an empty Float64 array. **Syntax** ```sql emptyArrayFloat64() ``` **Arguments** None. **Returned value** An empty array. **Examples** Query: ```sql SELECT emptyArrayFloat64(); ``` Result: ```response [] ``` ## emptyArrayDate Returns an empty Date array. **Syntax** ```sql emptyArrayDate() ``` **Arguments** None. **Returned value** An empty array. **Examples** Query: ```sql SELECT emptyArrayDate(); ``` ## emptyArrayDateTime Returns an empty DateTime array. **Syntax** ```sql [] ``` **Arguments** None. **Returned value** An empty array. **Examples** Query: ```sql SELECT emptyArrayDateTime(); ``` Result: ```response [] ``` ## emptyArrayString Returns an empty String array. **Syntax** ```sql emptyArrayString() ``` **Arguments** None. **Returned value** An empty array. **Examples** Query: ```sql SELECT emptyArrayString(); ``` Result: ```response [] ``` ## emptyArrayToSingle Accepts an empty array and returns a one-element array that is equal to the default value. ## range(end), range(\[start, \] end \[, step\]) Returns an array of numbers from `start` to `end - 1` by `step`. The supported types are [UInt8, UInt16, UInt32, UInt64, Int8, Int16, Int32, Int64](../data-types/int-uint.md). **Syntax** ``` sql range([start, ] end [, step]) ``` **Arguments** - `start` — The first element of the array. Optional, required if `step` is used. Default value: 0. - `end` — The number before which the array is constructed. Required. - `step` — Determines the incremental step between each element in the array. Optional. Default value: 1. **Returned value** - Array of numbers from `start` to `end - 1` by `step`. **Implementation details** - All arguments `start`, `end`, `step` must be below data types: `UInt8`, `UInt16`, `UInt32`, `UInt64`,`Int8`, `Int16`, `Int32`, `Int64`, as well as elements of the returned array, which's type is a super type of all arguments. - An exception is thrown if query results in arrays with a total length of more than number of elements specified by the [function_range_max_elements_in_block](../../operations/settings/settings.md#function_range_max_elements_in_block) setting. - Returns Null if any argument has Nullable(Nothing) type. An exception is thrown if any argument has Null value (Nullable(T) type). **Examples** Query: ``` sql SELECT range(5), range(1, 5), range(1, 5, 2), range(-1, 5, 2); ``` Result: ```txt ┌─range(5)────┬─range(1, 5)─┬─range(1, 5, 2)─┬─range(-1, 5, 2)─┐ │ [0,1,2,3,4] │ [1,2,3,4] │ [1,3] │ [-1,1,3] │ └─────────────┴─────────────┴────────────────┴─────────────────┘ ``` ## array(x1, …), operator \[x1, …\] Creates an array from the function arguments. The arguments must be constants and have types that have the smallest common type. At least one argument must be passed, because otherwise it isn’t clear which type of array to create. That is, you can’t use this function to create an empty array (to do that, use the ‘emptyArray\*’ function described above). Returns an ‘Array(T)’ type result, where ‘T’ is the smallest common type out of the passed arguments. ## arrayWithConstant(length, elem) Creates an array of length `length` filled with the constant `elem`. ## arrayConcat Combines arrays passed as arguments. ``` sql arrayConcat(arrays) ``` **Arguments** - `arrays` – Arbitrary number of arguments of [Array](../../sql-reference/data-types/array.md) type. **Example** ``` sql SELECT arrayConcat([1, 2], [3, 4], [5, 6]) AS res ``` ``` text ┌─res───────────┐ │ [1,2,3,4,5,6] │ └───────────────┘ ``` ## arrayElement(arr, n), operator arr\[n\] Get the element with the index `n` from the array `arr`. `n` must be any integer type. Indexes in an array begin from one. Negative indexes are supported. In this case, it selects the corresponding element numbered from the end. For example, `arr[-1]` is the last item in the array. If the index falls outside of the bounds of an array, it returns some default value (0 for numbers, an empty string for strings, etc.), except for the case with a non-constant array and a constant index 0 (in this case there will be an error `Array indices are 1-based`). ## has(arr, elem) Checks whether the ‘arr’ array has the ‘elem’ element. Returns 0 if the element is not in the array, or 1 if it is. `NULL` is processed as a value. ``` sql SELECT has([1, 2, NULL], NULL) ``` ``` text ┌─has([1, 2, NULL], NULL)─┐ │ 1 │ └─────────────────────────┘ ``` ## hasAll {#hasall} Checks whether one array is a subset of another. ``` sql hasAll(set, subset) ``` **Arguments** - `set` – Array of any type with a set of elements. - `subset` – Array of any type that shares a common supertype with `set` containing elements that should be tested to be a subset of `set`. **Return values** - `1`, if `set` contains all of the elements from `subset`. - `0`, otherwise. Raises an exception `NO_COMMON_TYPE` if the set and subset elements do not share a common supertype. **Peculiar properties** - An empty array is a subset of any array. - `Null` processed as a value. - Order of values in both of arrays does not matter. **Examples** `SELECT hasAll([], [])` returns 1. `SELECT hasAll([1, Null], [Null])` returns 1. `SELECT hasAll([1.0, 2, 3, 4], [1, 3])` returns 1. `SELECT hasAll(['a', 'b'], ['a'])` returns 1. `SELECT hasAll([1], ['a'])` raises a `NO_COMMON_TYPE` exception. `SELECT hasAll([[1, 2], [3, 4]], [[1, 2], [3, 5]])` returns 0. ## hasAny {#hasany} Checks whether two arrays have intersection by some elements. ``` sql hasAny(array1, array2) ``` **Arguments** - `array1` – Array of any type with a set of elements. - `array2` – Array of any type that shares a common supertype with `array1`. **Return values** - `1`, if `array1` and `array2` have one similar element at least. - `0`, otherwise. Raises an exception `NO_COMMON_TYPE` if the array1 and array2 elements do not share a common supertype. **Peculiar properties** - `Null` processed as a value. - Order of values in both of arrays does not matter. **Examples** `SELECT hasAny([1], [])` returns `0`. `SELECT hasAny([Null], [Null, 1])` returns `1`. `SELECT hasAny([-128, 1., 512], [1])` returns `1`. `SELECT hasAny([[1, 2], [3, 4]], ['a', 'c'])` raises a `NO_COMMON_TYPE` exception. `SELECT hasAll([[1, 2], [3, 4]], [[1, 2], [1, 2]])` returns `1`. ## hasSubstr Checks whether all the elements of array2 appear in array1 in the same exact order. Therefore, the function will return 1, if and only if `array1 = prefix + array2 + suffix`. ``` sql hasSubstr(array1, array2) ``` In other words, the functions will check whether all the elements of `array2` are contained in `array1` like the `hasAll` function. In addition, it will check that the elements are observed in the same order in both `array1` and `array2`. For Example: - `hasSubstr([1,2,3,4], [2,3])` returns 1. However, `hasSubstr([1,2,3,4], [3,2])` will return `0`. - `hasSubstr([1,2,3,4], [1,2,3])` returns 1. However, `hasSubstr([1,2,3,4], [1,2,4])` will return `0`. **Arguments** - `array1` – Array of any type with a set of elements. - `array2` – Array of any type with a set of elements. **Return values** - `1`, if `array1` contains `array2`. - `0`, otherwise. Raises an exception `NO_COMMON_TYPE` if the array1 and array2 elements do not share a common supertype. **Peculiar properties** - The function will return `1` if `array2` is empty. - `Null` processed as a value. In other words `hasSubstr([1, 2, NULL, 3, 4], [2,3])` will return `0`. However, `hasSubstr([1, 2, NULL, 3, 4], [2,NULL,3])` will return `1` - Order of values in both of arrays does matter. **Examples** `SELECT hasSubstr([], [])` returns 1. `SELECT hasSubstr([1, Null], [Null])` returns 1. `SELECT hasSubstr([1.0, 2, 3, 4], [1, 3])` returns 0. `SELECT hasSubstr(['a', 'b'], ['a'])` returns 1. `SELECT hasSubstr(['a', 'b' , 'c'], ['a', 'b'])` returns 1. `SELECT hasSubstr(['a', 'b' , 'c'], ['a', 'c'])` returns 0. `SELECT hasSubstr([[1, 2], [3, 4], [5, 6]], [[1, 2], [3, 4]])` returns 1. i `SELECT hasSubstr([1, 2, NULL, 3, 4], ['a'])` raises a `NO_COMMON_TYPE` exception. ## indexOf(arr, x) Returns the index of the first ‘x’ element (starting from 1) if it is in the array, or 0 if it is not. Example: ``` sql SELECT indexOf([1, 3, NULL, NULL], NULL) ``` ``` text ┌─indexOf([1, 3, NULL, NULL], NULL)─┐ │ 3 │ └───────────────────────────────────┘ ``` Elements set to `NULL` are handled as normal values. ## arrayCount(\[func,\] arr1, …) Returns the number of elements for which `func(arr1[i], …, arrN[i])` returns something other than 0. If `func` is not specified, it returns the number of non-zero elements in the array. Note that the `arrayCount` is a [higher-order function](../../sql-reference/functions/index.md#higher-order-functions). You can pass a lambda function to it as the first argument. ## arrayDotProduct Returns the dot product of two arrays. **Syntax** ```sql arrayDotProduct(vector1, vector2) ``` Alias: `scalarProduct`, `dotProduct` **Parameters** - `vector1`: First vector. [Array](../data-types/array.md) or [Tuple](../data-types/tuple.md) of numeric values. - `vector2`: Second vector. [Array](../data-types/array.md) or [Tuple](../data-types/tuple.md) of numeric values. :::note The sizes of the two vectors must be equal. Arrays and Tuples may also contain mixed element types. ::: **Returned value** - The dot product of the two vectors. Type: numeric - determined by the type of the arguments. If Arrays or Tuples contain mixed element types then the result type is the supertype. **Examples** Query: ```sql SELECT arrayDotProduct([1, 2, 3], [4, 5, 6]) AS res, toTypeName(res); ``` Result: ```response 32 UInt16 ``` Query: ```sql SELECT dotProduct((1::UInt16, 2::UInt8, 3::Float32),(4::Int16, 5::Float32, 6::UInt8)) AS res, toTypeName(res); ``` Result: ```response 32 Float64 ``` ## countEqual(arr, x) Returns the number of elements in the array equal to x. Equivalent to arrayCount (elem -\> elem = x, arr). `NULL` elements are handled as separate values. Example: ``` sql SELECT countEqual([1, 2, NULL, NULL], NULL) ``` ``` text ┌─countEqual([1, 2, NULL, NULL], NULL)─┐ │ 2 │ └──────────────────────────────────────┘ ``` ## arrayEnumerate(arr) Returns the array \[1, 2, 3, …, length (arr) \] This function is normally used with ARRAY JOIN. It allows counting something just once for each array after applying ARRAY JOIN. Example: ``` sql SELECT count() AS Reaches, countIf(num = 1) AS Hits FROM test.hits ARRAY JOIN GoalsReached, arrayEnumerate(GoalsReached) AS num WHERE CounterID = 160656 LIMIT 10 ``` ``` text ┌─Reaches─┬──Hits─┐ │ 95606 │ 31406 │ └─────────┴───────┘ ``` In this example, Reaches is the number of conversions (the strings received after applying ARRAY JOIN), and Hits is the number of pageviews (strings before ARRAY JOIN). In this particular case, you can get the same result in an easier way: ``` sql SELECT sum(length(GoalsReached)) AS Reaches, count() AS Hits FROM test.hits WHERE (CounterID = 160656) AND notEmpty(GoalsReached) ``` ``` text ┌─Reaches─┬──Hits─┐ │ 95606 │ 31406 │ └─────────┴───────┘ ``` This function can also be used in higher-order functions. For example, you can use it to get array indexes for elements that match a condition. ## arrayEnumerateUniq(arr, …) Returns an array the same size as the source array, indicating for each element what its position is among elements with the same value. For example: arrayEnumerateUniq(\[10, 20, 10, 30\]) = \[1, 1, 2, 1\]. This function is useful when using ARRAY JOIN and aggregation of array elements. Example: ``` sql SELECT Goals.ID AS GoalID, sum(Sign) AS Reaches, sumIf(Sign, num = 1) AS Visits FROM test.visits ARRAY JOIN Goals, arrayEnumerateUniq(Goals.ID) AS num WHERE CounterID = 160656 GROUP BY GoalID ORDER BY Reaches DESC LIMIT 10 ``` ``` text ┌──GoalID─┬─Reaches─┬─Visits─┐ │ 53225 │ 3214 │ 1097 │ │ 2825062 │ 3188 │ 1097 │ │ 56600 │ 2803 │ 488 │ │ 1989037 │ 2401 │ 365 │ │ 2830064 │ 2396 │ 910 │ │ 1113562 │ 2372 │ 373 │ │ 3270895 │ 2262 │ 812 │ │ 1084657 │ 2262 │ 345 │ │ 56599 │ 2260 │ 799 │ │ 3271094 │ 2256 │ 812 │ └─────────┴─────────┴────────┘ ``` In this example, each goal ID has a calculation of the number of conversions (each element in the Goals nested data structure is a goal that was reached, which we refer to as a conversion) and the number of sessions. Without ARRAY JOIN, we would have counted the number of sessions as sum(Sign). But in this particular case, the rows were multiplied by the nested Goals structure, so in order to count each session one time after this, we apply a condition to the value of the arrayEnumerateUniq(Goals.ID) function. The arrayEnumerateUniq function can take multiple arrays of the same size as arguments. In this case, uniqueness is considered for tuples of elements in the same positions in all the arrays. ``` sql SELECT arrayEnumerateUniq([1, 1, 1, 2, 2, 2], [1, 1, 2, 1, 1, 2]) AS res ``` ``` text ┌─res───────────┐ │ [1,2,1,1,2,1] │ └───────────────┘ ``` This is necessary when using ARRAY JOIN with a nested data structure and further aggregation across multiple elements in this structure. ## arrayEnumerateUniqRanked Returns an array the same size as the source array, indicating for each element what its position is among elements with the same value. It allows for enumeration of a multidimensional array with the ability to specify how deep to look inside the array. **Syntax** ```sql arrayEnumerateUniqRanked(clear_depth, arr, max_array_depth) ``` **Parameters** - `clear_depth`: Enumerate elements at the specified level separately. Positive [Integer](../data-types/int-uint.md) less than or equal to `max_arr_depth`. - `arr`: N-dimensional array to enumerate. [Array](../data-types/array.md). - `max_array_depth`: The maximum effective depth. Positive [Integer](../data-types/int-uint.md) less than or equal to the depth of `arr`. **Example** With `clear_depth=1` and `max_array_depth=1`, the result of `arrayEnumerateUniqRanked` is identical to that which [`arrayEnumerateUniq`](#arrayenumerateuniqarr) would give for the same array. Query: ``` sql SELECT arrayEnumerateUniqRanked(1, [1,2,1], 1); ``` Result: ``` text [1,1,2] ``` In this example, `arrayEnumerateUniqRanked` is used to obtain an array indicating, for each element of the multidimensional array, what its position is among elements of the same value. For the first row of the passed array,`[1,2,3]`, the corresponding result is `[1,1,1]`, indicating that this is the first time `1`,`2` and `3` are encountered. For the second row of the provided array,`[2,2,1]`, the corresponding result is `[2,3,3]`, indicating that `2` is encountered for a second and third time, and `1` is encountered for the second time. Likewise, for the third row of the provided array `[3]` the corresponding result is `[2]` indicating that `3` is encountered for the second time. Query: ``` sql SELECT arrayEnumerateUniqRanked(1, [[1,2,3],[2,2,1],[3]], 2); ``` Result: ``` text [[1,1,1],[2,3,2],[2]] ``` Changing `clear_depth=2`, results in elements being enumerated separately for each row. Query: ``` sql SELECT arrayEnumerateUniqRanked(2, [[1,2,3],[2,2,1],[3]], 2); ``` Result: ``` text [[1,1,1],[1,2,1],[1]] ``` ## arrayPopBack Removes the last item from the array. ``` sql arrayPopBack(array) ``` **Arguments** - `array` – Array. **Example** ``` sql SELECT arrayPopBack([1, 2, 3]) AS res; ``` ``` text ┌─res───┐ │ [1,2] │ └───────┘ ``` ## arrayPopFront Removes the first item from the array. ``` sql arrayPopFront(array) ``` **Arguments** - `array` – Array. **Example** ``` sql SELECT arrayPopFront([1, 2, 3]) AS res; ``` ``` text ┌─res───┐ │ [2,3] │ └───────┘ ``` ## arrayPushBack Adds one item to the end of the array. ``` sql arrayPushBack(array, single_value) ``` **Arguments** - `array` – Array. - `single_value` – A single value. Only numbers can be added to an array with numbers, and only strings can be added to an array of strings. When adding numbers, ClickHouse automatically sets the `single_value` type for the data type of the array. For more information about the types of data in ClickHouse, see “[Data types](../../sql-reference/data-types/index.md#data_types)”. Can be `NULL`. The function adds a `NULL` element to an array, and the type of array elements converts to `Nullable`. **Example** ``` sql SELECT arrayPushBack(['a'], 'b') AS res; ``` ``` text ┌─res───────┐ │ ['a','b'] │ └───────────┘ ``` ## arrayPushFront Adds one element to the beginning of the array. ``` sql arrayPushFront(array, single_value) ``` **Arguments** - `array` – Array. - `single_value` – A single value. Only numbers can be added to an array with numbers, and only strings can be added to an array of strings. When adding numbers, ClickHouse automatically sets the `single_value` type for the data type of the array. For more information about the types of data in ClickHouse, see “[Data types](../../sql-reference/data-types/index.md#data_types)”. Can be `NULL`. The function adds a `NULL` element to an array, and the type of array elements converts to `Nullable`. **Example** ``` sql SELECT arrayPushFront(['b'], 'a') AS res; ``` ``` text ┌─res───────┐ │ ['a','b'] │ └───────────┘ ``` ## arrayResize Changes the length of the array. ``` sql arrayResize(array, size[, extender]) ``` **Arguments:** - `array` — Array. - `size` — Required length of the array. - If `size` is less than the original size of the array, the array is truncated from the right. - If `size` is larger than the initial size of the array, the array is extended to the right with `extender` values or default values for the data type of the array items. - `extender` — Value for extending an array. Can be `NULL`. **Returned value:** An array of length `size`. **Examples of calls** ``` sql SELECT arrayResize([1], 3); ``` ``` text ┌─arrayResize([1], 3)─┐ │ [1,0,0] │ └─────────────────────┘ ``` ``` sql SELECT arrayResize([1], 3, NULL); ``` ``` text ┌─arrayResize([1], 3, NULL)─┐ │ [1,NULL,NULL] │ └───────────────────────────┘ ``` ## arraySlice Returns a slice of the array. ``` sql arraySlice(array, offset[, length]) ``` **Arguments** - `array` – Array of data. - `offset` – Indent from the edge of the array. A positive value indicates an offset on the left, and a negative value is an indent on the right. Numbering of the array items begins with 1. - `length` – The length of the required slice. If you specify a negative value, the function returns an open slice `[offset, array_length - length]`. If you omit the value, the function returns the slice `[offset, the_end_of_array]`. **Example** ``` sql SELECT arraySlice([1, 2, NULL, 4, 5], 2, 3) AS res; ``` ``` text ┌─res────────┐ │ [2,NULL,4] │ └────────────┘ ``` Array elements set to `NULL` are handled as normal values. ## arrayShingles Generates an array of "shingles", i.e. consecutive sub-arrays with specified length of the input array. **Syntax** ``` sql arrayShingles(array, length) ``` **Arguments** - `array` — Input array [Array](../../sql-reference/data-types/array.md). - `length` — The length of each shingle. **Returned value** - An array of generated shingles. Type: [Array](../../sql-reference/data-types/array.md). **Examples** Query: ``` sql SELECT arrayShingles([1,2,3,4], 3) as res; ``` Result: ``` text ┌─res───────────────┐ │ [[1,2,3],[2,3,4]] │ └───────────────────┘ ``` ## arraySort(\[func,\] arr, …) {#sort} Sorts the elements of the `arr` array in ascending order. If the `func` function is specified, sorting order is determined by the result of the `func` function applied to the elements of the array. If `func` accepts multiple arguments, the `arraySort` function is passed several arrays that the arguments of `func` will correspond to. Detailed examples are shown at the end of `arraySort` description. Example of integer values sorting: ``` sql SELECT arraySort([1, 3, 3, 0]); ``` ``` text ┌─arraySort([1, 3, 3, 0])─┐ │ [0,1,3,3] │ └─────────────────────────┘ ``` Example of string values sorting: ``` sql SELECT arraySort(['hello', 'world', '!']); ``` ``` text ┌─arraySort(['hello', 'world', '!'])─┐ │ ['!','hello','world'] │ └────────────────────────────────────┘ ``` Consider the following sorting order for the `NULL`, `NaN` and `Inf` values: ``` sql SELECT arraySort([1, nan, 2, NULL, 3, nan, -4, NULL, inf, -inf]); ``` ``` text ┌─arraySort([1, nan, 2, NULL, 3, nan, -4, NULL, inf, -inf])─┐ │ [-inf,-4,1,2,3,inf,nan,nan,NULL,NULL] │ └───────────────────────────────────────────────────────────┘ ``` - `-Inf` values are first in the array. - `NULL` values are last in the array. - `NaN` values are right before `NULL`. - `Inf` values are right before `NaN`. Note that `arraySort` is a [higher-order function](../../sql-reference/functions/index.md#higher-order-functions). You can pass a lambda function to it as the first argument. In this case, sorting order is determined by the result of the lambda function applied to the elements of the array. Let’s consider the following example: ``` sql SELECT arraySort((x) -> -x, [1, 2, 3]) as res; ``` ``` text ┌─res─────┐ │ [3,2,1] │ └─────────┘ ``` For each element of the source array, the lambda function returns the sorting key, that is, \[1 –\> -1, 2 –\> -2, 3 –\> -3\]. Since the `arraySort` function sorts the keys in ascending order, the result is \[3, 2, 1\]. Thus, the `(x) –> -x` lambda function sets the [descending order](#reverse-sort) in a sorting. The lambda function can accept multiple arguments. In this case, you need to pass the `arraySort` function several arrays of identical length that the arguments of lambda function will correspond to. The resulting array will consist of elements from the first input array; elements from the next input array(s) specify the sorting keys. For example: ``` sql SELECT arraySort((x, y) -> y, ['hello', 'world'], [2, 1]) as res; ``` ``` text ┌─res────────────────┐ │ ['world', 'hello'] │ └────────────────────┘ ``` Here, the elements that are passed in the second array (\[2, 1\]) define a sorting key for the corresponding element from the source array (\[‘hello’, ‘world’\]), that is, \[‘hello’ –\> 2, ‘world’ –\> 1\]. Since the lambda function does not use `x`, actual values of the source array do not affect the order in the result. So, ‘hello’ will be the second element in the result, and ‘world’ will be the first. Other examples are shown below. ``` sql SELECT arraySort((x, y) -> y, [0, 1, 2], ['c', 'b', 'a']) as res; ``` ``` text ┌─res─────┐ │ [2,1,0] │ └─────────┘ ``` ``` sql SELECT arraySort((x, y) -> -y, [0, 1, 2], [1, 2, 3]) as res; ``` ``` text ┌─res─────┐ │ [2,1,0] │ └─────────┘ ``` :::note To improve sorting efficiency, the [Schwartzian transform](https://en.wikipedia.org/wiki/Schwartzian_transform) is used. ::: ## arrayPartialSort(\[func,\] limit, arr, …) Same as `arraySort` with additional `limit` argument allowing partial sorting. Returns an array of the same size as the original array where elements in range `[1..limit]` are sorted in ascending order. Remaining elements `(limit..N]` shall contain elements in unspecified order. ## arrayReverseSort(\[func,\] arr, …) {#reverse-sort} Sorts the elements of the `arr` array in descending order. If the `func` function is specified, `arr` is sorted according to the result of the `func` function applied to the elements of the array, and then the sorted array is reversed. If `func` accepts multiple arguments, the `arrayReverseSort` function is passed several arrays that the arguments of `func` will correspond to. Detailed examples are shown at the end of `arrayReverseSort` description. Example of integer values sorting: ``` sql SELECT arrayReverseSort([1, 3, 3, 0]); ``` ``` text ┌─arrayReverseSort([1, 3, 3, 0])─┐ │ [3,3,1,0] │ └────────────────────────────────┘ ``` Example of string values sorting: ``` sql SELECT arrayReverseSort(['hello', 'world', '!']); ``` ``` text ┌─arrayReverseSort(['hello', 'world', '!'])─┐ │ ['world','hello','!'] │ └───────────────────────────────────────────┘ ``` Consider the following sorting order for the `NULL`, `NaN` and `Inf` values: ``` sql SELECT arrayReverseSort([1, nan, 2, NULL, 3, nan, -4, NULL, inf, -inf]) as res; ``` ``` text ┌─res───────────────────────────────────┐ │ [inf,3,2,1,-4,-inf,nan,nan,NULL,NULL] │ └───────────────────────────────────────┘ ``` - `Inf` values are first in the array. - `NULL` values are last in the array. - `NaN` values are right before `NULL`. - `-Inf` values are right before `NaN`. Note that the `arrayReverseSort` is a [higher-order function](../../sql-reference/functions/index.md#higher-order-functions). You can pass a lambda function to it as the first argument. Example is shown below. ``` sql SELECT arrayReverseSort((x) -> -x, [1, 2, 3]) as res; ``` ``` text ┌─res─────┐ │ [1,2,3] │ └─────────┘ ``` The array is sorted in the following way: 1. At first, the source array (\[1, 2, 3\]) is sorted according to the result of the lambda function applied to the elements of the array. The result is an array \[3, 2, 1\]. 2. Array that is obtained on the previous step, is reversed. So, the final result is \[1, 2, 3\]. The lambda function can accept multiple arguments. In this case, you need to pass the `arrayReverseSort` function several arrays of identical length that the arguments of lambda function will correspond to. The resulting array will consist of elements from the first input array; elements from the next input array(s) specify the sorting keys. For example: ``` sql SELECT arrayReverseSort((x, y) -> y, ['hello', 'world'], [2, 1]) as res; ``` ``` text ┌─res───────────────┐ │ ['hello','world'] │ └───────────────────┘ ``` In this example, the array is sorted in the following way: 1. At first, the source array (\[‘hello’, ‘world’\]) is sorted according to the result of the lambda function applied to the elements of the arrays. The elements that are passed in the second array (\[2, 1\]), define the sorting keys for corresponding elements from the source array. The result is an array \[‘world’, ‘hello’\]. 2. Array that was sorted on the previous step, is reversed. So, the final result is \[‘hello’, ‘world’\]. Other examples are shown below. ``` sql SELECT arrayReverseSort((x, y) -> y, [4, 3, 5], ['a', 'b', 'c']) AS res; ``` ``` text ┌─res─────┐ │ [5,3,4] │ └─────────┘ ``` ``` sql SELECT arrayReverseSort((x, y) -> -y, [4, 3, 5], [1, 2, 3]) AS res; ``` ``` text ┌─res─────┐ │ [4,3,5] │ └─────────┘ ``` ## arrayPartialReverseSort(\[func,\] limit, arr, …) Same as `arrayReverseSort` with additional `limit` argument allowing partial sorting. Returns an array of the same size as the original array where elements in range `[1..limit]` are sorted in descending order. Remaining elements `(limit..N]` shall contain elements in unspecified order. ## arrayShuffle Returns an array of the same size as the original array containing the elements in shuffled order. Elements are reordered in such a way that each possible permutation of those elements has equal probability of appearance. **Syntax** ```sql arrayShuffle(arr[, seed]) ``` **Parameters** - `arr`: The array to partially shuffle. [Array](../data-types/array.md). - `seed` (optional): seed to be used with random number generation. If not provided a random one is used. [UInt or Int](../data-types/int-uint.md). **Returned value** - Array with elements shuffled. **Implementation details** :::note This function will not materialize constants. ::: **Examples** In this example, `arrayShuffle` is used without providing a `seed` and will therefore generate one randomly itself. Query: ```sql SELECT arrayShuffle([1, 2, 3, 4]); ``` Note: when using [ClickHouse Fiddle](https://fiddle.clickhouse.com/), the exact response may differ due to random nature of the function. Result: ```response [1,4,2,3] ``` In this example, `arrayShuffle` is provided a `seed` and will produce stable results. Query: ```sql SELECT arrayShuffle([1, 2, 3, 4], 41); ``` Result: ```response [3,2,1,4] ``` ## arrayPartialShuffle Given an input array of cardinality `N`, returns an array of size N where elements in the range `[1...limit]` are shuffled and the remaining elements in the range `(limit...n]` are unshuffled. **Syntax** ```sql arrayPartialShuffle(arr[, limit[, seed]]) ``` **Parameters** - `arr`: The array size `N` to partially shuffle. [Array](../data-types/array.md). - `limit` (optional): The number to limit element swaps to, in the range `[1..N]`. [UInt or Int](../data-types/int-uint.md). - `seed` (optional): The seed value to be used with random number generation. If not provided a random one is used. [UInt or Int](../data-types/int-uint.md) **Returned value** - Array with elements partially shuffled. **Implementation details** :::note This function will not materialize constants. The value of `limit` should be in the range `[1..N]`. Values outside of that range are equivalent to performing full [arrayShuffle](#arrayshuffle). ::: **Examples** Note: when using [ClickHouse Fiddle](https://fiddle.clickhouse.com/), the exact response may differ due to random nature of the function. Query: ```sql SELECT arrayPartialShuffle([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 1) ``` Result: The order of elements is preserved (`[2,3,4,5], [7,8,9,10]`) except for the two shuffled elements `[1, 6]`. No `seed` is provided so the function selects its own randomly. ```response [6,2,3,4,5,1,7,8,9,10] ``` In this example, the `limit` is increased to `2` and a `seed` value is provided. The order Query: ```sql SELECT arrayPartialShuffle([1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 2); ``` The order of elements is preserved (`[4, 5, 6, 7, 8], [10]`) except for the four shuffled elements `[1, 2, 3, 9]`. Result: ```response [3,9,1,4,5,6,7,8,2,10] ``` ## arrayUniq(arr, …) If one argument is passed, it counts the number of different elements in the array. If multiple arguments are passed, it counts the number of different tuples of elements at corresponding positions in multiple arrays. If you want to get a list of unique items in an array, you can use arrayReduce(‘groupUniqArray’, arr). ## arrayJoin(arr) A special function. See the section [“ArrayJoin function”](../../sql-reference/functions/array-join.md#functions_arrayjoin). ## arrayDifference Calculates an array of differences between adjacent array elements. The first element of the result array will be 0, the second `a[1] - a[0]`, the third `a[2] - a[1]`, etc. The type of elements in the result array is determined by the type inference rules for subtraction (e.g. `UInt8` - `UInt8` = `Int16`). **Syntax** ``` sql arrayDifference(array) ``` **Arguments** - `array` – [Array](https://clickhouse.com/docs/en/data_types/array/). **Returned values** Returns an array of differences between adjacent array elements. Type: [UInt\*](https://clickhouse.com/docs/en/data_types/int_uint/#uint-ranges), [Int\*](https://clickhouse.com/docs/en/data_types/int_uint/#int-ranges), [Float\*](https://clickhouse.com/docs/en/data_types/float/). **Example** Query: ``` sql SELECT arrayDifference([1, 2, 3, 4]); ``` Result: ``` text ┌─arrayDifference([1, 2, 3, 4])─┐ │ [0,1,1,1] │ └───────────────────────────────┘ ``` Example of the overflow due to result type Int64: Query: ``` sql SELECT arrayDifference([0, 10000000000000000000]); ``` Result: ``` text ┌─arrayDifference([0, 10000000000000000000])─┐ │ [0,-8446744073709551616] │ └────────────────────────────────────────────┘ ``` ## arrayDistinct Takes an array, returns an array containing the distinct elements only. **Syntax** ``` sql arrayDistinct(array) ``` **Arguments** - `array` – [Array](https://clickhouse.com/docs/en/data_types/array/). **Returned values** Returns an array containing the distinct elements. **Example** Query: ``` sql SELECT arrayDistinct([1, 2, 2, 3, 1]); ``` Result: ``` text ┌─arrayDistinct([1, 2, 2, 3, 1])─┐ │ [1,2,3] │ └────────────────────────────────┘ ``` ## arrayEnumerateDense Returns an array of the same size as the source array, indicating where each element first appears in the source array. **Syntax** ```sql arrayEnumerateDense(arr) ``` **Example** Query: ``` sql SELECT arrayEnumerateDense([10, 20, 10, 30]) ``` Result: ``` text ┌─arrayEnumerateDense([10, 20, 10, 30])─┐ │ [1,2,1,3] │ └───────────────────────────────────────┘ ``` ## arrayEnumerateDenseRanked Returns an array the same size as the source array, indicating where each element first appears in the source array. It allows for enumeration of a multidimensional array with the ability to specify how deep to look inside the array. **Syntax** ```sql arrayEnumerateDenseRanked(clear_depth, arr, max_array_depth) ``` **Parameters** - `clear_depth`: Enumerate elements at the specified level separately. Positive [Integer](../data-types/int-uint.md) less than or equal to `max_arr_depth`. - `arr`: N-dimensional array to enumerate. [Array](../data-types/array.md). - `max_array_depth`: The maximum effective depth. Positive [Integer](../data-types/int-uint.md) less than or equal to the depth of `arr`. **Example** With `clear_depth=1` and `max_array_depth=1`, the result is identical to what [arrayEnumerateDense](#arrayenumeratedense) would give. Query: ``` sql SELECT arrayEnumerateDenseRanked(1,[10, 20, 10, 30],1); ``` Result: ``` text [1,2,1,3] ``` In this example, `arrayEnumerateDenseRanked` is used to obtain an array indicating, for each element of the multidimensional array, what its position is among elements of the same value. For the first row of the passed array,`[10,10,30,20]`, the corresponding first row of the result is `[1,1,2,3]`, indicating that `10` is the first number encountered in position 1 and 2, `30` the second number encountered in position 3 and `20` is the third number encountered in position 4. For the second row, `[40, 50, 10, 30]`, the corresponding second row of the result is `[4,5,1,2]`, indicating that `40` and `50` are the fourth and fifth numbers encountered in position 1 and 2 of that row, that another `10` (the first encountered number) is in position 3 and `30` (the second number encountered) is in the last position. Query: ``` sql SELECT arrayEnumerateDenseRanked(1,[[10,10,30,20],[40,50,10,30]],2); ``` Result: ``` text [[1,1,2,3],[4,5,1,2]] ``` Changing `clear_depth=2` results in the enumeration occurring separately for each row anew. Query: ``` sql SELECT arrayEnumerateDenseRanked(2,[[10,10,30,20],[40,50,10,30]],2); ``` Result: ``` text [[1,1,2,3],[1,2,3,4]] ``` ## arrayIntersect(arr) Takes multiple arrays, returns an array with elements that are present in all source arrays. Example: ``` sql SELECT arrayIntersect([1, 2], [1, 3], [2, 3]) AS no_intersect, arrayIntersect([1, 2], [1, 3], [1, 4]) AS intersect ``` ``` text ┌─no_intersect─┬─intersect─┐ │ [] │ [1] │ └──────────────┴───────────┘ ``` ## arrayJaccardIndex Returns the [Jaccard index](https://en.wikipedia.org/wiki/Jaccard_index) of two arrays. **Example** Query: ``` sql SELECT arrayJaccardIndex([1, 2], [2, 3]) AS res ``` Result: ``` text ┌─res────────────────┐ │ 0.3333333333333333 │ └────────────────────┘ ``` ## arrayReduce Applies an aggregate function to array elements and returns its result. The name of the aggregation function is passed as a string in single quotes `'max'`, `'sum'`. When using parametric aggregate functions, the parameter is indicated after the function name in parentheses `'uniqUpTo(6)'`. **Syntax** ``` sql arrayReduce(agg_func, arr1, arr2, ..., arrN) ``` **Arguments** - `agg_func` — The name of an aggregate function which should be a constant [string](../../sql-reference/data-types/string.md). - `arr` — Any number of [array](../../sql-reference/data-types/array.md) type columns as the parameters of the aggregation function. **Returned value** **Example** Query: ``` sql SELECT arrayReduce('max', [1, 2, 3]); ``` Result: ``` text ┌─arrayReduce('max', [1, 2, 3])─┐ │ 3 │ └───────────────────────────────┘ ``` If an aggregate function takes multiple arguments, then this function must be applied to multiple arrays of the same size. Query: ``` sql SELECT arrayReduce('maxIf', [3, 5], [1, 0]); ``` Result: ``` text ┌─arrayReduce('maxIf', [3, 5], [1, 0])─┐ │ 3 │ └──────────────────────────────────────┘ ``` Example with a parametric aggregate function: Query: ``` sql SELECT arrayReduce('uniqUpTo(3)', [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]); ``` Result: ``` text ┌─arrayReduce('uniqUpTo(3)', [1, 2, 3, 4, 5, 6, 7, 8, 9, 10])─┐ │ 4 │ └─────────────────────────────────────────────────────────────┘ ``` **See also** - [arrayFold](#arrayfold) ## arrayReduceInRanges Applies an aggregate function to array elements in given ranges and returns an array containing the result corresponding to each range. The function will return the same result as multiple `arrayReduce(agg_func, arraySlice(arr1, index, length), ...)`. **Syntax** ``` sql arrayReduceInRanges(agg_func, ranges, arr1, arr2, ..., arrN) ``` **Arguments** - `agg_func` — The name of an aggregate function which should be a constant [string](../../sql-reference/data-types/string.md). - `ranges` — The ranges to aggretate which should be an [array](../../sql-reference/data-types/array.md) of [tuples](../../sql-reference/data-types/tuple.md) which containing the index and the length of each range. - `arr` — Any number of [Array](../../sql-reference/data-types/array.md) type columns as the parameters of the aggregation function. **Returned value** - Array containing results of the aggregate function over specified ranges. Type: [Array](../../sql-reference/data-types/array.md). **Example** Query: ``` sql SELECT arrayReduceInRanges( 'sum', [(1, 5), (2, 3), (3, 4), (4, 4)], [1000000, 200000, 30000, 4000, 500, 60, 7] ) AS res ``` Result: ``` text ┌─res─────────────────────────┐ │ [1234500,234000,34560,4567] │ └─────────────────────────────┘ ``` ## arrayFold Applies a lambda function to one or more equally-sized arrays and collects the result in an accumulator. **Syntax** ``` sql arrayFold(lambda_function, arr1, arr2, ..., accumulator) ``` **Example** Query: ``` sql SELECT arrayFold( acc,x -> acc + x*2, [1, 2, 3, 4], toInt64(3)) AS res; ``` Result: ``` text ┌─res─┐ │ 23 │ └─────┘ ``` **Example with the Fibonacci sequence** ```sql SELECT arrayFold( acc,x -> (acc.2, acc.2 + acc.1), range(number), (1::Int64, 0::Int64)).1 AS fibonacci FROM numbers(1,10); ┌─fibonacci─┐ │ 0 │ │ 1 │ │ 1 │ │ 2 │ │ 3 │ │ 5 │ │ 8 │ │ 13 │ │ 21 │ │ 34 │ └───────────┘ ``` **See also** - [arrayReduce](#arrayreduce) ## arrayReverse(arr) Returns an array of the same size as the original array containing the elements in reverse order. Example: ``` sql SELECT arrayReverse([1, 2, 3]) ``` ``` text ┌─arrayReverse([1, 2, 3])─┐ │ [3,2,1] │ └─────────────────────────┘ ``` ## reverse(arr) Synonym for [“arrayReverse”](#arrayreverse) ## arrayFlatten Converts an array of arrays to a flat array. Function: - Applies to any depth of nested arrays. - Does not change arrays that are already flat. The flattened array contains all the elements from all source arrays. **Syntax** ``` sql flatten(array_of_arrays) ``` Alias: `flatten`. **Parameters** - `array_of_arrays` — [Array](../../sql-reference/data-types/array.md) of arrays. For example, `[[1,2,3], [4,5]]`. **Examples** ``` sql SELECT flatten([[[1]], [[2], [3]]]); ``` ``` text ┌─flatten(array(array([1]), array([2], [3])))─┐ │ [1,2,3] │ └─────────────────────────────────────────────┘ ``` ## arrayCompact Removes consecutive duplicate elements from an array. The order of result values is determined by the order in the source array. **Syntax** ``` sql arrayCompact(arr) ``` **Arguments** `arr` — The [array](../../sql-reference/data-types/array.md) to inspect. **Returned value** The array without duplicate. Type: `Array`. **Example** Query: ``` sql SELECT arrayCompact([1, 1, nan, nan, 2, 3, 3, 3]); ``` Result: ``` text ┌─arrayCompact([1, 1, nan, nan, 2, 3, 3, 3])─┐ │ [1,nan,nan,2,3] │ └────────────────────────────────────────────┘ ``` ## arrayZip Combines multiple arrays into a single array. The resulting array contains the corresponding elements of the source arrays grouped into tuples in the listed order of arguments. **Syntax** ``` sql arrayZip(arr1, arr2, ..., arrN) ``` **Arguments** - `arrN` — [Array](../../sql-reference/data-types/array.md). The function can take any number of arrays of different types. All the input arrays must be of equal size. **Returned value** - Array with elements from the source arrays grouped into [tuples](../../sql-reference/data-types/tuple.md). Data types in the tuple are the same as types of the input arrays and in the same order as arrays are passed. Type: [Array](../../sql-reference/data-types/array.md). **Example** Query: ``` sql SELECT arrayZip(['a', 'b', 'c'], [5, 2, 1]); ``` Result: ``` text ┌─arrayZip(['a', 'b', 'c'], [5, 2, 1])─┐ │ [('a',5),('b',2),('c',1)] │ └──────────────────────────────────────┘ ``` ## arrayAUC Calculate AUC (Area Under the Curve, which is a concept in machine learning, see more details: ). **Syntax** ``` sql arrayAUC(arr_scores, arr_labels) ``` **Arguments** - `arr_scores` — scores prediction model gives. - `arr_labels` — labels of samples, usually 1 for positive sample and 0 for negative sample. **Returned value** Returns AUC value with type Float64. **Example** Query: ``` sql select arrayAUC([0.1, 0.4, 0.35, 0.8], [0, 0, 1, 1]); ``` Result: ``` text ┌─arrayAUC([0.1, 0.4, 0.35, 0.8], [0, 0, 1, 1])─┐ │ 0.75 │ └───────────────────────────────────────────────┘ ``` ## arrayMap(func, arr1, …) Returns an array obtained from the original arrays by application of `func(arr1[i], …, arrN[i])` for each element. Arrays `arr1` … `arrN` must have the same number of elements. Examples: ``` sql SELECT arrayMap(x -> (x + 2), [1, 2, 3]) as res; ``` ``` text ┌─res─────┐ │ [3,4,5] │ └─────────┘ ``` The following example shows how to create a tuple of elements from different arrays: ``` sql SELECT arrayMap((x, y) -> (x, y), [1, 2, 3], [4, 5, 6]) AS res ``` ``` text ┌─res─────────────────┐ │ [(1,4),(2,5),(3,6)] │ └─────────────────────┘ ``` Note that the `arrayMap` is a [higher-order function](../../sql-reference/functions/index.md#higher-order-functions). You must pass a lambda function to it as the first argument, and it can’t be omitted. ## arrayFilter(func, arr1, …) Returns an array containing only the elements in `arr1` for which `func(arr1[i], …, arrN[i])` returns something other than 0. Examples: ``` sql SELECT arrayFilter(x -> x LIKE '%World%', ['Hello', 'abc World']) AS res ``` ``` text ┌─res───────────┐ │ ['abc World'] │ └───────────────┘ ``` ``` sql SELECT arrayFilter( (i, x) -> x LIKE '%World%', arrayEnumerate(arr), ['Hello', 'abc World'] AS arr) AS res ``` ``` text ┌─res─┐ │ [2] │ └─────┘ ``` Note that the `arrayFilter` is a [higher-order function](../../sql-reference/functions/index.md#higher-order-functions). You must pass a lambda function to it as the first argument, and it can’t be omitted. ## arrayFill(func, arr1, …) Scan through `arr1` from the first element to the last element and replace `arr1[i]` by `arr1[i - 1]` if `func(arr1[i], …, arrN[i])` returns 0. The first element of `arr1` will not be replaced. Examples: ``` sql SELECT arrayFill(x -> not isNull(x), [1, null, 3, 11, 12, null, null, 5, 6, 14, null, null]) AS res ``` ``` text ┌─res──────────────────────────────┐ │ [1,1,3,11,12,12,12,5,6,14,14,14] │ └──────────────────────────────────┘ ``` Note that the `arrayFill` is a [higher-order function](../../sql-reference/functions/index.md#higher-order-functions). You must pass a lambda function to it as the first argument, and it can’t be omitted. ## arrayReverseFill(func, arr1, …) Scan through `arr1` from the last element to the first element and replace `arr1[i]` by `arr1[i + 1]` if `func(arr1[i], …, arrN[i])` returns 0. The last element of `arr1` will not be replaced. Examples: ``` sql SELECT arrayReverseFill(x -> not isNull(x), [1, null, 3, 11, 12, null, null, 5, 6, 14, null, null]) AS res ``` ``` text ┌─res────────────────────────────────┐ │ [1,3,3,11,12,5,5,5,6,14,NULL,NULL] │ └────────────────────────────────────┘ ``` Note that the `arrayReverseFill` is a [higher-order function](../../sql-reference/functions/index.md#higher-order-functions). You must pass a lambda function to it as the first argument, and it can’t be omitted. ## arraySplit(func, arr1, …) Split `arr1` into multiple arrays. When `func(arr1[i], …, arrN[i])` returns something other than 0, the array will be split on the left hand side of the element. The array will not be split before the first element. Examples: ``` sql SELECT arraySplit((x, y) -> y, [1, 2, 3, 4, 5], [1, 0, 0, 1, 0]) AS res ``` ``` text ┌─res─────────────┐ │ [[1,2,3],[4,5]] │ └─────────────────┘ ``` Note that the `arraySplit` is a [higher-order function](../../sql-reference/functions/index.md#higher-order-functions). You must pass a lambda function to it as the first argument, and it can’t be omitted. ## arrayReverseSplit(func, arr1, …) Split `arr1` into multiple arrays. When `func(arr1[i], …, arrN[i])` returns something other than 0, the array will be split on the right hand side of the element. The array will not be split after the last element. Examples: ``` sql SELECT arrayReverseSplit((x, y) -> y, [1, 2, 3, 4, 5], [1, 0, 0, 1, 0]) AS res ``` ``` text ┌─res───────────────┐ │ [[1],[2,3,4],[5]] │ └───────────────────┘ ``` Note that the `arrayReverseSplit` is a [higher-order function](../../sql-reference/functions/index.md#higher-order-functions). You must pass a lambda function to it as the first argument, and it can’t be omitted. ## arrayExists(\[func,\] arr1, …) Returns 1 if there is at least one element in `arr` for which `func(arr1[i], …, arrN[i])` returns something other than 0. Otherwise, it returns 0. Note that the `arrayExists` is a [higher-order function](../../sql-reference/functions/index.md#higher-order-functions). You can pass a lambda function to it as the first argument. ## arrayAll(\[func,\] arr1, …) Returns 1 if `func(arr1[i], …, arrN[i])` returns something other than 0 for all the elements in arrays. Otherwise, it returns 0. Note that the `arrayAll` is a [higher-order function](../../sql-reference/functions/index.md#higher-order-functions). You can pass a lambda function to it as the first argument. ## arrayFirst(func, arr1, …) Returns the first element in the `arr1` array for which `func(arr1[i], …, arrN[i])` returns something other than 0. ## arrayFirstOrNull Returns the first element in the `arr1` array for which `func(arr1[i], …, arrN[i])` returns something other than 0, otherwise it returns `NULL`. **Syntax** ```sql arrayFirstOrNull(func, arr1, …) ``` **Parameters** - `func`: Lambda function. [Lambda function](../functions/#higher-order-functions---operator-and-lambdaparams-expr-function). - `arr1`: Array to operate on. [Array](../data-types/array.md). **Returned value** - The first element in the passed array. - Otherwise, returns `NULL` **Implementation details** Note that the `arrayFirstOrNull` is a [higher-order function](../../sql-reference/functions/index.md#higher-order-functions). You must pass a lambda function to it as the first argument, and it can’t be omitted. **Example** Query: ```sql SELECT arrayFirstOrNull(x -> x >= 2, [1, 2, 3]); ``` Result: ```response 2 ``` Query: ```sql SELECT arrayFirstOrNull(x -> x >= 2, emptyArrayUInt8()); ``` Result: ```response \N ``` Query: ```sql SELECT arrayLastOrNull((x,f) -> f, [1,2,3,NULL], [0,1,0,1]); ``` Result: ```response \N ``` ## arrayLast(func, arr1, …) Returns the last element in the `arr1` array for which `func(arr1[i], …, arrN[i])` returns something other than 0. Note that the `arrayLast` is a [higher-order function](../../sql-reference/functions/index.md#higher-order-functions). You must pass a lambda function to it as the first argument, and it can’t be omitted. ## arrayLastOrNull Returns the last element in the `arr1` array for which `func(arr1[i], …, arrN[i])` returns something other than 0, otherwise returns `NULL`. **Syntax** ```sql arrayLastOrNull(func, arr1, …) ``` **Parameters** - `func`: Lambda function. [Lambda function](../functions/#higher-order-functions---operator-and-lambdaparams-expr-function). - `arr1`: Array to operate on. [Array](../data-types/array.md). **Returned value** - The last element in the passed array. - Otherwise, returns `NULL` **Implementation details** Note that the `arrayLastOrNull` is a [higher-order function](../../sql-reference/functions/index.md#higher-order-functions). You must pass a lambda function to it as the first argument, and it can’t be omitted. **Example** Query: ```sql SELECT arrayLastOrNull(x -> x >= 2, [1, 2, 3]); ``` Result: ```response 3 ``` Query: ```sql SELECT arrayLastOrNull(x -> x >= 2, emptyArrayUInt8()); ``` Result: ```response \N ``` ## arrayFirstIndex(func, arr1, …) Returns the index of the first element in the `arr1` array for which `func(arr1[i], …, arrN[i])` returns something other than 0. Note that the `arrayFirstIndex` is a [higher-order function](../../sql-reference/functions/index.md#higher-order-functions). You must pass a lambda function to it as the first argument, and it can’t be omitted. ## arrayLastIndex(func, arr1, …) Returns the index of the last element in the `arr1` array for which `func(arr1[i], …, arrN[i])` returns something other than 0. Note that the `arrayLastIndex` is a [higher-order function](../../sql-reference/functions/index.md#higher-order-functions). You must pass a lambda function to it as the first argument, and it can’t be omitted. ## arrayMin Returns the minimum of elements in the source array. If the `func` function is specified, returns the mininum of elements converted by this function. Note that the `arrayMin` is a [higher-order function](../../sql-reference/functions/index.md#higher-order-functions). You can pass a lambda function to it as the first argument. **Syntax** ```sql arrayMin([func,] arr) ``` **Arguments** - `func` — Function. [Expression](../../sql-reference/data-types/special-data-types/expression.md). - `arr` — Array. [Array](../../sql-reference/data-types/array.md). **Returned value** - The minimum of function values (or the array minimum). Type: if `func` is specified, matches `func` return value type, else matches the array elements type. **Examples** Query: ```sql SELECT arrayMin([1, 2, 4]) AS res; ``` Result: ```text ┌─res─┐ │ 1 │ └─────┘ ``` Query: ```sql SELECT arrayMin(x -> (-x), [1, 2, 4]) AS res; ``` Result: ```text ┌─res─┐ │ -4 │ └─────┘ ``` ## arrayMax Returns the maximum of elements in the source array. If the `func` function is specified, returns the maximum of elements converted by this function. Note that the `arrayMax` is a [higher-order function](../../sql-reference/functions/index.md#higher-order-functions). You can pass a lambda function to it as the first argument. **Syntax** ```sql arrayMax([func,] arr) ``` **Arguments** - `func` — Function. [Expression](../../sql-reference/data-types/special-data-types/expression.md). - `arr` — Array. [Array](../../sql-reference/data-types/array.md). **Returned value** - The maximum of function values (or the array maximum). Type: if `func` is specified, matches `func` return value type, else matches the array elements type. **Examples** Query: ```sql SELECT arrayMax([1, 2, 4]) AS res; ``` Result: ```text ┌─res─┐ │ 4 │ └─────┘ ``` Query: ```sql SELECT arrayMax(x -> (-x), [1, 2, 4]) AS res; ``` Result: ```text ┌─res─┐ │ -1 │ └─────┘ ``` ## arraySum Returns the sum of elements in the source array. If the `func` function is specified, returns the sum of elements converted by this function. Note that the `arraySum` is a [higher-order function](../../sql-reference/functions/index.md#higher-order-functions). You can pass a lambda function to it as the first argument. **Syntax** ```sql arraySum([func,] arr) ``` **Arguments** - `func` — Function. [Expression](../../sql-reference/data-types/special-data-types/expression.md). - `arr` — Array. [Array](../../sql-reference/data-types/array.md). **Returned value** - The sum of the function values (or the array sum). Type: for decimal numbers in source array (or for converted values, if `func` is specified) — [Decimal128](../../sql-reference/data-types/decimal.md), for floating point numbers — [Float64](../../sql-reference/data-types/float.md), for numeric unsigned — [UInt64](../../sql-reference/data-types/int-uint.md), and for numeric signed — [Int64](../../sql-reference/data-types/int-uint.md). **Examples** Query: ```sql SELECT arraySum([2, 3]) AS res; ``` Result: ```text ┌─res─┐ │ 5 │ └─────┘ ``` Query: ```sql SELECT arraySum(x -> x*x, [2, 3]) AS res; ``` Result: ```text ┌─res─┐ │ 13 │ └─────┘ ``` ## arrayAvg Returns the average of elements in the source array. If the `func` function is specified, returns the average of elements converted by this function. Note that the `arrayAvg` is a [higher-order function](../../sql-reference/functions/index.md#higher-order-functions). You can pass a lambda function to it as the first argument. **Syntax** ```sql arrayAvg([func,] arr) ``` **Arguments** - `func` — Function. [Expression](../../sql-reference/data-types/special-data-types/expression.md). - `arr` — Array. [Array](../../sql-reference/data-types/array.md). **Returned value** - The average of function values (or the array average). Type: [Float64](../../sql-reference/data-types/float.md). **Examples** Query: ```sql SELECT arrayAvg([1, 2, 4]) AS res; ``` Result: ```text ┌────────────────res─┐ │ 2.3333333333333335 │ └────────────────────┘ ``` Query: ```sql SELECT arrayAvg(x -> (x * x), [2, 4]) AS res; ``` Result: ```text ┌─res─┐ │ 10 │ └─────┘ ``` ## arrayCumSum(\[func,\] arr1, …) Returns an array of the partial (running) sums of the elements in the source array `arr1`. If `func` is specified, then the sum is computed from applying `func` to `arr1`, `arr2`, ..., `arrN`, i.e. `func(arr1[i], …, arrN[i])`. **Syntax** ``` sql arrayCumSum(arr) ``` **Arguments** - `arr` — [Array](../../sql-reference/data-types/array.md) of numeric values. **Returned value** - Returns an array of the partial sums of the elements in the source array. Type: [UInt\*](https://clickhouse.com/docs/en/data_types/int_uint/#uint-ranges), [Int\*](https://clickhouse.com/docs/en/data_types/int_uint/#int-ranges), [Float\*](https://clickhouse.com/docs/en/data_types/float/). Example: ``` sql SELECT arrayCumSum([1, 1, 1, 1]) AS res ``` ``` text ┌─res──────────┐ │ [1, 2, 3, 4] │ └──────────────┘ ``` Note that the `arrayCumSum` is a [higher-order function](../../sql-reference/functions/index.md#higher-order-functions). You can pass a lambda function to it as the first argument. ## arrayCumSumNonNegative(\[func,\] arr1, …) Same as `arrayCumSum`, returns an array of the partial (running) sums of the elements in the source array. If `func` is specified, then the sum is computed from applying `func` to `arr1`, `arr2`, ..., `arrN`, i.e. `func(arr1[i], …, arrN[i])`. Unlike `arrayCumSum`, if the current running sum is smaller than `0`, it is replaced by `0`. **Syntax** ``` sql arrayCumSumNonNegative(arr) ``` **Arguments** - `arr` — [Array](../../sql-reference/data-types/array.md) of numeric values. **Returned value** - Returns an array of non-negative partial sums of elements in the source array. Type: [UInt\*](https://clickhouse.com/docs/en/data_types/int_uint/#uint-ranges), [Int\*](https://clickhouse.com/docs/en/data_types/int_uint/#int-ranges), [Float\*](https://clickhouse.com/docs/en/data_types/float/). ``` sql SELECT arrayCumSumNonNegative([1, 1, -4, 1]) AS res ``` ``` text ┌─res───────┐ │ [1,2,0,1] │ └───────────┘ ``` Note that the `arraySumNonNegative` is a [higher-order function](../../sql-reference/functions/index.md#higher-order-functions). You can pass a lambda function to it as the first argument. ## arrayProduct Multiplies elements of an [array](../../sql-reference/data-types/array.md). **Syntax** ``` sql arrayProduct(arr) ``` **Arguments** - `arr` — [Array](../../sql-reference/data-types/array.md) of numeric values. **Returned value** - A product of array's elements. Type: [Float64](../../sql-reference/data-types/float.md). **Examples** Query: ``` sql SELECT arrayProduct([1,2,3,4,5,6]) as res; ``` Result: ``` text ┌─res───┐ │ 720 │ └───────┘ ``` Query: ``` sql SELECT arrayProduct([toDecimal64(1,8), toDecimal64(2,8), toDecimal64(3,8)]) as res, toTypeName(res); ``` Return value type is always [Float64](../../sql-reference/data-types/float.md). Result: ``` text ┌─res─┬─toTypeName(arrayProduct(array(toDecimal64(1, 8), toDecimal64(2, 8), toDecimal64(3, 8))))─┐ │ 6 │ Float64 │ └─────┴──────────────────────────────────────────────────────────────────────────────────────────┘ ``` ## arrayRotateLeft Rotates an [array](../../sql-reference/data-types/array.md) to the left by the specified number of elements. If the number of elements is negative, the array is rotated to the right. **Syntax** ``` sql arrayRotateLeft(arr, n) ``` **Arguments** - `arr` — [Array](../../sql-reference/data-types/array.md). - `n` — Number of elements to rotate. **Returned value** - An array rotated to the left by the specified number of elements. Type: [Array](../../sql-reference/data-types/array.md). **Examples** Query: ``` sql SELECT arrayRotateLeft([1,2,3,4,5,6], 2) as res; ``` Result: ``` text ┌─res───────────┐ │ [3,4,5,6,1,2] │ └───────────────┘ ``` Query: ``` sql SELECT arrayRotateLeft([1,2,3,4,5,6], -2) as res; ``` Result: ``` text ┌─res───────────┐ │ [5,6,1,2,3,4] │ └───────────────┘ ``` Query: ``` sql SELECT arrayRotateLeft(['a','b','c','d','e'], 3) as res; ``` Result: ``` text ┌─res───────────────────┐ │ ['d','e','a','b','c'] │ └───────────────────────┘ ``` ## arrayRotateRight Rotates an [array](../../sql-reference/data-types/array.md) to the right by the specified number of elements. If the number of elements is negative, the array is rotated to the left. **Syntax** ``` sql arrayRotateRight(arr, n) ``` **Arguments** - `arr` — [Array](../../sql-reference/data-types/array.md). - `n` — Number of elements to rotate. **Returned value** - An array rotated to the right by the specified number of elements. Type: [Array](../../sql-reference/data-types/array.md). **Examples** Query: ``` sql SELECT arrayRotateRight([1,2,3,4,5,6], 2) as res; ``` Result: ``` text ┌─res───────────┐ │ [5,6,1,2,3,4] │ └───────────────┘ ``` Query: ``` sql SELECT arrayRotateRight([1,2,3,4,5,6], -2) as res; ``` Result: ``` text ┌─res───────────┐ │ [3,4,5,6,1,2] │ └───────────────┘ ``` Query: ``` sql SELECT arrayRotateRight(['a','b','c','d','e'], 3) as res; ``` Result: ``` text ┌─res───────────────────┐ │ ['c','d','e','a','b'] │ └───────────────────────┘ ``` ## arrayShiftLeft Shifts an [array](../../sql-reference/data-types/array.md) to the left by the specified number of elements. New elements are filled with the provided argument or the default value of the array element type. If the number of elements is negative, the array is shifted to the right. **Syntax** ``` sql arrayShiftLeft(arr, n[, default]) ``` **Arguments** - `arr` — [Array](../../sql-reference/data-types/array.md). - `n` — Number of elements to shift. - `default` — Optional. Default value for new elements. **Returned value** - An array shifted to the left by the specified number of elements. Type: [Array](../../sql-reference/data-types/array.md). **Examples** Query: ``` sql SELECT arrayShiftLeft([1,2,3,4,5,6], 2) as res; ``` Result: ``` text ┌─res───────────┐ │ [3,4,5,6,0,0] │ └───────────────┘ ``` Query: ``` sql SELECT arrayShiftLeft([1,2,3,4,5,6], -2) as res; ``` Result: ``` text ┌─res───────────┐ │ [0,0,1,2,3,4] │ └───────────────┘ ``` Query: ``` sql SELECT arrayShiftLeft([1,2,3,4,5,6], 2, 42) as res; ``` Result: ``` text ┌─res─────────────┐ │ [3,4,5,6,42,42] │ └─────────────────┘ ``` Query: ``` sql SELECT arrayShiftLeft(['a','b','c','d','e','f'], 3, 'foo') as res; ``` Result: ``` text ┌─res─────────────────────────────┐ │ ['d','e','f','foo','foo','foo'] │ └─────────────────────────────────┘ ``` Query: ``` sql SELECT arrayShiftLeft([1,2,3,4,5,6] :: Array(UInt16), 2, 4242) as res; ``` Result: ``` text ┌─res─────────────────┐ │ [3,4,5,6,4242,4242] │ └─────────────────────┘ ``` ## arrayShiftRight Shifts an [array](../../sql-reference/data-types/array.md) to the right by the specified number of elements. New elements are filled with the provided argument or the default value of the array element type. If the number of elements is negative, the array is shifted to the left. **Syntax** ``` sql arrayShiftRight(arr, n[, default]) ``` **Arguments** - `arr` — [Array](../../sql-reference/data-types/array.md). - `n` — Number of elements to shift. - `default` — Optional. Default value for new elements. **Returned value** - An array shifted to the right by the specified number of elements. Type: [Array](../../sql-reference/data-types/array.md). **Examples** Query: ``` sql SELECT arrayShiftRight([1,2,3,4,5,6], 2) as res; ``` Result: ``` text ┌─res───────────┐ │ [0,0,1,2,3,4] │ └───────────────┘ ``` Query: ``` sql SELECT arrayShiftRight([1,2,3,4,5,6], -2) as res; ``` Result: ``` text ┌─res───────────┐ │ [3,4,5,6,0,0] │ └───────────────┘ ``` Query: ``` sql SELECT arrayShiftRight([1,2,3,4,5,6], 2, 42) as res; ``` Result: ``` text ┌─res─────────────┐ │ [42,42,1,2,3,4] │ └─────────────────┘ ``` Query: ``` sql SELECT arrayShiftRight(['a','b','c','d','e','f'], 3, 'foo') as res; ``` Result: ``` text ┌─res─────────────────────────────┐ │ ['foo','foo','foo','a','b','c'] │ └─────────────────────────────────┘ ``` Query: ``` sql SELECT arrayShiftRight([1,2,3,4,5,6] :: Array(UInt16), 2, 4242) as res; ``` Result: ``` text ┌─res─────────────────┐ │ [4242,4242,1,2,3,4] │ └─────────────────────┘ ``` ## arrayRandomSample Function `arrayRandomSample` returns a subset with `samples`-many random elements of an input array. If `samples` exceeds the size of the input array, the sample size is limited to the size of the array, i.e. all array elements are returned but their order is not guaranteed. The function can handle both flat arrays and nested arrays. **Syntax** ```sql arrayRandomSample(arr, samples) ``` **Arguments** - `arr` — The input array from which to sample elements. ([Array(T)](../data-types/array.md)) - `samples` — The number of elements to include in the random sample ([UInt*](../data-types/int-uint.md)) **Returned Value** - An array containing a random sample of elements from the input array. Type: [Array](../data-types/array.md). **Examples** Query: ```sql SELECT arrayRandomSample(['apple', 'banana', 'cherry', 'date'], 2) as res; ``` Result: ``` ┌─res────────────────┐ │ ['cherry','apple'] │ └────────────────────┘ ``` Query: ```sql SELECT arrayRandomSample([[1, 2], [3, 4], [5, 6]], 2) as res; ``` Result: ``` ┌─res───────────┐ │ [[3,4],[5,6]] │ └───────────────┘ ``` Query: ```sql SELECT arrayRandomSample([1, 2, 3], 5) as res; ``` Result: ``` ┌─res─────┐ │ [3,1,2] │ └─────────┘ ``` ## Distance functions All supported functions are described in [distance functions documentation](../../sql-reference/functions/distance-functions.md).