--- slug: /en/sql-reference/table-functions/s3 sidebar_position: 45 sidebar_label: s3 --- # s3 Table Function Provides table-like interface to select/insert files in [Amazon S3](https://aws.amazon.com/s3/). This table function is similar to [hdfs](../../sql-reference/table-functions/hdfs.md), but provides S3-specific features. **Syntax** ``` sql s3(path [,aws_access_key_id, aws_secret_access_key] [,format] [,structure] [,compression]) ``` **Arguments** - `path` — Bucket url with path to file. Supports following wildcards in readonly mode: `*`, `?`, `{abc,def}` and `{N..M}` where `N`, `M` — numbers, `'abc'`, `'def'` — strings. For more information see [here](../../engines/table-engines/integrations/s3.md#wildcards-in-path). - `format` — The [format](../../interfaces/formats.md#formats) of the file. - `structure` — Structure of the table. Format `'column1_name column1_type, column2_name column2_type, ...'`. - `compression` — Parameter is optional. Supported values: `none`, `gzip/gz`, `brotli/br`, `xz/LZMA`, `zstd/zst`. By default, it will autodetect compression by file extension. **Returned value** A table with the specified structure for reading or writing data in the specified file. **Examples** Selecting the first two rows from the table from S3 file `https://clickhouse-public-datasets.s3.amazonaws.com/my-test-bucket-768/data.csv`: ``` sql SELECT * FROM s3('https://clickhouse-public-datasets.s3.amazonaws.com/my-test-bucket-768/data.csv', 'CSV', 'column1 UInt32, column2 UInt32, column3 UInt32') LIMIT 2; ``` ``` text ┌─column1─┬─column2─┬─column3─┐ │ 1 │ 2 │ 3 │ │ 3 │ 2 │ 1 │ └─────────┴─────────┴─────────┘ ``` The similar but from file with `gzip` compression: ``` sql SELECT * FROM s3('https://clickhouse-public-datasets.s3.amazonaws.com/my-test-bucket-768/data.csv.gz', 'CSV', 'column1 UInt32, column2 UInt32, column3 UInt32', 'gzip') LIMIT 2; ``` ``` text ┌─column1─┬─column2─┬─column3─┐ │ 1 │ 2 │ 3 │ │ 3 │ 2 │ 1 │ └─────────┴─────────┴─────────┘ ``` ## Usage Suppose that we have several files with following URIs on S3: - 'https://clickhouse-public-datasets.s3.amazonaws.com/my-test-bucket-768/some_prefix/some_file_1.csv' - 'https://clickhouse-public-datasets.s3.amazonaws.com/my-test-bucket-768/some_prefix/some_file_2.csv' - 'https://clickhouse-public-datasets.s3.amazonaws.com/my-test-bucket-768/some_prefix/some_file_3.csv' - 'https://clickhouse-public-datasets.s3.amazonaws.com/my-test-bucket-768/some_prefix/some_file_4.csv' - 'https://clickhouse-public-datasets.s3.amazonaws.com/my-test-bucket-768/another_prefix/some_file_1.csv' - 'https://clickhouse-public-datasets.s3.amazonaws.com/my-test-bucket-768/another_prefix/some_file_2.csv' - 'https://clickhouse-public-datasets.s3.amazonaws.com/my-test-bucket-768/another_prefix/some_file_3.csv' - 'https://clickhouse-public-datasets.s3.amazonaws.com/my-test-bucket-768/another_prefix/some_file_4.csv' Count the amount of rows in files ending with numbers from 1 to 3: ``` sql SELECT count(*) FROM s3('https://clickhouse-public-datasets.s3.amazonaws.com/my-test-bucket-768/{some,another}_prefix/some_file_{1..3}.csv', 'CSV', 'name String, value UInt32') ``` ``` text ┌─count()─┐ │ 18 │ └─────────┘ ``` Count the total amount of rows in all files in these two directories: ``` sql SELECT count(*) FROM s3('https://clickhouse-public-datasets.s3.amazonaws.com/my-test-bucket-768/{some,another}_prefix/*', 'CSV', 'name String, value UInt32') ``` ``` text ┌─count()─┐ │ 24 │ └─────────┘ ``` :::warning If your listing of files contains number ranges with leading zeros, use the construction with braces for each digit separately or use `?`. ::: Count the total amount of rows in files named `file-000.csv`, `file-001.csv`, … , `file-999.csv`: ``` sql SELECT count(*) FROM s3('https://clickhouse-public-datasets.s3.amazonaws.com/my-test-bucket-768/big_prefix/file-{000..999}.csv', 'CSV', 'name String, value UInt32'); ``` ``` text ┌─count()─┐ │ 12 │ └─────────┘ ``` Insert data into file `test-data.csv.gz`: ``` sql INSERT INTO FUNCTION s3('https://clickhouse-public-datasets.s3.amazonaws.com/my-test-bucket-768/test-data.csv.gz', 'CSV', 'name String, value UInt32', 'gzip') VALUES ('test-data', 1), ('test-data-2', 2); ``` Insert data into file `test-data.csv.gz` from existing table: ``` sql INSERT INTO FUNCTION s3('https://clickhouse-public-datasets.s3.amazonaws.com/my-test-bucket-768/test-data.csv.gz', 'CSV', 'name String, value UInt32', 'gzip') SELECT name, value FROM existing_table; ``` Glob ** can be used for recursive directory traversal. Consider the below example, it will fetch all files from `my-test-bucket-768` directory recursively: ``` sql SELECT * FROM s3('https://clickhouse-public-datasets.s3.amazonaws.com/my-test-bucket-768/**', 'CSV', 'name String, value UInt32', 'gzip'); ``` The below get data from all `test-data.csv.gz` files from any folder inside `my-test-bucket` directory recursively: ``` sql SELECT * FROM s3('https://clickhouse-public-datasets.s3.amazonaws.com/my-test-bucket-768/**/test-data.csv.gz', 'CSV', 'name String, value UInt32', 'gzip'); ``` ## Partitioned Write If you specify `PARTITION BY` expression when inserting data into `S3` table, a separate file is created for each partition value. Splitting the data into separate files helps to improve reading operations efficiency. **Examples** 1. Using partition ID in a key creates separate files: ```sql INSERT INTO TABLE FUNCTION s3('http://bucket.amazonaws.com/my_bucket/file_{_partition_id}.csv', 'CSV', 'a String, b UInt32, c UInt32') PARTITION BY a VALUES ('x', 2, 3), ('x', 4, 5), ('y', 11, 12), ('y', 13, 14), ('z', 21, 22), ('z', 23, 24); ``` As a result, the data is written into three files: `file_x.csv`, `file_y.csv`, and `file_z.csv`. 2. Using partition ID in a bucket name creates files in different buckets: ```sql INSERT INTO TABLE FUNCTION s3('http://bucket.amazonaws.com/my_bucket_{_partition_id}/file.csv', 'CSV', 'a UInt32, b UInt32, c UInt32') PARTITION BY a VALUES (1, 2, 3), (1, 4, 5), (10, 11, 12), (10, 13, 14), (20, 21, 22), (20, 23, 24); ``` As a result, the data is written into three files in different buckets: `my_bucket_1/file.csv`, `my_bucket_10/file.csv`, and `my_bucket_20/file.csv`. **See Also** - [S3 engine](../../engines/table-engines/integrations/s3.md)