#pragma once #include #include #include #include #include #include #include #include #include #define DEGREES_IN_RADIANS (M_PI / 180.0) namespace DB { namespace ErrorCodes { extern const int ARGUMENT_OUT_OF_BOUND; extern const int ILLEGAL_COLUMN; } const Float64 EARTH_RADIUS_IN_METERS = 6372797.560856; static inline Float64 degToRad(Float64 angle) { return angle * DEGREES_IN_RADIANS; } static inline Float64 radToDeg(Float64 angle) { return angle / DEGREES_IN_RADIANS; } /** * The function calculates distance in meters between two points on Earth specified by longitude and latitude in degrees. * The function uses great circle distance formula https://en.wikipedia.org/wiki/Great-circle_distance. * Throws exception when one or several input values are not within reasonable bounds. * Latitude must be in [-90, 90], longitude must be [-180, 180] * */ class FunctionGreatCircleDistance : public IFunction { public: static constexpr auto name = "greatCircleDistance"; static FunctionPtr create(const Context &) { return std::make_shared(); } private: enum class instr_type : uint8_t { get_float_64, get_const_float_64 }; using instr_t = std::pair; using instrs_t = std::array; String getName() const override { return name; } size_t getNumberOfArguments() const override { return 4; } DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override { for (const auto arg_idx : ext::range(0, arguments.size())) { const auto arg = arguments[arg_idx].get(); if (!checkDataType(arg)) throw Exception( "Illegal type " + arg->getName() + " of argument " + std::to_string(arg_idx + 1) + " of function " + getName() + ". Must be Float64", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT); } return std::make_shared(); } instrs_t getInstructions(const Block & block, const ColumnNumbers & arguments, bool & out_const) { instrs_t result; out_const = true; for (const auto arg_idx : ext::range(0, arguments.size())) { const auto column = block.getByPosition(arguments[arg_idx]).column.get(); if (const auto col = checkAndGetColumn>(column)) { out_const = false; result[arg_idx] = instr_t{instr_type::get_float_64, col}; } else if (const auto col = checkAndGetColumnConst>(column)) { result[arg_idx] = instr_t{instr_type::get_const_float_64, col}; } else throw Exception("Illegal column " + column->getName() + " of argument of function " + getName(), ErrorCodes::ILLEGAL_COLUMN); } return result; } /// https://en.wikipedia.org/wiki/Great-circle_distance Float64 greatCircleDistance(Float64 lon1Deg, Float64 lat1Deg, Float64 lon2Deg, Float64 lat2Deg) { if (lon1Deg < -180 || lon1Deg > 180 || lon2Deg < -180 || lon2Deg > 180 || lat1Deg < -90 || lat1Deg > 90 || lat2Deg < -90 || lat2Deg > 90) { throw Exception("Arguments values out of bounds for function " + getName(), ErrorCodes::ARGUMENT_OUT_OF_BOUND); } Float64 lon1Rad = degToRad(lon1Deg); Float64 lat1Rad = degToRad(lat1Deg); Float64 lon2Rad = degToRad(lon2Deg); Float64 lat2Rad = degToRad(lat2Deg); Float64 u = sin((lat2Rad - lat1Rad) / 2); Float64 v = sin((lon2Rad - lon1Rad) / 2); return 2.0 * EARTH_RADIUS_IN_METERS * asin(sqrt(u * u + cos(lat1Rad) * cos(lat2Rad) * v * v)); } void executeImpl(Block & block, const ColumnNumbers & arguments, const size_t result) override { const auto size = block.rows(); bool result_is_const{}; auto instrs = getInstructions(block, arguments, result_is_const); if (result_is_const) { const auto & colLon1 = static_cast(block.getByPosition(arguments[0]).column.get())->getValue(); const auto & colLat1 = static_cast(block.getByPosition(arguments[1]).column.get())->getValue(); const auto & colLon2 = static_cast(block.getByPosition(arguments[2]).column.get())->getValue(); const auto & colLat2 = static_cast(block.getByPosition(arguments[3]).column.get())->getValue(); Float64 res = greatCircleDistance(colLon1, colLat1, colLon2, colLat2); block.getByPosition(result).column = block.getByPosition(result).type->createColumnConst(size, res); } else { const auto dst = ColumnVector::create(); auto & dst_data = dst->getData(); dst_data.resize(size); Float64 vals[instrs.size()]; for (const auto row : ext::range(0, size)) { for (const auto idx : ext::range(0, instrs.size())) { if (instr_type::get_float_64 == instrs[idx].first) vals[idx] = static_cast *>(instrs[idx].second)->getData()[row]; else if (instr_type::get_const_float_64 == instrs[idx].first) vals[idx] = static_cast(instrs[idx].second)->getValue(); else throw std::logic_error{"unknown instr_type"}; } dst_data[row] = greatCircleDistance(vals[0], vals[1], vals[2], vals[3]); } block.getByPosition(result).column = std::move(dst); } } }; /** * The function checks if a point is in one of ellipses in set. * The number of arguments must be 2 + 4*N where N is the number of ellipses. * The arguments must be arranged as follows: (x, y, x_0, y_0, a_0, b_0, ..., x_i, y_i, a_i, b_i) * All ellipses parameters must be const values; * * The function first checks bounding box condition. * If a point is inside an ellipse's bounding box, the quadratic condition is evaluated. * * Here we assume that points in one block are close and are likely to fit in one ellipse, * so the last success ellipse index is remembered to check this ellipse first for next point. * */ class FunctionPointInEllipses : public IFunction { public: static constexpr auto name = "pointInEllipses"; static FunctionPtr create(const Context &) { return std::make_shared(); } private: struct Ellipse { Float64 x; Float64 y; Float64 a; Float64 b; }; String getName() const override { return name; } bool isVariadic() const override { return true; } size_t getNumberOfArguments() const override { return 0; } DataTypePtr getReturnTypeImpl(const DataTypes & arguments) const override { if (arguments.size() < 6 || arguments.size() % 4 != 2) { throw Exception( "Incorrect number of arguments of function " + getName() + ". Must be 2 for your point plus 4 * N for ellipses (x_i, y_i, a_i, b_i)."); } /// For array on stack, see below. if (arguments.size() > 10000) { throw Exception( "Number of arguments of function " + getName() + " is too large."); } for (const auto arg_idx : ext::range(0, arguments.size())) { const auto arg = arguments[arg_idx].get(); if (!checkDataType(arg)) { throw Exception( "Illegal type " + arg->getName() + " of argument " + std::to_string(arg_idx + 1) + " of function " + getName() + ". Must be Float64", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT); } } return std::make_shared(); } void executeImpl(Block & block, const ColumnNumbers & arguments, const size_t result) override { const auto size = block.rows(); /// Prepare array of ellipses. size_t ellipses_count = (arguments.size() - 2) / 4; Ellipse ellipses[ellipses_count]; for (const auto ellipse_idx : ext::range(0, ellipses_count)) { Float64 ellipse_data[4]; for (const auto idx : ext::range(0, 4)) { int arg_idx = 2 + 4 * ellipse_idx + idx; const auto column = block.getByPosition(arguments[arg_idx]).column.get(); if (const auto col = checkAndGetColumnConst>(column)) { ellipse_data[idx] = col->getValue(); } else { throw Exception( "Illegal type " + column->getName() + " of argument " + std::to_string(arg_idx + 1) + " of function " + getName() + ". Must be const Float64", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT); } } ellipses[ellipse_idx] = Ellipse{ellipse_data[0], ellipse_data[1], ellipse_data[2], ellipse_data[3]}; } int const_cnt = 0; for (const auto idx : ext::range(0, 2)) { const auto column = block.getByPosition(arguments[idx]).column.get(); if (typeid_cast (column)) { ++const_cnt; } else if (!typeid_cast *> (column)) { throw Exception("Illegal column " + column->getName() + " of argument of function " + getName(), ErrorCodes::ILLEGAL_COLUMN); } } const auto col_x = block.getByPosition(arguments[0]).column.get(); const auto col_y = block.getByPosition(arguments[1]).column.get(); if (const_cnt == 0) { const auto col_vec_x = static_cast *> (col_x); const auto col_vec_y = static_cast *> (col_y); const auto dst = ColumnVector::create(); auto & dst_data = dst->getData(); dst_data.resize(size); size_t start_index = 0; for (const auto row : ext::range(0, size)) { dst_data[row] = isPointInEllipses(col_vec_x->getData()[row], col_vec_y->getData()[row], ellipses, ellipses_count, start_index); } block.getByPosition(result).column = std::move(dst); } else if (const_cnt == 2) { const auto col_const_x = static_cast (col_x); const auto col_const_y = static_cast (col_y); size_t start_index = 0; UInt8 res = isPointInEllipses(col_const_x->getValue(), col_const_y->getValue(), ellipses, ellipses_count, start_index); block.getByPosition(result).column = DataTypeUInt8().createColumnConst(size, UInt64(res)); } else { throw Exception( "Illegal types " + col_x->getName() + ", " + col_y->getName() + " of arguments 1, 2 of function " + getName() + ". Both must be either const or vector", ErrorCodes::ILLEGAL_TYPE_OF_ARGUMENT); } } static bool isPointInEllipses(Float64 x, Float64 y, const Ellipse * ellipses, size_t ellipses_count, size_t & start_index) { size_t index = 0 + start_index; for (size_t i = 0; i < ellipses_count; ++i) { Ellipse el = ellipses[index]; double p1 = ((x - el.x) / el.a); double p2 = ((y - el.y) / el.b); if (x <= el.x + el.a && x >= el.x - el.a && y <= el.y + el.b && y >= el.y - el.b /// Bounding box check && p1 * p1 + p2 * p2 <= 1.0) /// Precise check { start_index = index; return true; } ++index; if (index == ellipses_count) { index = 0; } } return false; } }; } #undef DEGREES_IN_RADIANS